首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate potential use of increasing nutritional density of diets for rapid growth of warm‐water fishes, a feeding trial was conducted in which growth performance, body indexes, and whole‐body composition of juvenile hybrid striped bass fed diets comprising protein (49, 54, and 59%), lipid (16, 20, 23, and 28%), and energy (22.0–25.1 kJ/g) concentrations beyond established minimum levels were compared to those of fish fed a more typical commercial reference diet (37.5% crude protein, 10.5% crude lipid, and 19.6 kJ/g energy on a dry matter basis). A subset of the experimental diets and the commercial reference diet also were fed to juvenile red drum. After 6 wk of feeding, hybrid striped bass fed the high‐protein and high‐lipid diets showed much greater growth performance compared to fish fed the commercial diet. Increasing dietary protein level, but not lipid level, tended (P ≤ 0.1) to enhance weight gain and feed efficiency of hybrid striped bass. Hepatosomatic index (HSI), intraperitoneal fat (IPF) ratio, and whole‐body protein were significantly (P < 0.01) influenced by dietary protein level. The dietary lipid and associated energy level had significant negative linear effects on daily feed intake. Linear regression analysis showed that dietary energy : protein ratio, largely influenced by dietary protein level, moderately but significantly influenced weight gain, HSI, IPF ratio, and whole‐body protein of hybrid striped bass and red drum. Red drum grew very similar to hybrid striped bass in response to the experimental diets. However, significant differences in HSI, IPF ratio, whole‐body protein, lipid, moisture, and ash between hybrid striped bass and red drum were observed, indicating species differences in protein and energy partitioning. In particular, the excessive lipid in the diet increased HSI and whole‐body lipid of red drum but not of hybrid striped bass.  相似文献   

2.
Effects of dietary carbohydrate-to-lipid (CHO : L) ratios on the growth rate, conversion efficiencies, and body composition were studied in the Indian major carp fry Catla catla, Labeo rohita , and Cirrhinus mrigala. Six isonitrogenous (40% crude protein) and isocaloric (3.46 kcal metabolizable energy/g) semi-purified diets, with CHO: L ratios of 0.02, 0.60, 1.54, 3.38, 8.93, and 43.00 were fed to triplicate groups of fish in 70-L flow-through (1.5–2.0 L/min) indoor circular troughs. Fish were fed to apparent satiation (about 10% body weight), 6 d/wk, twice daily at 0800 and 1600 h for 6 wk. Fish growth rates differed significantly (P < 0.05) with CHO: L ratio in the diets. Maximum weight gain (%) and specific growth rate (SGR %) were observed in C. catla and L. rohita fed a diet with 36% carbohydrate and 4% lipid, corresponding to a CHO: L ratio of 8.93. In C. mrigala , highest weight gain (%) and SGR (%) were noted in fish fed 27% carbohydrate and 8% lipid, corresponding to a CHO: L ratio of 3.38. In all the species, fish fed either diet with the lowest (0.02) or the highest (43.00) CHO: L ratio tended to have significantly lower (P < 0.05) growth and conversion efficiencies. Percentage of dry matter and whole-body lipid of fish significantly (P < 0.05) increased as CHO: L ratio decreased. However, whole-body crude protein content of fish significantly (P < 0.05) increased as CHO : L ratio increased. The results of this study indicate that the Indian major carp fry efficiently utilize carbohydrate for energy, and excess dietary lipid resulted in increased lipid accumulation in the body.  相似文献   

