首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of calcium (1, 2 and 5 mM) and aluminum (0, 15 and 45 μM) on growth and internal nutrient concentrations were examined with 12 sorghum genotypes (Sorghum bicolor (L.) Moench) in a nutrient solution experiment with a factorial design. At 1 (or 2) mM Ca the severity of root damage induced by Al well reflected the genotypical variation in growth response to Al toxicity. Severity of Al‐induced root damage slightly decreased with increasing Ca level. Moreover, Ca at 5 mM amplified the Mg deficiency induced by Al, as seen from both heavier deficiency symptoms and lower internal Mg concentrations. Under conditions of Al stress at a high Ca supply, induced Mg deficiency apparently predominated the genotypical differentiation in growth response to Al toxicity. An antagonism between Al‐ and Ca ions for uptake was hardly found with the sorghum genotypes. However, the genotypes differed in Ca efficiency, a characteristic which may be relevant in assessing their sensitivity to Mg deficiency.  相似文献   

2.
Aluminum (Al) has many detrimental effects on plant growth, and shoots and roots are normally affected differently. A study was conducted to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes with broad genetic backgrounds for growth traits of plants grown at 0,200,400,600, and 800 μM Al in nutrient solutions (pH 4.0). Genotypes were categorized into “Al‐sensitive”, “intermediate Al‐tolerant”, “Al‐tolerant”, and SC 283 (an Al‐tolerant standard). As Al increased, shoot and root dry matter (DM), net main axis root length (NMARL), and total root length (TRL) became lower than controls (0 Al). Aluminum toxicity and/or nutrient deficiency symptoms become more severe, and shoot to root DM ratios and specific RL (TRL/root DM) values also changed as Al in solution increased. Root DM had greater changes among genotypes than shoot DM, and NMARL at 400 μM Al, and TRL at 200 μM Al had greater differences among genotypes than root DM, ratings for toxicity and/or deficiency symptoms, and other DM and RL traits. The wide differences among genotypes for NMARL and TRL could be used more effectively to evaluate sorghum genotypes for tolerance to Al toxicity than the other growth traits.  相似文献   

3.
Boron (B) amelioration of aluminum (Al) toxicity was studied for growth of mungbean (Phaseolus aureus Roxb.) seedlings and cuttings (without roots) in a growth chamber. Mungbean seedlings and cuttings were grown in the solution with combinations of three concentrations of B (0,5, and 50 μM) and three concentrations of Al (0, 2, and 5 mM) in randomized complete block design experiments for 16 days. Results showed that B significantly promoted elongation of epicotyls and hypocotyls, and increased height of seedlings grown under Al stress. Boron also increased fresh weight of seedlings in high Al solution. Treatment of plants grown with high B and Al stress had no apparent effect on fresh and dry weights of seedling roots. Seedling dry weight increased significantly by adding high B to solutions with 2 mM or 5 mM Al. No significant differences were observed between the high B treatment and the control (normal B, 5 μM) in lengths of epicotyls and fresh and dry weights of mungbean cuttings grown under Al stress. High concentrations of B decreased soluble protein and increased chlorophyll in seedlings treated with 2 mM Al. Boron had no amelioration effect on cuttings grown with Al, although Al increased soluble protein. Our results suggested that B alleviation of Al toxicity was related to root function and Al toxicity may possibly be due, in part, to B deficiency.  相似文献   

