首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several extraction methods are compared for the simultaneous analysis of organophosphorus pesticides in unpolished rice. Four stationary phases were used for the subsequent gas-liquid chromatographic (GLC) determination of the selected pesticides. Using 3 different GLC columns, 11 pesticides were completely separated and identified. The efficiency of the cleanup and the sensitivity of the analytical method were evaluated by using powdered unpolished rice samples fortified with the pesticides and also wheat and dried bean samples. Average recoveries ranged from 74.7% for disulfoton to 97.4% for malathion in unpolished rice and from 68.1% for disulfoton to 108.3% for malathion in other crops. The method described is applicable to the analysis of selected organophosphorus pesticide residues in unpolished rice, wheat, buckwheat, and dried beans.  相似文献   

2.
In the proposed method, a light petroleum solution of lanolin (wool fat) is adsorbed on diatomaceous earth in an Extrelut column, and the pesticides are eluted with acetonitrile saturated with light petroleum. After evaporation to a small volume, the extract is subjected to solid-phase extraction (SPE) on a C-18 column. The acetonitrile eluate is evaporated to dryness and the residue is taken up in light petroleum. Organophosphorus pesticides are determined by temperature-programmed gas chromatography (GC) on a wide-bore column using a flame photometric detector in the phosphorus mode. Organochlorine pesticides are determined after miniaturized Florisil cleanup by classic GC on an OV-17/QF-1 packed column, using an electron capture detector. This procedure is more rapid and straightforward than the time-consuming AOAC extraction method, 29.014. Cleanup was better and the results obtained were comparable. Recoveries for 13 organochlorine and organophosphorus pesticides, frequently found in lanolin, ranged from 80 to 90%.  相似文献   

3.
A gas chromatographic method for the analysis of 10 organochlorine pesticides in 0.5 mL of whole blood is described. Sample preparation involved an ethyl ether and hexane extraction, followed by a silica solid phase extraction cleanup. The pesticides are quantified by gas chromatography/electron capture detection. Method limits of detection ranged from 1.1 to 5.2 microg/L. The mean and standard deviation for the recovery of 10 pesticides was 97.9 +/- 5.5%. Recoveries from whole blood were comparable to recoveries from plasma. This indicates that the preparation of plasma is unnecessary for the quantification of organochlorine pesticides in blood. This approach is particularly useful as a nonlethal approach for monitoring pesticide contamination in small animals for which the volume of blood is limiting.  相似文献   

4.
Electron capture (EC) gas chromatographic (GC) parameters have been developed for determining some of the more volatile industrial chemicals that can be determined by the AOAC multiresidue method for organochlorine and organophosphorus pesticides with modified GC operating conditions. Retention times relative to pentachlorobenzene are reported for 143 industrial chemicals, pesticides, and related compounds on OV-101 GC columns at 130 degrees C. Also reported for most of the compounds are recoveries from fortified samples carried through the AOAC extraction and cleanup procedures for fatty and/or nonfatty foods, Florisil elution characteristics, and GC relative retention times on mixed OV-101 + OV-210 columns at 130 degrees C. Our laboratory has used the modified EC/GC parameters with the AOAC multiresidue extraction/cleanup procedures to determine many volatile halogenated industrial chemical contaminants in foods, chiefly in samples of fresh-water fish. Other modifications of the AOAC method are described to improve the tentative identification and quantitative measurement of these volatile residues.  相似文献   

5.
Ten laboratories analyzed unfortified and fortified samples of lettuce, tomatoes, and strawberries for organochlorine and organophosphorus pesticides by applicable portions of the comprehensive multipesticide method of Luke et al. The 3 crops were fortified with 6 pesticides, alpha-BHC, dieldrin, chlorpyrifos, acephate, omethoate, and monocrotophos, each at 3 levels per crop. Included in the 54 fortifications were 16 pairs of blind duplicates: same pesticide, crop, and level. Recoveries were calculated by area comparisons with known reference materials, using the responses obtained from 2 separate element-specific gas chromatographic (GC) systems. The organochlorine pesticides were chromatographed on a methyl silicone column and detected with a Hall 700A electrolytic conductivity detector, and the organophosphorus pesticides were determined with a flame photometric detector after being chromatographed on a specified DEGS column material. Chlorpyrifos was quantitated on both GC systems. Mean recoveries ranged from 82.6% for acephate fortified at 0.5000 ppm in strawberries to 118.1% for 0.0636 ppm fortification of chlorpyrifos in lettuce. Interlaboratory coefficients of variation ranged from 4.0% for 0.6360 ppm fortification of chlorpyrifos in tomatoes to 17.8% for the 0.0636 ppm chlorpyrifos level in lettuce. The procedure features essentially no cleanup before GC and proved comparable to existing multiresidue methods for pesticides of the class types studied, as evidenced by the intra- and interlaboratory measurements of precision and recoveries obtained. The method with the 2 GC systems has been adopted official first action.  相似文献   