3.
A growth experiment was conducted to determine the optimal carbohydrate‐to‐lipid (CHO: L) ratio for juvenile yellowfin seabream cultured in 340‐L indoor recirculating tanks. Seven isonitrogenous (450 g kg−1 dietary protein) and isoenergetic (14.1 MJ kg−1) diets with increasing CHO: L ratios (0.03–5.09 g: g) were fed to triplicate groups of 30 fish with an initial weight of 4.91 g for 56 days. Fish were fed to satiation twice a day and the water temperature ranged between 28 and 31.7 °C during the experimental period. Survival was high in all the groups and was not affected by dietary treatments. Best weight gain (WG) and specific growth rate (SGR) were observed in fish fed diets with CHO: L ratios of 0.29 and 0.72, which were not significantly different from that of 0.03, 1.26 and 1.92, but apparently higher than that of 3.22 and 5.09. Feed efficiency (FE), protein efficiency ratio (PER) and protein production value (PPV) followed the same general pattern as WG and SGR. Highest level of energy production value (EPV) was found in fish fed diets with CHO: L ratio of 0.72. Proximate compositions of fish whole body and tissues were markedly affected by dietary CHO: L ratios. Whole body, muscle and liver lipid increased as CHO: L ratios decreased, whereas moisture contents were reduced. Dietary CHO: L ratios had no significant effect on protein content in whole body and muscle. Plasma total cholesterol levels of fish fed diets with CHO: L ratios less than 0.72 were significantly higher than those of the other groups. Triacylglyceride levels decreased linearly as dietary CHO: L ratios increased. Viscerosomatic index (VSI) significantly increased as dietary CHO: L ratios decreased. Intraperitoneal fat ratio (IPF) of fish fed diets with CHO: L ratios less than 1.92 were significantly higher than those fed CHO: L ratios of 3.22 and 5.09. Hepatosomatic index (HSI) did not vary between the test diets. Based on second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 84.1 g kg−1 of carbohydrate and 136.3 g kg−1 of lipid, corresponding to a CHO: L ratio of 0.62, in a diet holding 450 g kg−1 of crude protein and 14 KJ g−1 of metabolizable energy, proved to be optimal for juvenile yellowfin seabream.  相似文献   

4.
The effects of cholesterol and lecithin on growth and body composition of juvenile hybrid striped bass ( Morone chrysops  ×  M. saxatilis ) were investigated by feeding juvenile hybrids (initial weight 5.0 g) diets containing cholesterol at either 0 or 1% and lecithin at either 0, 2, 4, or 6% in a 2 × 4 factorial design. Each of the eight diets was fed to fish in triplicate 38-L aquaria maintained as a brackish water recirculating system for 8 weeks. Weight gain, feed efficiency, muscle ratio and hepatosomatic index were not significantly ( P  > 0.05) affected by dietary supplementation of cholesterol or lecithin. Supplementation of the diet with lecithin at 4 and 6% significantly ( P  < 0.05) decreased intraperitoneal fat accumulation regardless of dietary cholesterol level. Neither muscle nor liver lipid levels were significantly altered by dietary supplementation of cholesterol or lecithin although both liver and plasma lipid classes were affected. Dietary cholesterol decreased concentrations of liver and plasma free fatty acids and liver phospholipids while increasing concentrations of liver triglycerides and plasma phospholipids. Dietary lecithin did not consistently affect plasma and liver lipid classes although changes in phospholipid levels approaching significance ( P =0.0502 and P =0.0513, respectively) were observed. Thus it is concluded that dietary supplementation with cholesterol or lecithin had no substantial beneficial effects on growth or body composition of juvenile hybrid striped bass.  相似文献   

5.
A study was undertaken to investigate the effects of graded dietary levels and different types of carnitine on hybrid striped bass (Morone chrysops × M. saxatilis %) fed different levels of lipid. An incomplete factorial design was utilized in which diets containing lipid at either 5 or 10% were supplemented with l-carnitine at 0, 500, or 1000 mg kg–1 diet, dl-carnitine at 1000 mg kg–1 diet, or carnitine chloride to provide 1000 mg carnitine kg–1 diet. Juvenile hybrid striped bass (3.3 g fish–1) were stocked into individual 38-l aquaria connected as a brackish water (6), recirculating system and fed each diet in triplicate for 9 weeks.Supplementation of the diet with 1000 mg carnitine kg–1 increased muscle carnitine from 35.5 to 47.7 g g–1 tissue. Carnitine supplementation did not result in increased weight gain regardless of carnitine level or type; however, weight gain showed a significant (p<0.05) response to dietary lipid with fish fed diets containing 10% lipid growing 34% more than fish fed diets with 5% lipid. The hepatosomatic index also was unaffected by diet, but the intraperitoneal fat (IPF) ratio was significantly elevated (5.1 vs 3.2%) in fish fed diets with 10% lipid compared to those fed diets with 5% lipid. Fish fed diets containing 1000 mg carnitine kg–1 had increased IPF ratio values at 4.7% compared to 3.9% for fish fed the basal diet. Liver lipid also was responsive to dietary treatment, increasing from 6.7 to 8.8% of wet weight as dietary lipid increased from 5 to 10%. The relative quantities of triglycerides, free fatty acids and phospholipids in muscle and liver were not influenced by carnitine level, carnitine type or dietary lipid level. Supplementation of carnitine does not appear to be beneficial to hybrid striped bass based on either growth performance or body composition.  相似文献   

