首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neoagaro-oligosaccharides, degraded from agarose by agarases, are important natural substances with many bioactivities. In this study, a novel agarase gene, agaW1540, from the genome of a deep-sea bacterium Shewanella sp. WPAGA9, was expressed, and the recombinant AgaW1540 (rAgaW1540) displayed the maximum activity under the optimal pH and temperature of 7.0 and 35 °C, respectively. rAgaW1540 retained 85.4% of its maximum activity at 0 °C and retained more than 92% of its maximum activity at the temperature range of 20–40 °C and the pH range of 4.0–9.0, respectively, indicating its extensive working temperature and pH values. The activity of rAgaW1540 was dramatically suppressed by Cu2+ and Zn2+, whereas Fe2+ displayed an intensification of enzymatic activity. The Km and Vmax of rAgaW1540 for agarose degradation were 15.7 mg/mL and 23.4 U/mg, respectively. rAgaW1540 retained 94.7%, 97.9%, and 42.4% of its maximum activity after incubation at 20 °C, 25 °C, and 30 °C for 60 min, respectively. Thin-layer chromatography and ion chromatography analyses verified that rAgaW1540 is an endo-acting β-agarase that degrades agarose into neoagarotetraose and neoagarohexaose as the main products. The wide variety of working conditions and stable activity at room temperatures make rAgaW1540an appropriate bio-tool for further industrial production of neoagaro-oligosaccharides.  相似文献   

2.
α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis of Bacteroides plebeius, a human gut bacterium, revealed the presence of genes encoding enzymes involved in agarose degradation, including α-NAB/NAO hydrolase. Among the agarolytic enzymes, BpGH117 has been partially characterized. Here, we characterized the exo-acting α-NAB/NAO hydrolase BpGH117, originating from B. plebeius. The optimal temperature and pH for His-tagged BpGH117 activity were 35 °C and 9.0, respectively, indicative of its unique origin. His-tagged BpGH117 was thermostable up to 35 °C, and the enzyme activity was maintained at 80% of the initial activity at a pre-incubation temperature of 40 °C for 120 min. Km and Vmax values for NAB were 30.22 mM and 54.84 U/mg, respectively, and kcat/Km was 2.65 s−1 mM−1. These results suggest that His-tagged BpGH117 can be used for producing bioactive products such as AHG and agarotriose from agarose efficiently.  相似文献   

3.
Three new metabolites, furobenzotropolones A, B (1–2) with unusual benzene and dihydrofuran moieties and 3-hydroxyepicoccone B (3), together with seven known compounds (4–10) were obtained from the endophytic fungus Epicoccum nigrum MLY-3 isolated from the fresh leaf of mangrove plant Bruguiear gymnorrhiza collected from Zhuhai. Their structures were assigned by the analysis of UV, IR, NMR, and mass spectroscopic data. Compound 1 was further confirmed by single-crystal X-ray diffraction experiment using Cu Kα radiation. In antioxidant activities in vitro, compounds 2, 3, 5, and 8 showed promising DPPH· scavenging activity with IC50 values ranging from 14.7 to 29.3 µM. Compounds 2, 3, 5, 7, and 8 exhibited promising potent activity in scavenging ABTS· with IC50 values in the range of 18–29.2 µM, which was stronger than that of the positive control ascorbic acid (IC50 = 33.6 ± 0.8 µM).  相似文献   

4.
Investigation of the Red Sea sponge Negombata magnifica gave two novel alkaloids, magnificines A and B (1 and 2) and a new β-ionone derivative, (±)-negombaionone (3), together with the known latrunculin B (4) and 16-epi-latrunculin B (5). The analysis of the NMR and HRESIMS spectra supported the planar structures and the relative configurations of the compounds. The absolute configurations of magnificines A and B were determined by the analysis of the predicted and experimental ECD spectra. Magnificines A and B possess a previously unreported tetrahydrooxazolo[3,2-a]azepine-2,5(3H,6H)-dione backbone and represent the first natural compounds in this class. (±)-Negombaionone is the first β-ionone of a sponge origin. Compounds 1-3 displayed selective activity against Escherichia coli in a disk diffusion assay with inhibition zones up to 22 mm at a concentration of 50 µg/disc and with MIC values down to 8.0 µM. Latrunculin B and 16-epi-latrunculin B inhibited the growth of HeLa cells with IC50 values down to 1.4 µM.  相似文献   