6.
A multicolumn solid-phase extraction cleanup for the determination of organophosphorus (OP) and organochlorine (OC) pesticides plus PCB congeners in virgin olive oil is presented. The method involves dissolution of the olive oil in hexane, followed by a cleanup system using a diatomaceous earth column (Extrelut-QE) with reversed (C(18)) and normal (alumina) phase SPE columns. Determination of OPs was by GC-NPD, while the OCs and PCBs were analyzed using GC-ECD. Recovery assays for OPs varied from 81.7% to 105.3%, for OCs ranged between 74.3% and 99.4%, while for PCBs were from 60.1% to 119.2%. Quantitation limits ranged from 10 to 25 microg/kg olive oil for OPs, and from 1 to 6 microg/kg olive oil for OCs and PCBs. In the case of positive samples, the confirmation of pesticide identity was performed by ion-trap GC-MS/MS. The applicability of the method was assayed with 19 virgin olive oil samples collected from different olive mills of Aragón (Spain). Only one OP pesticide (acephate) was detected in one sample at a concentration of 10 microg/kg. Organochlorine pesticides were found in 5-47% of samples at very low levels ranging from 1.5 to 5.2 microg/kg. PCBs were found in 20-90% of samples, showing concentrations between 2.3 and 17.3 microg/kg.  相似文献   

7.
A rapid multiresidue method was developed for the determination of nine organophosphorus pesticides in fruit juices. The analytical procedure is based on the matrix solid-phase dispersion (MSPD) of juice samples on Florisil in small glass columns and subsequent extraction with ethyl acetate assisted by sonication. Residue levels were determined by gas chromatography with nitrogen-phosphorus detection. Spiked blank samples were used as standards to counteract the matrix effect observed in the chromatographic determination. The NPD response for all pesticides was linear in the concentration range studied with determination coefficients >0.999. Average recoveries obtained for all of the pesticides in the different juices and fortification levels were >70% with relative standard deviations of <11%. The detection limits ranged from 0.1 to 0.6 microg/kg. The identity of the pesticides was confirmed by gas chromatography with mass spectrometric detection using selected ion monitoring. The proposed MSPD method was applied to determine pesticide residue levels in fruit juices sold in Spanish supermarkets. At least one pesticide was found in most of the samples, although the levels detected were very low, far from the maximum residue levels established for raw fruit.  相似文献   

8.
A method for extraction, cleanup, and simultaneous gas chromatographic detection of carbofuran, metalaxyl, and simazine in soils has been developed. Pesticide residues were extracted from soil with acetone containing 10% 0.2M HCl-KCl buffer (pH 2.0), cleaned up with methylene chloride-carbonate buffer (pH 10.7) solvent partitioning and solid-phase extraction on disposable silica gel columns, and quantitated with gas chromatography using a Supelcowax 10 megabore capillary column and a nitrogen-selective detector. Method limits of detection were 0.02 microgram/g for the 3 pesticides in surface soils (0-30 cm depths) and 0.02, 0.02, and 0.005 microgram/g in soils below 30 cm (subsoils) for carbofuran, metalaxyl, and simazine, respectively. Recoveries for carbofuran, metalaxyl, and simazine were 92.6 +/- 5.5, 93.6 +/- 5.0, and 88.4 +/- 6.7%, respectively, when soil samples were spiked with pesticide concentrations ranging from 0.02 to 2.0 micrograms/g.  相似文献   