4.
High concentrations of manganese (Mn), iron (Fe), and aluminium (Al) induced in waterlogged acid soils are a potential constraint for growing sensitive wheat cultivars in waterlogged‐prone areas of Western Australian wheat‐belt. Tackling induced ion toxicities by a genetic approach requires a good understanding of the existing variability in ion toxicity tolerance of the current wheat germplasm. A bioassay for tolerance to high concentration of Mn in wheat was developed using Norquay (Mn‐tolerant), Columbus (Mn‐intolerant), and Cascades (moderately tolerant) as control genotypes and a range of MnCl2 concentrations (2, 250, 500, 750, 1000, 2000, and 3000 μM Mn) at pH 4.8 in a nutrient solution. Increasing solution Mn concentration decreased shoot and root dry weight and intensified the development of toxicity symptoms more in the Mn‐intolerant cv. Columbus than in Norquay and Cascades. The genotypic discrimination based on relative shoot (54% to 79%) and root dry weight (17% to 76%), the development of toxicity symptoms (scores 2 to 4) and the shoot Mn concentration (1428 to 2960 mg kg–1) was most pronounced at 750 μM Mn. Using this concentration to screen 60 Australian and 6 wheat genotypes from other sources, a wide variation in relative root dry weight (11% to 95%), relative shoot dry weight (31% to 91%), toxicity symptoms (1.5 to 4.5), and shoot Mn concentration (901 to 2695 mg kg–1) were observed. Evidence suggests that Mn tolerance has been introduced into Australian wheat through CIMMYT germplasm having “LERMO‐ROJO” within their parentage, preserved either through a co‐tolerance to Mn deficiency or a process of passive selection for Mn tolerance. Cultivars Westonia and Krichauff expressed a high level of tolerance to both Mn toxicity and deficiency, whereas Trident and Janz (reputed to be tolerant to Mn deficiency) were intolerant to Mn toxicity, suggesting that tolerance to excess and shortage of Mn are different, but not mutually exclusive traits. The co‐tolerance for Mn and Al in ET8 (an Al‐tolerant near‐isogenic line) and the absence of Mn tolerance in BH1146 (an Al‐tolerant genotype from Brazil) limits the effectiveness of these indicator genotypes to environments where only one constraint is induced. Wide variation of Mn tolerance in Australian wheat cultivars will enable breeding genotypes for the genetic solution to the Mn toxicity problem.  相似文献   

5.
The effect of varying solution calcium (Ca) and magnesium (Mg) concentrations in the absence or presence of 10 μM aluminum (Al) was investigated in several experiments using a low ionic strength (2.7 × 10‐3 M) solution culture technique. Aluminium‐tolerant and Al‐sensitive lines of wheat (Triticum aestivum L.) were grown. In the absence of Al, top yields decreased when solution Ca concentrations were <50 μM or plant Ca concentrations were <2.0 mg/g. Top and root yields decreased when solution Mg concentrations were <50 μM or plant Mg concentrations were <1.5 mg/g. There were no differences between the lines in solution or plant concentrations at which yield declined. Increasing solution Ca concentrations decreased plant Mg concentrations in the tops (competitive ion effect) but increased plant Mg concentrations in the roots of wheat. This suggests that Ca is competing with Mg when Mg is transported from the roots. Increasing solution Mg concentrations decreased plant Ca concentrations in the tops and the roots (competitive ion effect). In the roots, increasing solution Mg concentrations decreased plant Ca concentrations at a lower solution Ca concentration in the Al‐sensitive line than the Al‐tolerant line. In the presence of Al, increasing solution Ca and Mg concentrations increased yield (Ca and Mg ameliorating Al toxicity). Yield increased until the sum of the solution concentrations of the divalent cations (Ca+Mg) was 2,000 μM for the Al‐tolerant line or 4,000 μM for the Al‐sensitive line. The exception was that yield decreased when solution Mg concentrations were > 1,500 μM and the solution Ca concentration was 100 μM (Mg exacerbating Al toxicity). The ameliorative effects of solution Ca or Mg on Al tolerance were not related to plant Ca or Mg concentrations per se.  相似文献   