6.
Three experiments were conducted that were designed to evaluate our ability to predict essential amino acid (EAA) needs of hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. In the first experiment, six diets containing various amino acid profiles were fed to triplicate groups of fish initially weighing 7.7 g per fish. At the end of the 8‐week experiment, no significant differences were detected in growth rates or feed efficiencies (FE) between fish fed a practical diet containing 510 g kg?1 herring fish meal (FM) and fish fed a purified diet containing the amino acid profile of herring fish meal (CAA‐FM). Growth responses of fish fed purified diets containing 100 (HSB), 110 (HSB110), 120 (HSB120) or 140 g 100 g?1 (HSB140) of the amino acid profile of hybrid striped bass whole‐bodies were significantly lower than those of fish fed diet FM. In the second experiment, triplicate groups of fish (5.6 g per fish) were fed diets containing various energy : protein (E : P) ratios (34.8, 41.2, 47.5 and 53.9 kJ g?1 protein) and one of two amino acid profiles (CAA‐FM and HSB120) in a 4 × 2 factorial design. Carbohydrate concentration was varied to achieve the desired energy concentrations. At the end of the 8‐week experiment, weight gain and FE were significantly higher in fish fed diets formulated to simulate the amino acid profile of herring fish meal (CAA‐FM) compared with fish fed diets formulated to contain 120 g 100 g?1 of the amino acid profile of hybrid striped bass whole‐bodies (HSB120). Weight gain, FE and survival data indicated the optimum dietary E : P was 41.2 kJ g?1 protein. Dietary treatments in the final experiment included three amino acid profiles and four levels of lipid in a 3 × 4 incomplete factorial design. Dietary amino acid treatments included the amino acid profile of herring fish meal (CAA‐FM) or 120 g 100 g?1 of the predicted EAA requirement profile for hybrid striped bass (HSB120). The amino acid profile of the remaining dietary treatment (PRED+) was similar to that of the HSB120 treatment, but contained additional threonine, isoleucine and tryptophan. Diets CAA‐FM and HSB120 contained either 90, 130, 170 or 210 g kg?1 lipid, whereas diet PRED+ contained 130 g kg?1 lipid. Dietary treatments were fed for 10 weeks to triplicate groups of fish initially weighing 81.0 g per fish. Weight gain and FE were not significantly affected by dietary amino acid profile. Feed efficiency was significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with fish fed diets containing 90–170 g kg?1 lipid. Intraperitoneal fat (IPF) ratio and hepatosomatic index (HSI) values generally increased as dietary lipid concentrations increased. Total liver lipid concentrations were significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with those of fish fed 90–130 g kg?1 lipid. Results of this study indicate an appropriate dietary amino acid profile can be predicted for hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. Further, the optimum E : P appears to be 40 kJ g?1 protein.  相似文献   

7.
王菲  李向飞  李贵锋  刘文斌 《水产学报》2015,39(9):1386-1394
本试验研究了饲料中不同糖脂比对建鲤幼鱼生长、体组成、消化及糖酵解的影响。试验共配制6组等氮等能的半纯合饲料,对应糖脂比分别为2.3,3.0,4.0,5.6,7.7和12.1。将鱼饱食投喂8周,每日投喂3次。试验结果表明,当饲料糖脂比从2.3升高至7.7时,增重率、特定生长率、蛋白质效率和蛋白保留率均显著升高(P < 0.05);而当糖脂比进一步升高时,其均呈下降趋势,但差异不显著(P > 0.05);饲料系数的变化趋势与其相反。建鲤幼鱼的脏体比以及全鱼、胴体和肝脏脂肪含量随着饲料糖脂比的降低均显著升高(P < 0.05),而全鱼、胴体和肝脏的蛋白质含量无显著差异(P > 0.05)。肠道淀粉酶活性随着糖脂比的升高显著升高(P < 0.05),而脂肪酶的变化趋势则相反(P < 0.05)。此外,血糖和胰岛素水平、肝糖原含量及肝脏葡萄糖激酶和丙酮酸激酶活性随饲料糖脂比的升高均显著升高(P < 0.05),血液中总胆固醇和甘油三酯含量则随着糖脂比的降低显著升高(P < 0.05)。根据二次回归模型得出,在等氮等能的饲料条件下,建鲤幼鱼最适宜的糖水平和脂肪水平分别为38.21%和4.69%,对应的糖脂比为8.14。  相似文献   