9.
A method using gel permeation and Florisil column chromatographic cleanup techniques is described for determination of residues of nonpolar organohalogen pesticides and pesticide alteration products in vegetable oils and their refinery by-products. Supplemental Florisil separation and alkali cleanup techniques are used to facilitate determinations. Residues are determined with a 63Ni electron capture gas chromatographic detection system used in conjunction with 3 different gas chromatographic columns. Residue identities are confirmed by gas chromatography-mass spectrometry. Recoveries of 7 organohalogen pesticides, ranging from 90 to 103%, were determined by the supplemental Florisil separation technique to augment previously reported recovery data determined for initial GPC and Florisil cleanup steps. Soybean, peanut, and cottonseed deodorizer distillates and crude and refined oil, as well as additional refinery by-products, were analyzed. Nine to 13 organohalogen residues ranging from 0.5 to 6.3 ppm were determined in the 2 soybean deodorizer distillate samples used to develop and test the method. Identities of residues present at greater than or equal to 0.3 ppm were confirmed by gas chromatography-mass spectrometry. An intralaboratory trial of the method provided additional recovery and residue determination data as follows: Recoveries ranging from 102 to 116% were obtained for 4 pesticides added to peanut oil deodorizer distillate. Residues determined in 1 soybean deodorizer distillate sample supported previously obtained data for this sample.  相似文献   

10.
A method based on disposable pipet extraction (DPX) sample cleanup and gas chromatography with mass spectrometric detection by selected ion monitoring (GC/MS-SIM) was established for 58 targeted pesticide residues in soybean, mung bean, adzuki bean and black bean. Samples were extracted with acetonitrile and concentrated (nitrogen gas flow) prior to being aspirated into DPX tubes. Cleanup procedure was achieved in a simple DPX-Qg tube. Matrix-matched calibrations were analyzed, and the limits of quantification (LOQ) of this method ranged from 0.01 mg kg(-1) to 0.1 mg kg(-1) for all target compounds. Coefficients of determination of the linear ranges were between 0.9919 and 0.9998. Recoveries of fortified level 0.02 mg kg(-1) on soybean, mung bean, adzuki bean and black bean were 70.2-109.6%, 69.1-119.0%, 69.1-119.8%, and 69.0-120.8%, respectively, for all studied pesticides. Moreover, pesticide risk assessment for all the detected residues in 178 market samples at Beijing market area was conducted. A maximum 0.958% of ADI (acceptable daily intake) for NESDI (national estimated daily intake) and 55.1% of ARfD (acute reference dose) for NESTI (national estimated short-term intake) indicated low diet risk of these products.  相似文献   

11.
The retention time relative to parathion, absolute retention time, concentration range, peak asymmetry factor, and peak shape class are given for each of 42 organophosphorus pesticides and 28 organochlorine pesticides analyzed by gas chromatography (GC) on 9 different packed columns. The packing materials used were 3% SP-2100, 1% Dexsil-300, 3% OV-17, 1.5% OV-17 + 1.95% QF-1, 4% SE-30 + 6% QF-1, 3% OV-17 + 3% OV-210, 5% DC-200 + 7.5% QF-1,3% Carbowax-20M, and 4% Reoplex-400. Retention data were determined at 200 degrees C with a carrier gas flow at uopt, using a 63Ni electron-capture detector. Results should be useful for preliminary identification of environmental samples and also for single or multiple pesticide residue analysis.  相似文献   

12.
A procedure was developed to determine chlorinated methylthiobenzenes and their respective sulfur oxidation products in fish. Perch samples fortified at the 0.1 ppm level with 2,4,5-trichloromethylthiobenzene, pentachloromethylthiobenzene, and their sulfoxides and sulfones were extracted and cleaned up using an adaptation of the official AOAC method for multiple residues of organochlorine pesticides. The Florisil column cleanup was modified; 200 mL 6% petroleum etherethyl ether eluted the methylthiobenzenes, 200 mL 50% PE-EE eluted the sulfones, and 200 mL EE eluted the sulfoxides. Recoveries determined by electron capture (ECD) gas chromatography (GC) were 75-101% for the methylthiobenzenes and their sulfones and 63-93% for the sulfoxides. Co-extracted materials in the Florisil eluates that interfered with the ECD/GC quantitation were removed by partitioning the sulfoxides and sulfones into sulfuric acid and by thin layer chromatography on silica gel, using methylene chloride-hexane (50 + 50) as the developing solvent. Seven fish samples containing residues of chlorinated benzenes or polychlorinated biphenyls (PCBs) were examined for chlorinated methylthiobenzenes, methylthio-PCBs, and their oxidation products by matching GC retention times obtained with the EC detector and a flame photometric detector operated in the sulfur mode. These analytes were not found in the fish samples above a detection level equivalent to 0.02 ppm 2,4,5-trichloromethylthiobenzene.  相似文献   