6.
Aluminum (Al) toxicity is a major limiting factor for crop production in many acid soils in Brazil. Two greenhouse experiments were conducted to evaluate response of rice (Oryza saliva L.) and common bean (Phaseolus vulgaris L.) to Al levels on a Low Humic Gley acid soil. The Al levels created by liming were: 0,0.03, 0.10, 0.23, 1.03, and 3.83 cmolc kg‐1 of soil. Rice dry matter and grain yield were significantly improved (P<0.05) with increasing Al levels in the soil solution. However, common bean dry matter as well as grain yield were significantly (P<0.01) decreased with increasing Al levels. At 3.83 cmolc Al kg‐1 of soil, bean did not produce any dry matter or grain yield. On an average, Al decreased nutrient concentrations in the tops of rice plant except zinc (Zn) and manganese (Mn), but in bean crop almost all the nutrients concentrations were increased with increasing Al levels. Rice showed tolerance to Al toxicity, whereas, common bean was susceptible to toxicity of this element. For successful intensive crops production lime application will be necessary in Varzea soils especially for legume production.  相似文献   

7.
This study was conducted to investigate the effect of salinity and foliar application of salicylic acid (SA) on sorghum biomass and nutrient contents. Treatments were comprised of salinity levels (0 and 100?mM NaCl) and SA concentrations (0.3, 0.7, 1.1 and 1.5?mM). Salinity increased sodium (Na), chlorine (Cl) and copper (Cu) but decreased nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn) and manganese (Mn) contents and the root and shoot dry matter. Fe and Zn were the most affected nutrients by salinity. However, SA reduced Na and Cl but increased plant dry matter and nutrient content. SA had greater positive effects on root than on shoot dry matter. Maximum increases through SA were achieved in N, K, Fe, Mn, Cu, and shoot weight under salt stress but in Zn and root weight under non-saline condition. In most cases 1.1?mM was the most effective SA concentration in reducing the negative effects of salinity.  相似文献   

8.
Mineral element deficiencies and toxicities are common problems associated with sorghum [Sorghum bicolor (L.) Moench] production on acid soils. To better understand some of the mineral element problems and the analysis of plant tissue of sorghum plants grown on acid soils, four sorghum genotypes were grown on an acid Oxisol at Carimagua, Colombia limed with dolomite at 2 and 6 Mg ha‐1.

Samples for mineral element analyses were obtained from leaves at different positions on the four genotypes. Concentrations of P and Mg were highest in the flag leaf (Leaf No. 1) and decreased as the position on the plant declined from the top of the plant for plants grown at 2 Mg lime ha‐1. Similar decreases in P, Mg, K, and Zn concentrations occurred in plants grown with 6 Mg lime ha‐1. Concentrations of Ca, S, Si, Mn, Fe, Cu, and Al increased as leaf position declined from the flag leaf for plants grown at 2 and 6 Mg lime ha‐1. The higher lime supply enhanced Ca and reduced Mn and Fe concentrations in leaves. Differences in mineral element concentrations for the four genotypes used were fairly extensive. The elements to show the greatest range among genotypes were Al and Si and the elements to show the least range among genotypes were P, K, and S. Care should be used in collecting leaf samples for plant analysis and genotypic differences for accumulation of mineral elements should be considered in interpretation of results.  相似文献   

9.
Two separate experiments were conducted to investigate the aluminium (Al) and calcium (Ca) effects on wheat seedling growth and on seed germination. Wheat (Tritcum aestivum L, cs Yangmai No. 5) seedlings were grown for a 15‐day period and treated with 0.5 mM Al with low Ca (1 mM Ca) or high Ca (5 mM Ca). The growth of seedlings was signficantly inhibited by Al. Supplement of Ca improved the growth of Al‐treated plants, increased dry matter weight of plant and leaf area, and decreased shoot/root ratio. This showed that Ca ameliorated Al toxicity in wheat. In experiments on seed germination, Al concentrations less than 2 mM in the germinating medium had little or no visible effect on length of shoot and root of germinating seed. The germinating rate of seed was not affected significantly by Al, when Al concentrations lower than 5 mM Al. The addition of 3 mM Ca did not increase the length of shoot and root and germination rate of seeds. Both pretreatments with 6 mM Ca and 1 μM GA had no significant effect on the length of shoot and root and amylolytic activity of Al‐treated germinating seeds. No significant differences were found in the total amylolytic activity in Al‐treated and control seeds two days and five days after germination. The results of Al and Ca effects on seedlings and seed germination showed that Al‐toxicity on germinating seeds was different from on seedling growth. The high concentrations of Al inhibit growth of roots and shoots of germinating seeds by other toxicity mechanism rather than interaction of Al with Ca and mobilization of carbohydrate reserves.  相似文献   