8.
Requirements for six of the 10 indispensable amino acids (IAA) have not been quantified for hybrid striped bass. In this study, we estimate the requirement for l ‐tryptophan by nonlinear regression analysis of several growth indicators. Fifteen isocaloric, isonitrogenous diets were formulated to contain 1.0, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8, 3.1, 3.4, 3.7, 4.0, 5.0, 6.0, 10.0 or 14 g l ‐tryptophan kg?1 diet and fed to reciprocal cross hybrid striped bass for 7 weeks. After 5 weeks, survival of fish receiving the basal diet was 40% while surviving fish fed this diet were in poor health. Survival of fish receiving 1.3 g Trp kg?1 diet declined to 70% by termination of the trial. Survival in other treatments was 100%. Fish weight gain was 100% or greater for fish receiving 1.6 g Trp kg?1 diet or more. Hepatosomatic index, muscle ratio and intraperitoneal fat (IPF) ratio also responded to dietary tryptophan concentration. IPF was inversely related to dietary tryptophan concentration. The dietary tryptophan requirement was estimated to be between 2.1 and 2.5 g kg?1 diet (6–7 g kg?1 protein), depending on response variable, using four‐ and five‐parameter saturation kinetics models. These findings will increase the precision of diets formulated for hybrid striped bass.  相似文献   

9.
Six isonitrogenous (390 g kg?1) and isoenergetic (16.2 kJ g?1) diets with varying carbohydrate : lipid (CHO : L) ratios (202.5–1.74), were fed to triplicate groups of 25 fish in indoor recirculation system. Over 8‐week‐growth trial, best weight gain (WG), specific growth rate, feed conversion ratio, protein efficiency ratio and protein production value (P < 0.05) were observed in fish‐fed diets with CHO : L ratio of 7.5. Fish fed either the lowest (1.7) or highest (202.5) CHO : L ratio tended to produce lower (P < 0.05) growth and feed conversion efficiencies. The values of viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio increased as dietary CHO : L ratios decreased. There were no significant differences in whole body and liver crude protein among dietary treatments. Whole body and liver lipid increased as CHO : L ratios decreased. Plasma cholesterol and triacylglyceride levels increased linearly as dietary CHO : L ratios decreased. Activities of glucokinase and pyruvate kinase were stimulated by elevated levels of dietary carbohydrate; however, activities of lipase (LPS) and alkaline phosphatase were stimulated by elevated levels of dietary lipid. Based on a second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 275 g kg?1 of carbohydrate and 59 g kg?1 of lipid, corresponding to a CHO : L ratio of 4.7, in a diet holding 390 g kg?1 of crude protein and 16.3 kJ g?1 of gross energy, proved to be optimal for grass carp. These results indicated that utilization of dietary lipid and carbohydrate was moderate in grass carp, but the fish were a little more capable of utilizing lipid compared with carbohydrate.  相似文献   

10.
Culture of hybrid striped bass Morone saxatilis × M. chrysops has been increasing in selected regions of the United States. Because of their thermal tolerance, hybrids may have potential as a new commercial aquaculture species in the Midwest. In these studies, hybrid striped bass were reared in cages located in southern, central and northern Indiana and offered one of three practical diets. Diets contained either 32, 36 or 40% crude protein. Additionally, a preliminary 8 wk laboratory experiment was conducted in which fish were offered the same diets. All diets were formulated to meet the established dietary lysine requirement; optimal levels of other essential amino acids in the diet were predicted by the whole-body essential amino acid profile of hybrid striped bass. In the laboratory experiment, weight gain of fish fed 36% crude protein was significantly higher than those fed either other level of dietary protein. After 205 days, final average weight gains of fish in the field experiment were not significantly different and ranged from 233 to 426 g with an overall average daily gain of 1.6 g/fish/d. Overall survival was 89.1%. Dress-out percentages were 81.2, 69.8, and 34.9% for eviscerated, eviscerated and headed, and fillets, respectively. Those values were not significantly different among dietary treatments or sites. Lipid content of fillets from fish fed 32% dietary crude protein was significantly higher than in fish fed 36 or 40% crude protein.  相似文献   