13.
The applicability of supercritical fluid extraction (SFE) in pesticide multiresidue analysis (organohalogen, organonitrogen, organophosphorus, and pyrethroid) in soil samples was investigated. Fortification experiments were conducted to test the conventional extraction (solid-liquid) and to optimize the extraction procedure in SFE by varying the CO2 modifier, temperature, extraction time, and pressure. The best efficiency was achieved at 400 bar using methanol as modifier at 60 degrees C. For the SFE method, C-18 cartridges were used for the cleanup. The analytical screening was performed by gas chromatography equipped with electron-capture detection (ECD). Recoveries for the majority of pesticides from spiked samples of soil at different residence times were 1, 20, and 40 days at the fortification level of 0.04-0.10 mg/kg ranging from 70 to 97% for both methods. The detection limits found were <0.01 mg/kg for ECD, and the confirmation of pesticide identity was performed by gas chromatography-mass spectrometry in a selected-ion monitoring mode. Multiresidue methods were applied in real soil samples, and the results of the methods developed were compared.  相似文献   

14.
A new method to determine pesticide residues in nuts is presented, in which the pesticides are extracted from samples with a small amount of ethyl acetate and anhydrous sodium sulfate. No additional cleanup or concentration steps are necessary. The extract is directly injected into the high-pressure liquid chromatograph, where preseparation of the pesticide residues from other components coextracted from the nuts is carried out using methanol/water as the eluent. The selected liquid chromatography fraction containing the pesticides is automatically transferred to the gas chromatograph using the through-oven transfer adsorption/desorption interface. The calculated limits of detection for each pesticide varied from 0.1 to 61.3 microg/kg. The repeatabilities of the analysis and the overall procedure (extraction and analysis) were satisfactory. No variations in the retention time were observed. The method was applied to the analysis of pistachio nut, peanut, walnut, hazelnut, and sunflower seed.  相似文献   

15.
A rapid and simple method is developed for the determination of organophosphorus pesticides in unpolished rice. The new method incorporated acetonitrile-water (1 + 1) extraction, removal of fats by zinc acetate, and further cleanup on an activated charcoal chromatographic column. The higher fatty acids in the extract react rapidly with zinc acetate to form insoluble zinc carboxylates, which precipitate. Additional interferences were cleaned up on an activated charcoal chromatographic column, and organophosphorus pesticides adsorbed on the activated charcoal were eluted with acetone-hexane. Dimethoate is not retained on the activated charcoal and must be extracted with dichloromethane from the first acetonitrile-water eluate. Pesticides are measured by flame photometric gas chromatography. Recoveries from 50 g unpolished rice samples fortified with 5-50 micrograms diazinon, 6-30 micrograms parathion, 8-40 micrograms fenitrothion and IBP, 10-50 micrograms dimethoate and fenthoate, 20-100 micrograms malathion, or 40-200 micrograms EPN ranged from 75.7 to 95.8%.  相似文献   

16.
An analytical procedure using accelerated solvent extraction and capillary gas chromatography with electron capture and flame photometric detections was developed to simultaneously determine residues of different pesticides in fruits and vegetables. Single laboratory validation of the method was carried out for 28 compounds selected from eight pesticide classes, in blank and fortified samples of fresh pear, cantaloupe, white potato, and cabbage. The method had to meet specific established validation criteria for regulatory purposes applicable to our laboratory. At each of the two fortification levels studied, 24 of the 28 pesticides gave recoveries of more than 70% with a coefficient of variation of less than 10%. With respect to existing procedures, the method showed acceptable limits of detection (from 0.0019 to 0.14 microg/g depending on the pesticide and matrix) while minimizing environmental concerns, time, and labor.  相似文献   