10.
Abstract

Changes in the chemistry of the acidic Chilean Andisols in response to various ameliorant treatments (gypsum, dolomitic, and calcitic limestone) and their effects on ryegrass (Lolium perenne) production were studied in laboratory incubation and greenhouse experiments. Dolomitic and calcitic limestone alone and in combination with gypsum increased pH significantly and, at the same time, decreased exchangeable aluminum (Al) concentration to low concentrations. Gypsum alone increased pH slightly and reduced Al concentration by 50%, but its effect on ryegrass yield was similar to calcitic and dolomitic limestone. The Al/calcium (Ca) ratio was not a good predictor of the Al toxicity for plant growth but the Al/sulfur (S) ratio in the soil showed a good relationship with dry matter yield. The Ca + magnesium (Mg) + potassium (K) content in shoots was highly correlated with dry matter yield.  相似文献   

11.
Maize (Zea mays L.) plants in the early stage of development were treated with 80 mM sodium chloride (NaCl) with or without supplemental calcium (Ca2+) (8.75 mM) for a seven day period. The effects of salinity on dry matter production and shoot and root concentrations of sodium (Na+), Ca2+, and potassium (K+) were measured for seven Pioneer maize cultivars. Salinity significantly reduced total dry weight, leaf area, and shoot and root dry weight below control levels. For all seven cultivars, Na+concentrations were reduced and leaf area was significantly increased by supplementing salinized nutrient solutions with 8.75 mM calcium chloride (CaCl2). The two cultivars with the lowest shoot and root Na+ concentrations under NaCl‐salinity showed the greatest increases in total, shoot and root dry weights with the addition of supplemental Ca. Shoot fresh weight/dry weight ratios for all cultivars were decreased significantly by both salinity treatments, but supplemental Ca2+ increased the ratio relative to salinity treatments without supplemental Ca. Root fresh weight/dry weight ratios were decreased only by salinity treatments with supplemental Ca. With NaCl‐salinity, cultivars which had lower shoot and root Na+ concentrations were found to be more salt sensitive and had significantly lower amounts of dry matter production than those cultivars which had higher shoot and root Na+ concentrations. It was concluded that Na+ exclusion from the shoot was not correlated with and was an unreliable indicator of salt tolerance for maize.  相似文献   

12.
The effect of increasing aluminum (Al) concentrations on root nutrient contents along with the concurrent translocation to the shoot of C4 plants prompted this study. Two‐week‐old maize (Zea mays cv XL‐72.3) plants were therefore submitted for 20 days to Al concentrations ranging from 0 to 3.00 mM in a medium with low ionic strength were used as a test system. Aluminum concentrations in root tissues showed a 3‐fold increase between 0 and 3.00 mM Al treatment, and was not detected in the shoot. Root plasma membrane‐H+ ATPase activity decreased after the 0.33 mg L‐1 Al treatment, while membrane permeability increased up to 1.00 mM Al treatment. Root and shoot biomass decreased after the 0.33 mM Al treatment. All elements in the roots, except potassium (K), manganese (Mn), and zinc (Zn) were highest for plants treated with 0.33 mM Al. Potassium increased continuously between 0 and 3.00 mM Al treatments, and iron (Fe) decreased above 0.33 mM. Only a slight decrease in nitrogen (N) was observed. All the measured nutrients in shoots, except N, Mn, and Fe decreased above 0.33 mM, but calcium (Ca) and magnesium (Mg) had little variation as Al varied. Data indicated that maximum net uptake for mineral nutrients, except Mn, occurred up to 0.33 mM Al. Translocation of phosphorus (P), K, Mn, and Zn decreased above 0.33 mM Al, N, and Ca decreased when any Al was added, and no clear trend was observed for Mg and Fe. Between the 0 and the 3.00 mM Al treatments, electrolytic conductance did not increased significantly indicating that the observed inhibitions of translocation from roots to shoots were not directly related to increasing membrane degradation.  相似文献   