5.
Six new DIKETOPIPERAZINE alkaloids aspergiamides A–F (1–6), together with ten known alkaloids (7–16), were isolated from the mangrove endophytic fungus Aspergillus sp. 16-5c. The structures of the new compounds were elucidated based on 1D/2D NMR spectroscopic and HR-ESIMS data analyses. The absolute configurations of aspergiamides A-F were established based on the experimental and calculated ECD data. All the compounds were evaluated for the antidiabetic activity against α-glucosidase and PTP1B enzyme. The bioassay results disclosed compounds 1 and 9 exhibited significant α-glucosidase inhibitory with IC50 values of 18.2 and 7.6 μM, respectively; compounds 3, 10, 11, and 15 exhibited moderate α-glucosidase inhibition with IC50 values ranging from 40.7 to 83.9 μM; while no compounds showed obvious PTP1B enzyme inhibition activity.  相似文献   

6.
The Ascomycota Dichotomomyces cejpii was isolated from the marine sponge Callyspongia cf. C. flammea. A new gliotoxin derivative, 6-acetylmonodethiogliotoxin (1) was obtained from fungal extracts. Compounds 2 and 3, methylthio-gliotoxin derivatives were formerly only known as semi-synthetic compounds and are here described as natural products. Additionally the polyketide heveadride (4) was isolated. Compounds 1, 2 and 4 dose-dependently down-regulated TNFα-induced NF-κB activity in human chronic myeloid leukemia cells with IC50s of 38.5 ± 1.2 µM, 65.7 ± 2.0 µM and 82.7 ± 11.3 µM, respectively. The molecular mechanism was studied with the most potent compound 1 and results indicate downstream inhibitory effects targeting binding of NF-κB to DNA. Compound 1 thus demonstrates potential of epimonothiodiketopiperazine-derived compounds for the development of NF-κB inhibitors.  相似文献   

7.
Concerning the requirements of effective drug candidates to combat against high rising multidrug resistant pathogens, we isolated three new linear lipopeptides, gageostatins A–C (1–3), consisting of hepta-peptides and new 3-β-hydroxy fatty acids from the fermentation broth of a marine-derived bacterium Bacillus subtilis. Their structures were elucidated by analyzing a combination of extensive 1D, 2D NMR spectroscopic data and high resolution ESIMS data. Fatty acids, namely 3-β-hydroxy-11-methyltridecanoic and 3-β-hydroxy-9,11-dimethyltridecanoic acids were characterized in lipopeptides 1 and 2, respectively, whereas an unsaturated fatty acid (E)-7,9-dimethylundec-2-enoic acid was assigned in 3. The 3R configuration of the stereocenter of 3-β-hydroxy fatty acids in 1 and 2 was established by Mosher’s MTPA method. The absolute stereochemistry of amino acid residues in 1–3 was ascertained by acid hydrolysis followed by Marfey’s derivatization studies. Gageostatins 1–3 exhibited good antifungal activities with MICs values of 4–32 µg/mL when tested against pathogenic fungi (R. solani, B. cinerea and C. acutatum) and moderate antibacterial activity against bacteria (B. subtilis, S. aeureus, S. typhi and P. aeruginosa) with MICs values of 8–64 µg/mL. Futhermore, gageostatins 1–3 displayed cytotoxicity against six human cancer cell lines with GI50 values of 4.6–19.6 µg/mL. It is also noteworthy that mixed compounds 1+2 displayed better antifungal and cytotoxic activities than individuals.  相似文献   

8.
Genome sequencing of Catenovulum agarivorans YM01T reveals 15 open-reading frames (ORFs) encoding various agarases. In this study, extracellular proteins of YM01T were precipitated by ammonium sulfate and separated by one-dimensional gel electrophoresis. The results of in-gel agarase activity assay and mass spectrometry analysis revealed that the protein, YM01-3, was an agarase with the most evident agarolytic activity. Agarase YM01-3, encoded by the YM01-3 gene, consisted of 420 amino acids with a calculated molecular mass of 46.9 kDa and contained a glycoside hydrolase family 16 β-agarase module followed by a RICIN superfamily in the C-terminal region. The YM01-3 gene was cloned and expressed in Escherichia coli. The recombinant agarase, YM01-3, showed optimum activity at pH 6.0 and 60 °C and had a Km of 3.78 mg mL−1 for agarose and a Vmax of 1.14 × 104 U mg−1. YM01-3 hydrolyzed the β-1,4-glycosidic linkages of agarose, yielding neoagarotetraose and neoagarohexaose as the main products. Notably, YM01-3 was stable below 50 °C and retained 13% activity after incubation at 80 °C for 1 h, characteristics much different from other agarases. The present study highlights a thermostable agarase with great potential application value in industrial production.  相似文献   