11.
The potential for commercial culture of hybrid striped bass is promising in many areas of the United States. While several different striped bass hybrids are candidates for culture, differential performance has not been thoroughly evaluated. Comparative performance of two striped bass hybrids was evaluated in six, 757–1, fiberglass tanks receiving a continuous flow of ambient pond water for 397 d. Three replicate tanks were stocked with 50 fingerlings (66 fish/m3) of either striped bass female × white bass male (mean weight 23 g) or striped bass female × yellow bass male hybrids. Fish were fed a 35% protein ration throughout the study, and weight was recorded for all fish at stocking and at 21-d intervals. White bass hybrids grew significantly faster (0.94 g/d) than yellow bass hybrids (0.59 g/d). Survival to harvest averaged 65% and 44% for yellow bass and white bass hybrids, respectively. A significant difference from the expected 1:1 sex ratio occurred for yellow bass hybrids (100% female), but not for white bass hybrids (56% female). Mean condition factor, 1.63 and 1.39, and fillet percentage, 30.7% and 28.4%, was significantly higher for white bass hybrids compared to yellow bass hybrids.  相似文献   

12.
This study was conducted to determine the dietary vitamin E requirement of juvenile hybrid striped bass ( Morone chrysops female ×  Morone saxatilis male). Semi-purified diets supplemented with 0.2 mg Se kg−1 from Na2SeO3 and either 0 (basal), 10, 20, 40, 60, or 80 mg vitamin E kg−1 as  DL -α-tocopheryl acetate were fed to hybrid striped bass initially averaging 1.8 ± 0.1 g (mean ± SD) for 12 weeks. Fish fed the basal diet, which contained 5.8 mg α-tocopherol kg−1 dry weight, were darker in colour and had reduced weight gain, as well as generally reduced haematocrit values compared with fish fed diets supplemented with vitamin E. In addition, fish fed diets containing less than 20 mg supplemental vitamin E kg−1 had significantly ( P  < 0.05) reduced weight gain and feed efficiency compared with those fed diets supplemented with vitamin E at 20–80 mg kg−1. Dietary supplementation of vitamin E caused incremental increases in the concentration of α-tocopherol in both plasma and liver tissues. However, hybrid striped bass fed graded levels of vitamin E did not exhibit a dose response in terms of ascorbic acid-stimulated lipid peroxidation of hepatic microsomes. Regression analysis of weight gain data using the broken-line model indicated a minimum vitamin E requirement ( ±  SE) of 28 ( ±  3) mg kg−1 dry diet. Based on these data, the dietary vitamin E requirement of hybrid striped bass appears to be similar to that determined for other fish species.  相似文献   

13.
Zinc is a trace mineral element that plays an essential role in numerous biochemical processes, and has been shown to affect growth and health of several fish species. However, the dietary zinc requirement of hybrid striped bass has not been defined. Therefore, a feeding trial was conducted to determine the dietary requirement for zinc by this fish and to compare zinc bioavailability of two chemically different forms (zinc sulfate and zinc proteinate). Six experimental diets were formulated with purified ingredients and supplemented with ZnSO4 to provide total zinc concentrations of 7, 12, 16, 26, 42, and 80 mg/kg diet which were determined by analysis. Each diet contained 32% crude protein, 6% lipid, and approximately 14.2 kJ of digestible energy per gram. The experimental diets were fed twice daily for 10 wk to triplicate groups of 15 hybrid striped bass initially weighing 0.86 ± 0.05 g/fish in 38‐L glass aquaria, connected as a recirculating system. Finally, after the feeding period, the fish were evaluated for weight gain, feed efficiency, protein efficiency ratio, and survival, as well as blood serum zinc, bone zinc, and hematocrit. All fish thrived during the feeding trial and not even the fish fed the basal diet displayed any apparent deficiency signs, although weight gain steadily increased with escalating levels of dietary zinc up to 42 mg/kg diet. On the basis of the most responsive indicators–bone zinc and serum zinc–the minimum dietary zinc requirement of hybrid striped bass was determined to be 17.0 and 17.3 mg Zn/kg diet, respectively, based on broken‐line regression. This estimate is similar in magnitude to dietary zinc requirements reported for other fish species. In addition, the bioavailability of zinc proteinate versus that of ZnSO4 was estimated by deriving the ratio of the slopes of the regression lines fitted to bone zinc and serum zinc data. This analysis indicated that hybrid striped bass utilized zinc proteinate ~1.7 times more efficiently than ZnSO4.  相似文献   