13.
Common bean (Phaseolus vulgaris L.) proved to be very sensitive of low pH (4.3), with large genotypic differences in proton sensitivity. Therefore, proton toxicity did not allow the screening of common bean genotypes for aluminium (Al) resistance using the established protocol for maize (0.5 mM CaCl2, 8 μM H3BO3, pH 4.3). Increasing the pH to 4.5, the Ca2+ concentration to 5 mM, and addition of 0.5 mM KCl fully prevented proton toxicity in 28 tested genotypes and allowed to identify differences in Al resistance using the inhibition of root elongation by 20 μM Al supply for 36 h as parameter of Al injury. As in maize, Al treatment induced callose formation in root apices of common bean. Aluminium‐induced callose formation well reflected the effect of Ca supply on Al sensitivity as revealed by root‐growth inhibition. Aluminum‐induced callose formation in root apices of 28 bean genotypes differing in Al resistance after 36 h Al treatment was positively correlated to Al‐induced inhibition of root elongation and Al contents in the root apices. However, the relationship was less close than previously reported for maize. Also, after 12 h Al treatment, callose formation and Al contents in root apices did not reflect differences in Al resistance between two contrasting genotypes, indicating a different mode of the expression of Al toxicity and regulation of Al resistance in common bean than in maize.  相似文献   

14.
We investigated the effect of exogenously applied silicon (Si) on the growth and physiological attributes of wheat grown under sodium chloride salinity stress in two independent experiments. In the first experiment, two wheat genotypes SARC-3 (salt tolerant) and Auqab 2000 (salt sensitive) were grown in nutrient solution containing 0 and 100 mM sodium chloride supplemented with 2 mM Si or not. Salinity stress substantially reduced shoot and root dry matter in both genotypes; nonetheless, reduction in shoot dry weight was (2.6-fold) lower in SARC-3 than in Auqab 2000 (5-fold). Application of Si increased shoot and root dry weight and plant water contents in both normal and saline conditions. Shoot Na+ and Na+:K+ ratio also decreased with Si application under stress conditions. In the second experiment, both genotypes were grown in normal nutrient solution with and without 2 mM Si. After 12 days, seedlings were transferred to 1-l plastic pots and 150 mM sodium chloride salinity stress was imposed for 10 days to all pots. Shoot growth, chlorophyll content and membrane permeability were improved by Si application. Improved growth of salt-stressed wheat by Si application was mainly attributed to improved plant water contents in shoots, chlorophyll content, decreased Na+ and increased K+ concentrations in shoots as well as maintained membrane permeability.  相似文献   

15.
Genotypic differences in potassium (K) uptake and utilization were compared for eight cotton cultivars in growth chamber and field experiments. Four of the cultivars (‘SGK3’, ‘SCRC18’, ‘SCRC21’ and ‘SCRC22’) typically produce lower dry mass and the other four (‘Nannong8’, ‘Xiangza2’, ‘Xinluzao12’ and ‘Xiangza3’) produce greater dry mass in K-deficient solution (0.02 mM). The mean dry weight of seedlings (five-leaf stage) of cultivars with greater biomass was 155% higher than that of cultivars with lower biomass yield under K deficiency. However, all the genotypes had similar dry matter yields in K-sufficient solution (2.5 mM). Thus, the four cultivars with superior biomass yield under low K medium may be described as K efficient cultivars while the inferior cultivars may be described as K inefficient. Although seeds of the studied cultivars originated from different research institutes or seed companies, there were little differences in seed K content among them, irrespective of their K efficiency. Consequently, there were no significant differences in K accumulation in seedlings (4 d after germination in a K-free sand medium) just before transferring to nutrient solutions. However, the K efficient genotypes, on average, accumulated twice as much K at 21 d after transferring to K-deficient solution (0.02 mM). A much larger root system as well as a slightly higher uptake rate (K uptake per unit of root dry weight) may have contributed to the higher net K uptake by the K efficient cultivars. In addition, the K efficiency ratio (dry mass produced per unit of K accumulated) and K utilization efficiency (dry mass produced per unit of K concentration) of the K efficient cultivars exceeded those of the K inefficient genotypes by 29% and 234%, respectively, under K deficiency. On average, the K efficient cultivars produced 59% more potential economic yield (dry weight of all reproductive organs) under field conditions even with available soil K at obviously deficient level (60 mg kg?1). We noted especially that the four K inefficient cultivars studied were all transgenic insect-resistant cotton, suggesting that the introduction of foreign genes (Bt and CpTI) may affect the K use efficiency of cotton.  相似文献   