9.
Seventeen lactones including eight territrem derivatives (1–8) and nine butyrolactone derivatives (9–17) were isolated from a marine-derived fungus Aspergillus terreus SCSGAF0162 under solid-state fermentation of rice. Compounds 1–3 and 9–10 were new, and their structures were elucidated by spectroscopic analysis. The acetylcholinesterase inhibitory activity and antiviral activity of compounds 1–17 were evaluated. Among them, compounds 1 and 2 showed strong inhibitory activity against acetylcholinesterase with IC50 values of 4.2 ± 0.6, 4.5 ± 0.6 nM, respectively. This is the first time it has been reported that 3, 6, 10, 12 had evident antiviral activity towards HSV-1 with IC50 values of 16.4 ± 0.6, 6.34 ± 0.4, 21.8 ± 0.8 and 28.9 ± 0.8 μg·mL−1, respectively. Antifouling bioassay tests showed that compounds 1, 11, 12, 15 had potent antifouling activity with EC50 values of 12.9 ± 0.5, 22.1 ± 0.8, 7.4 ± 0.6, 16.1 ± 0.6 μg·mL−1 toward barnacle Balanus amphitrite larvae, respectively.  相似文献   

10.
Eight new compounds, including two sambutoxin derivatives (1–2), two highly oxygenated cyclopentenones (7–8), four highly oxygenated cyclohexenones (9–12), together with four known sambutoxin derivatives (3–6), were isolated from semimangrove endophytic fungus Talaromyces sp. CY-3, under the guidance of molecular networking. The structures of new isolates were elucidated by analysis of detailed spectroscopic data, ECD spectra, chemical hydrolysis, 13C NMR calculation, and DP4+ analysis. In bioassays, compounds 1–5 displayed better α-glucosidase inhibitory activity than the positive control 1-deoxynojirimycin (IC50 = 80.8 ± 0.3 μM), and the IC50 value was in the range of 12.6 ± 0.9 to 57.3 ± 1.3 μM.  相似文献   

11.
Three new dibenzo-α-pyrone derivatives, alternolides A–C (1–3), and seven known congeners (4–10) were isolated from the marine-derived fungus of Alternaria alternata LW37 assisted by the one strain-many compounds (OSMAC) strategy. The structures of 1–3 were established by extensive spectroscopic analyses, and their absolute configurations were determined by modified Snatzke′s method and electronic circular dichroism (ECD) calculations. Compounds 6 and 7 showed good 1,1-diphenyl-2-picrylhydrazyl (DPPH) antioxidant scavenging activities with IC50 values of 83.94 ± 4.14 and 23.60 ± 1.23 µM, respectively. Additionally, 2, 3 and 7 exhibited inhibitory effects against α-glucosidase with IC50 values of 725.85 ± 4.75, 451.25 ± 6.95 and 6.27 ± 0.68 µM, respectively. The enzyme kinetics study indicated 2 and 3 were mixed-type inhibitors of α-glucosidase with Ki values of 347.0 and 108.5 µM, respectively. Furthermore, the interactions of 2, 3 and 7 with α-glucosidase were investigated by molecular docking.  相似文献   

12.
Chitooligosaccharides (COSs) have been widely used in agriculture, medicine, cosmetics, and foods, which are commonly prepared from chitin with chitinases. So far, while most COSs are prepared from colloidal chitin, chitinases used in preparing COSs directly from natural crystalline chitin are less reported. Here, we characterize three chitinases, which were identified from the marine bacterium Pseudoalteromonas flavipulchra DSM 14401T, with an ability to degrade crystalline chitin into (GlcNAc)2 (N,N’-diacetylchitobiose). Strain DSM 14401 can degrade the crystalline α-chitin in the medium to provide nutrients for growth. Genome and secretome analyses indicate that this strain secretes six chitinolytic enzymes, among which chitinases Chia4287, Chib0431, and Chib0434 have higher abundance than the others, suggesting their importance in crystalline α-chitin degradation. These three chitinases were heterologously expressed, purified, and characterized. They are all active on crystalline α-chitin, with temperature optima of 45–50 °C and pH optima of 7.0–7.5. They are all stable at 40 °C and in the pH range of 5.0–11.0. Moreover, they all have excellent salt tolerance, retaining more than 92% activity after incubation in 5 M NaCl for 10 h at 4 °C. When acting on crystalline α-chitin, the main products of the three chitinases are all (GlcNAc)2, which suggests that chitinases Chia4287, Chib0431, and Chib0434 likely have potential in direct conversion of crystalline chitin into (GlcNAc)2.  相似文献   