17.
About 20 pesticides were determined in lyophilized fruits using a semiautomatic multiresidue method, based on solid-phase extraction (SPE) with a silica column. The lyophilization of the sample, besides the SPE procedure selected, provided clean extracts despite the complexity of the matrixes studied. In addition, the lyophilization process allows sample preservation for at least three months without changes in the concentrations of the pesticides. Determination and quantitation of organochlorine and pyrethroid residues was carried out using a gas chromatograph equipped with an electron capture detector (GC-ECD), and a mass spectrometric detector (GC-MS) was used for confirmation purposes. Organochlorine pesticides provided average recoveries (spiked at three concentration levels in eight different fruits) near 93 +/- 4%, being lower (89 +/- 8%) for pyrethroids as a consequence of their higher degradation and interaction with the sample matrix. On the other hand, the detection limits achieved for all pesticides (0.5-8 ng per g of lyophilized fruit) allow their determination at the MRLs established by the European Union, with good precision ( approximately 5%). Finally, from the 100 different fruits screened, only 10 positive responses were obtained, which were further confirmed by GC-MS.  相似文献   

18.
In this work, a simple and sensitive method for the analysis of the pesticide o-phenylphenol (OPP) on citrus fruits was developed. OPP is extracted with dichloromethane by ultrasonication and derivatized with ferrocenecarboxylic acid chloride. Using ferrocene as a label, residues of OPP are determined by gas chromatography with atomic emission detection in the iron selective mode or with mass spectrometric detection. Sample cleanup is simple and rapid and merely involves a removal of excess reagent on an alumina minicolumn. The method detection limit is 2 ng of OPP/g of fruit, and recoveries from lemon samples fortified at levels of 35 and 140 ng/g are 101 and 106%, respectively. The citrus fruits analyzed (oranges, grapefruits, lemons) contained between 60 ng/g and 0.37 microg/g OPP (RSD = 8-13%), and the results were in good agreement with results obtained when OPP was analyzed using an established HPLC-FLD method. Several alcohols could also be identified in the fruit peel.  相似文献   

19.
Accurate quantification of quizalofop-p-ethyl is essential for it may do harm to humans and animals through both water and food. Currently, detection of quizalofop-p-ethyl mainly relies on methods such as gas chromatography, high performance liquid chromatography, and gas chromatography-mass spectrometry. Although these techniques are reliable, they are relatively expensive and time-consuming because of multistep sample cleanup. To address this, we developed a competitive indirect enzyme-linked immunosorbent assay (ciELISA) with a polyclonal antibody against quizalofop-p-ethyl that was generated in our lab. The IC(50) of detection was 0.03495 microg/mL, and the lowest detection limit reached 0.00192 microg/mL. Furthermore, the method had high specificity for it did not cross-react with other structure-related compounds. When water and soil samples that were fortified with quizalofop-p-ethyl were analyzed by this ELISA, recoveries were in the range of 89-110% from water and 81-108% from soil. Good correlations between this immunoassay and gas chromatography data were obtained for residues of quizalofop-p-ethyl in water and soil. Our data indicate that this method is a convenient analytical technique for monitoring quizalofop-p-ethyl in waters without extraction and the extra cleanup step and in soil without the cleanup step.  相似文献   

20.
A method was developed to determine pesticides in malt beverages using solid phase extraction on a polymeric cartridge and sample cleanup with a MgSO4-topped aminopropyl cartridge, followed by capillary gas chromatography with electron impact mass spectrometry in the selected ion monitoring mode [GC-MS(SIM)]. Three GC injections were required to analyze and identify organophosphate, organohalogen, and organonitrogen pesticides. The pesticides were identified by the retention times of peaks of the target ion and qualifier-to-target ion ratios. GC detection limits for most of the pesticides were 5-10 ng/mL, and linearity was determined from 50 to 5000 ng/mL. Fortification studies were performed at 10 ng/mL for three malt beverages that differ in properties such as alcohol content, solids, and appearance. The recoveries from the three malt beverages were greater than 70% for 85 of the 142 pesticides (including isomers) studied. The data showed that the different malt beverage matrixes had no significant effect on the recoveries. This method was then applied to the screening and analysis of malt beverages for pesticides, resulting in the detection of the insectide carbaryl and the fungicide dimethomorph in real samples. The study indicates that pesticide levels in malt beverages are significantly lower than the tolerance levels set by the United States Environmental Protection Agency for malt beverage starting ingredients. The use of the extraction/cleanup procedure and analysis by GC-MS(SIM) proved effective in screening malt beverages for a wide variety of pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号