16.
Alleviation by calcium (Ca) of inhibition of soybean [Glycine max (L.) Merr. cv. ‘Ransom'] root elongation by hydrogen (H) and aluminum (Al) was evaluated in a vertical split‐root system. Roots extending from a limed and fertilized soil compartment grew for 12 days into a subsurface compartment containing nutrient solution with treatments consisting of factorial combinations of either pH (4.0, 4.6, and 5.5) and Ca (0.2, 2.0, 10, and 20 mM), Al (7.5, 15, and 30 μM) and Ca (2.0,10, and 20 mM) at pH 4.6, or Ca (2, 7, and 12 mM) levels and counter ions (SO4 and Cl) at pH 4.6 and 15 μM Al. Length of tap roots and their laterals increased with solution Ca concentration and pH value, but decreased with increasing Al level. Length of both tap and lateral roots were greater when Ca was supplied as CaSO4 than as CaCl2, but increasing Ca concentration from 2 to 12 mM had a greater effect on alleviating Al toxicity than Ca source. In the absence of Al, relative root length (RRL) of tap and lateral roots among pH and Ca treatments was related to the Ca:H molar activity ratio of solutions (R2≥0.82). Tap and lateral RRL among solutions with variable concentrations of Al and Ca at pH 4.6 were related to both the sum of the predicted activities of monomeric Al (R2≥0.92) and a log‐transformed and valence‐weighted balance between activities of Ca and selected monomeric Al species (R2≥0.95). In solutions with 15 μM Al at pH 4.6, response of tap and lateral RRL to variable concentrations of CaSO4 and CaCl2 were related to predicted molar activity ratios of both Ca:Al3+ (R2≥0.89) and Ca:3 monomeric Al (R2≥0.90), provided that AISO4 and AI(SO4)2 species were excluded from the latter index. In all experiments H and Al inhibited length of lateral roots more than tap roots, and a greater Ca:H or Ca:Al concentration ratio was required in solutions to achieve similar RRL values as tap roots.  相似文献   

17.
After a 35 days growth on nutrient solutions with NO 3 NH4NO3 and NH+ 4 as nitrogen source (pH 4.2) dry matter yield of the sorghum genotype SC0283 was much less affected by Al (1.5 mg‐1) than that of the genotype NB9040. With NO 3 as the sole nitrogen source only growth of the NB9040 plants was significantly reduced. Since OH efflux, shoot Al content and concentrations of all major nutrients of both genotypes were almost equal, a higher sensitivity to Al may underlie the lower Al tolerance of the NB9040 genotype. In the presence of NH.‐N Al again lowered d.m. yield of the NB plants. With SCO283 significant Al effects on d.m. yield were observed only with NH4NO3. Aluminum drastically increased the amount of protons released per unit of root surface area, especially with the NB9040 line. This shift in proton flux density was partly the result of a decrease of the specific root surface area and partly due to enhanced excess of catlonic nutrients taken up. With NH4NO3‐fed plants the latter could almost completely be attributed to a changed N preference brought about by inhibited uptake of NO 3 and a simultaneous enhanced NH, absorption. Although both proton efflux and NH+ 4 preference of the NB plants were severely increased by Al, relative yields of this genotype were not lowered by NH+ 4. This can probably be explained by (1) the high NH, sensitivity of this cultivar through which Al effects can be masked and (2) the continuous adjustment of the solution pH through which rhizosphere conditions were prevented.  相似文献   