14.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate to lipid ratio (CHO: L) on growth, feed utilization, body composition and digestive enzyme activities of golden pompano, Trachinotus ovatus. Five iso‐nitrogenous (450 g/kg protein) and iso‐energetic (19 MJ/kg gross energy) diets with varying CHO: L ratios of 0.68, 1.02, 1.62, 2.61 and 4.35, respectively, were fed to triplicate groups of 30 fish (average 13.8 ± 0.1 g). Results showed that dietary CHO: L ratios did not show any significant influence on survival of golden pompano (> .05) but significantly affected its growth performance and feed utilization (< .05). Fish fed diets with CHO: L ratios at 1.62 and 2.61 exhibited the highest final body weight, weight gain ratio, specific growth rate, feed efficiency ratio and protein efficiency ratio. Fish body lipid and liver glycogen contents were also significantly influenced by CHO: L ratio (< .05). Hepatic amylase activity increased firstly and then decreased as the dietary CHO: L ratio increased, while lipases activity decreased with increasing dietary CHO:L level. The regression model analysis showed that the most suitable dietary CHO: L ratio (protein 450 g/kg) to reach the highest weight gain ratio is 2.38.  相似文献   

15.
This study aimed to investigate the optimum dietary carbohydrate/lipid (CHO/L) ratio for bullfrog Rana (Lithobates) catesbeiana. Six isonitrogenous and isoenergetic diets were formulated, containing various CHO/L from 1.20 to 12.11. Bullfrogs were fed six diets for 8 weeks and each diet was tested by three replicates. After the 8 weeks feeding, weight gain and specific growth rate increased significantly as dietary CHO/L ratios decreased, but showed little difference (> 0.05) as dietary CHO/L ratios ranged from 1.20 to 2.76. Nitrogen retention was significantly affected by CHO/L ratios, and bullfrog fed with CHO/L 6.10 and 1.82 diets showed the lowest and highest nitrogen retentions respectively. Energy retention increased significantly as dietary CHO/L ratios decreased and bullfrog fed the CHO/L at 1.82 and 1.20 diets showed the highest value. Whole‐body lipid and energy levels both increased significantly (< 0.05) as dietary CHO/L ratios decreased. Moreover, liver lipid content of bullfrog fed CHO/L 1.82 and 1.20 diets were significantly higher than that of other groups. Plasma insulin level significantly increased as the elevation of dietary CHO/L. Malondialdehyde level increased as the CHO/L decreased, and the bullfrog fed the CHO/L 1.20 diet had the highest level. In conclusion, the present results clearly showed the effects of dietary CHO/L ratios on growth; the optimum CHO/L is 2.07 (approximately 22.49% carbohydrate and 10.83% lipid) based on the second‐order polynomial regression analysis of weight gain.  相似文献   

16.
The limited availability of live bait for capturing skipjack tuna, Katsuwonus pelamis, is a bottleneck to increasing tuna production in many parts of the world. Therefore, a nutrition trial was performed to contribute to the production of the Brazilian sardine, Sardinella brasiliensis, for use as live bait. This study determined the best dietary carbohydrate to lipid ratio (CHO:L) for juvenile Brazilian sardines based on growth performance, feed utilisation, body composition, blood metabolites and digestive enzyme activity. Six isoenergetic and isonitrogenous diets were formulated with increased CHO:L ratios (2.05, 3.41, 4.15, 5.11, 5.80 and 6.72). Each diet was randomly assigned to triplicate groups of 100 fish with mean initial body weight of 2.97 ± 0.51 g, which were fed four times a day to apparent satiation. Survival was not affected by differences in diet, however, a low CHO:L ratio stimulated growth. Juveniles fed with a rich‐carbohydrate diet inhibit feed intake and protein intake. Body lipid increased as dietary lipid increased and was inversely correlated to body moisture. The diets did not affect the juvenile's blood metabolites. Alkaline and acid protease activities were not significantly different, but lipase and amylase responded positively to the dietary lipids and carbohydrates. Using segmented regression, the optimum CHO:L ratio for maximum weight gain of juvenile Brazilian sardines was estimated to be 3.41, which contain approximately 300 g kg?1 carbohydrate and 88 g kg?1 lipid.  相似文献   