13.
Three new triterpenoid aglycones named Philinopgenin A (1), B (2), and C (3) were isolated from the acid hydrolysate of the crude glycoside mixture prepared from the whole sea cucumber Pentacta quadrangulasis Lesson. The corresponding structures were determined as 16β-acetoxyholosta-8(9), 24(25)-diene-3β-ol (1), 20, 25-epoxy-lanosta-9(11)-ene-3β-ol 18(16)–lactone (2) and 16β-acetoxyholosta-9(11), 24(25)-diene-3β-ol (3), respectively, on the basis of spectral evidence.  相似文献   

14.
Lipid production is an important indicator for assessing microalgal species for biodiesel production. In this work, the effects of medium composition on lipid production by Scenedesmus sp. were investigated using the response surface methodology. The results of a Plackett–Burman design experiment revealed that NaHCO3, NaH2PO4·2H2O and NaNO3 were three factors significantly influencing lipid production, which were further optimized by a Box–Behnken design. The optimal medium was found to contain 3.07 g L−1 NaHCO3, 15.49 mg L−1 NaH2PO4·2H2O and 803.21 mg L−1 NaNO3. Using the optimal conditions previously determined, the lipid production (304.02 mg·L−1) increased 54.64% more than that using the initial medium, which agreed well with the predicted value 309.50 mg L−1. Additionally, lipid analysis found that palmitic acid (C16:0) and oleic acid (C18:1) dominantly constituted the algal fatty acids (about 60% of the total fatty acids) and a much higher content of neutral lipid accounted for 82.32% of total lipids, which strongly proved that Scenedesmus sp. is a very promising feedstock for biodiesel production.  相似文献   

15.
A new stereoisomer of an araguspongine/xestospongin alkaloid, named araguspongine M (1), has been isolated together with 12 known compounds, araguspongines B (2) and D (3), dopamine, three galactosyl diacylglycerols, 24-methyl cholesterol, 5,6-dihydrocholesterol, β-sitosterol, and three 5α,8α-epidioxy sterols (11–13), from the marine sponge Neopetrosia exigua (formerly Xestospongia exigua) collected in Palau. The structure of 1 was assigned on the basis of its spectral data analysis. This is the first report on the isolation of dopamine from a marine sponge. This compound may be produced by an endosymbiotic Synechococcus-like cyanobacterium. Compounds 1–3 and 11–13 showed cytotoxicity against HL-60 at IC50’s of 5.5, 5.5, 5.9, 22.4, 9.5, and 9.6 μM, respectively. The possible biosynthesis origin of the isolated metabolites is discussed.  相似文献   

16.
Racemic dinaphthalenone derivatives, (±)-asperlone A (1) and (±)-asperlone B (2), and two new azaphilones, 6″-hydroxy-(R)-mitorubrinic acid (3) and purpurquinone D (4), along with four known compounds, (−)-mitorubrinic acid (5), (−)-mitorubrin (6), purpurquinone A (7) and orsellinic acid (8), were isolated from the cultures of Aspergillus sp. 16-5C. The structures were elucidated using comprehensive spectroscopic methods, including 1D and 2D NMR spectra and the structures of 1 further confirmed by single-crystal X-ray diffraction analysis, while the absolute configuration of 3 and 4 were determined by comparing their optical rotation and CD with those of the literature, respectively. Compounds 1, 2 and 6 exhibited potent inhibitory effects against Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) with IC50 values of 4.24 ± 0.41, 4.32 ± 0.60 and 3.99 ± 0.34 μM, respectively.  相似文献   