18.
The effects of silicon (Si) on the toxicity of aluminum (Al) to mungbean (Phaseolus aureus Roxb.) seedlings were studied in a growth chamber. Mungbean seedlings were grown in a nutrient solution with combinations of three concentrations of Si (0,1, and 10 mM) and three concentrations of Al (0, 2, and 5 mM) in randomized completely block design experiments for 16 days. Silicon at 1 mM in the solution decreased root length, fresh and dry weights, and chlorophyll content, and showed no significant effect on epicotyl length and seedling height, and protein contents of shoots or roots in mungbean seedling under no Al stress. But, Si at 10 mM showed marked toxic effects on mungbean seedling growth and increased protein contents of the shoots or roots. In contrast, under 2 mM Al stress, Si addition at 1 mM had significant increasing effect on root length, fresh and dry weights, and chlorophyll content. It also had decreasing effect on protein contents of the shoots or roots, and had no effect on epicotyl length and seedling height. Silicon addition at 10 mM showed no effect on morphological and physiological measurements of mungbean seedling. However, Si at 1 mM added to solution only increased seedling height, epicotyl length, fresh weight, and chlorophyll content, but decreased dry weight and protein content of the roots under 5 mM Al stress, significantly. Silicon addition at 10 mM showed similar toxic effects on mungbean seedling growth under 5 mM Al stress to that under no Al stress.  相似文献   

19.
Shoot and root dry matter yields of oilseed rape (Brassica napus L.) grown on the solutions containing 0.025 and 5.0 μg boron (B)/mL (referred to as B1 and B3, respectively) were less than those grown on the solutions containing 0.5 μg B/mL (referred to as B2). Silicon (Si) added increased shoot and root dry matter yields of B1‐treated plants, while decreased those of B3‐treated plants. Shoot and root dry matter yields of B2‐treated plants were slightly affected by Si added. The effect of B and Si on leaf area was similar to that on shoot and root dry matter yields. Excessive B supply (B3) and B deficiency (B1) resulted in a decrease in net photosynthetic rate. Silicon added increased the net photosynthetic rate under B deficiency, but had little effect at normal and excessive B levels. Silicon seems to enhance B uptake and accumulation by plants under B deficiency, but depresses B uptake at normal and excessive B levels. The Si/B ratios of B1‐ and B2‐treated plants were much lower than those of the culture solutions, whereas at the B3 level were slightly higher than those of the culture solutions. Phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) contents in plants decreased with increasing Si added at the B3 level, but remained relatively constant at B1 and B2 levels.  相似文献   

20.
不同镁浓度对水稻根系生长及生理特性的影响   总被引:3,自引:1,他引:2  
在温室条件下, 采用溶液培养法研究了不同Mg2+ 浓度对水稻(Oryza sativa L.)根系生长及生理特性的影响。结果表明,水稻根系干重、根冠比、总根长、Mg吸收、根系活力、伤流速度、伤流液中游离氨基酸总量和Mg含量、Mg流入速率以及Mg2+ 吸收速率与Mg2+ 供应水平密切相关。在低Mg2+ 浓度(0.05 mmol/L)条件下,水稻植株叶片在缺Mg症状出现之前分配较大比例的干物质到根系,使总根长和根冠比增加, 这可能是水稻早期对低Mg胁迫的适应机制之一。适中的Mg2+ 浓度(1.0 mmol/L)有利于水稻生长发育,促进养分吸收,提高根系活力和伤流速度以及伤流液中游离氨基酸总量。低Mg2+ 和高Mg2+ 浓度(5.0 mmol/L)在一定程度上抑制根系活力和氨基酸合成能力。植物Mg的吸收、伤流液Mg2+ 浓度、根系平均Mg流入速率和Mg2+ 吸收速率随营养液Mg2+ 浓度的增加而相应增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号