17.
为探讨糖脂比对吉富罗非鱼幼鱼生长性能、血液生化指标和肝脏糖代谢关键酶的影响,本实验设计了5种不同糖脂比(1.5、2.3、3.9、7.0、16.5)的等氮等能饲料,以吉富罗非鱼幼鱼为实验对象,进行了为期8周的饲养实验。结果显示,随饲料中糖脂比升高,吉富罗非鱼特定生长率(SGR)、增重率(WGR)和蛋白质效率(PER)先升高后降低,糖脂比为3.9和7.0时,WGR、SGR和PER最高。饵料系数(FCR)的变化趋势与此相反,在糖脂比为3.9和7.0组显著低于其他组。随着饲料糖脂比的增加,吉富罗非鱼全鱼粗脂肪含量逐渐下降,在糖脂比为16.5时达到最低水平,但仅与1.5组存在显著差异。血浆甘油三酯在糖脂比最高组也出现显著降低,血浆胆固醇同样在糖脂比最高组显著低于3.9组。然而血糖的变化趋势相反,当糖脂比为16.5时显著高于其他组。随着糖脂比的升高,吉富罗非鱼幼鱼肝脏中丙酮酸激酶(PK)的活性及mRNA表达量逐渐升高,而磷酸烯醇式丙酮酸羧激酶(PEPCK)的活性及mRNA表达水平则逐渐下降。根据二次回归模型得出,在等氮等能的饲料条件下,吉富罗非鱼幼鱼最适宜的糖水平和脂肪水平分别为49.69%和9.53%,其对应的糖脂比为8.4。  相似文献   

18.
为探讨大口黑鲈饲料中不同脂肪与蛋白质含量比对其生长、体组成和非特异性免疫的影响,实验设计了8种(D1~D8)不同脂肪与蛋白质含量比的总能递增饲料。D1~D8饲料的脂肪水平递增(9.0%~26.5%),而蛋白质水平递减(52.0%~31.0%)。用上述饲料饲养体质量为(10.06±0.02)g的大口黑鲈88 d,每饲料设3重复,每重复30尾鱼。结果显示,特定生长率、饲料效率、蛋白质消化率、脂肪消化率和脂肪沉积率均以D2组最高,但随饲料中脂肪与蛋白质含量比的进一步升高呈现显著下降趋势。D3~D5组的蛋白质效率显著高于D1和D8组。D2、D3组与D4组间的蛋白质沉积率差异不显著,但显著高于其他各组。D1~D4组间的总能消化率差异不显著,但显著地高于其他各组。饲料中脂肪含量过高对鱼体组成产生显著的影响,使体脂的积蓄显著增高。随着饲料中脂肪与蛋白质含量比的升高,成活率呈显著下降趋势,D1和D2组的成活率显著高于D5~D8组。非特异性免疫分析显示,D4组血清溶菌酶活力和D2组血清补体活性及头肾白细胞呼吸爆发活性为最高。以饲料为单因子作单因素方差分析得出,满足大口黑鲈最适生长和饲料利用的饲料蛋白质和脂肪水平分别为49.30%和11.50%。以饲料中蛋白质和脂肪水平为自变量,分别以特定生长率和蛋白质沉积率为因变量进行二元二次回归分析得出,特定生长率最大时,饲料中蛋白质、脂肪和脂肪与蛋白质含量比分别为48.20%、12.44%和0.26;蛋白质沉积率最高时,饲料中蛋白质、脂肪和脂肪与蛋白质含量比分别为46.42%、13.96%和0.30。以饲料蛋能比为自变量作一元二次回归分析得出,蛋白质沉积率最大时,饲料的蛋能比、蛋白质、脂肪和脂肪与蛋白质含量比分别为23.72mg/kJ、46.16%、14.18%和0.31。研究认为,饲料的脂肪和蛋白质水平对大口黑鲈的生长、体组成、饲料效率和免疫力有着不同程度的影响;饲料中过高的脂肪会抑制蛋白质的消化与利用,表明脂肪对蛋白质的节约作用有限。建议大口黑鲈实用饲料的蛋白质和脂肪水平分别保持在46%~49%和11.5%~14%范围内较为适当。  相似文献   

19.
Two feeding trials were conducted to determine the optimal dietary carbohydrate to lipid (CHO:L) ratio for juvenile and grower rockfish. Triplicate groups of juvenile (initial mean weight 3.6 g) and duplicate groups of grower (initial mean weight 166 g) were fed the five isonitrogenous (51% CP) and isoenergetic (4.0 kcal g?1) diets with the different CHO:L ratios (0.4–5.6 g:g) for 8 weeks respectively. The survival of juvenile and grower was above 93% and was not affected by the dietary CHO:L ratios. Weight gain of juvenile fed the diets with CHO:L ratios of 0.8 and 1.6 was significantly higher than that of the fish fed diets with CHO:L ratios of 2.8 and 5.6 (P<0.05). The feed efficiency and protein efficiency ratio of juvenile fed the diet with CHO:L ratio of 5.6 were the lowest among all groups (P<0.05). The daily feed intake of juvenile fed the diet with a CHO:L ratio of 5.6 was significantly higher than that of the other groups (P<0.05). The condition factors of juvenile fed the diets with CHO:L ratios of 0.8 and 1.6 were significantly higher than that of 5.6 (P<0.05). The crude lipid content of whole body, liver and viscera of juvenile decreased as the dietary CHO:L ratio increased, and the opposite was found for the moisture content. Weight gain, feed efficiency, daily feed intake, protein efficiency ratio and condition factor of grower were not affected by the dietary CHO:L ratio. Hepatosomatic and viscerasomatic indexes of grower were significantly influenced by dietary CHO:L ratio (P<0.05). Significant differences were observed in the lipid content of whole body and viscera of grower. Dietary CHO:L ratios significantly affected the major fatty acid composition of whole body in both juvenile and grower. The contents of 18:2n‐6 and 18:3n‐3 linearly decreased as the dietary CHO:L ratio increased, whereas the 20:4n‐6, 20:5n‐3 and 22:6n‐3 contents increased. Based on growth, feed efficiency and body composition, the optimal dietary CHO:L ratio was 1.6 for juvenile rockfish fed isonitrogenous (51% CP) and isoenergetic (4.0 kcal g?1) diets, and starch could partially replace lipids in the diets with CHO:L ratios ranging from 0.4 to 5.6 for grower.  相似文献   

20.
Abstract. Semipurified diets containing either 25% or 30% crude protein (CP) from soy isolate (soy) or 30% CP from casein and gelatin (casein) were supplemented with either of two levels of L-lysine HCI (0 or 0·5% of diet) in a 3 × 2 factorial arrangement and fed to fingerling channel catfish, Ictalurus punctatus (Rafinesque), in aquaria for 8 weeks. Factorial analysis of variance indicated a significant ( P < 0·001) positive effect of lysine on weight gain, protein conversion efficiency (PCE) and feed efficiency. Fish fed the soy diet containing 25% CP showed increased weight gain of 24% with lysine supplementation while fish fed soy and casein diets containing 30% CP showed increases of 11 % and 3%, respectively. However, supplementing the 25% CP soy diet with 0–5% L-lysine HCI did not enhance growth performance to the level offish fed the unsupplemented 30% CP soy diet. Significant effects of dietary protein levels and sources on weight gain, PCE, feed efficiency, haematocrit, hepatosomatic index (HSI; % liver weight), intraperitoneal fat (IPF) ratio, dry matter of fillet and whole-body, as well as lipid and protein content of whole-body tissue, were also observed. Fish fed the casein diet containing 30% CP had the greatest weight gain, PCE, feed efficiency, haematocrit and whole-body protein values and lowest IPF ratio and whole-body lipid values compared with those of fish fed the soy diets. Supplemental lysine did not affect body condition indices or proximate composition of whole-body and fillet tissues of fish fed the different protein sources. Therefore, based on this study, dietary protein levels and sources significantly influenced performance characteristics of channel catfish and supplemental lysine was most beneficial at a reduced CP level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号