17.
Two new indole-diterpenoids (1 and 2) and a new isocoumarin (3), along with the known β-aflatrem (4), paspalinine (5), leporin B (6), α-cyclopiazonic acid (7), iso-α-cyclopiazonic acid (8), ditryptophenaline (9), aflatoxin B1 (10), 7-O-acetylkojic acid (11) and kojic acid (12), were isolated from the fermentation broth of the marine-derived fungus, Aspergillus flavus OUCMDZ-2205. The structures of Compounds 1–12 were elucidated by spectroscopic analyses, quantum ECD calculations and the chemical method. New Compound 1 exhibited antibacterial activity against Staphylococcus aureus with a MIC value of 20.5 μM. Both new Compounds 1 and 2 could arrest the A549 cell cycle in the S phase at a concentration of 10 μM. Compound 1 showed PKC-beta inhibition with an IC50 value of 15.6 μM. In addition, the absolute configurations of the known compounds, 4–6 and leporin A (6a), were also determined for the first time.  相似文献   

18.
Two new diterpenoids, hypoxyterpoids A (1) and B (2), and four new isocoumarin derivatives, hypoxymarins A–D (4–7), together, with seven known metabolites (3 and 8–13) were obtained from the crude extract of the mangrove-derived fungus Hypoxylon sp. The structures of the new compounds were elucidated on the basis of 1- and 2-dimensional (1D/2D) nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric analysis. The absolute configurations of compounds 1, 2, 4, 5, and 7 were determined by comparison of experimental and calculated electronic circular dichroism (ECD) spectra, and the absolute configurations of C-4′ in 6 and C-9 in 7 were determined by [Rh2(OCOCF3)4]-induced ECD spectra. Compound 1 showed moderate α-glucosidase inhibitory activities with IC50 values of 741.5 ± 2.83 μM. Compounds 6 and 11 exhibited DPPH scavenging activities with IC50 values of 15.36 ± 0.24 and 3.69 ± 0.07 μM, respectively.  相似文献   

19.
Chemical investigation of the endophytic fungus Aspergillus sp. 16-5B cultured on Czapek’s medium led to the isolation of four new metabolites, aspergifuranone (1), isocoumarin derivatives (±) 2 and (±) 3, and (R)-3-demethylpurpurester A (4), together with the known purpurester B (5) and pestaphthalides A (6). Their structures were determined by analysis of 1D and 2D NMR spectroscopic data. The absolute configuration of Compound 1 was determined by comparison of the experimental and calculated electronic circular dichroism (ECD) spectra, and that of Compound 4 was revealed by comparing its optical rotation data and CD with those of the literature. The structure of Compound 6 was further confirmed by single-crystal X-ray diffraction experiment using CuKα radiation. All isolated compounds were evaluated for their α-glucosidase inhibitory activities, and Compound 1 showed significant inhibitory activity with IC50 value of 9.05 ± 0.60 μM. Kinetic analysis showed that Compound 1 was a noncompetitive inhibitor of α-glucosidase. Compounds 2 and 6 exhibited moderate inhibitory activities.  相似文献   

20.
Although human exposure to Gram-negative Vibrio vulnificus (V. vulnificus) lipopolysaccharide (LPS) has been reported to result in septic shock, its impact on the central nervous system’s innate immunity remains undetermined. The purpose of this study was to determine whether V. vulnificus MO6-24/O LPS might activate rat microglia in vitro and stimulate the release of superoxide anion (O2), a reactive oxygen species known to cause oxidative stress and neuronal injury in vivo. Brain microglia were isolated from neonatal rats, and then treated with either V. vulnificus MO6-24/O LPS or Escherichia coli O26:B6 LPS for 17 hours in vitro. O2 was determined by cytochrome C reduction, and matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatinase zymography. Generation of cytokines tumor necrosis factor alpha (TNF-α), interleukin-1 alpha (IL-1α), IL-6, and transforming growth factor-beta 1 (TGF-β1), chemokines macrophage inflammatory protein (MIP-1α)/chemokine (C-C motif) ligand 3 (CCL3), MIP-2/chemokine (C-X-C motif) ligand 2 (CXCL2), monocyte chemotactic protein-1 (MCP-1)/CCL2, and cytokine-induced neutrophil chemoattractant-2alpha/beta (CINC-2α/β)/CXCL3, and brain-derived neurotrophic factor (BDNF), were determined by specific immunoassays. Priming of rat microglia by V. vulnificus MO6-24/O LPS in vitro yielded a bell-shaped dose-response curve for PMA (phorbol 12-myristate 13-acetate)-stimulated O2 generation: (1) 0.1–1 ng/mL V. vulnificus LPS enhanced O2 generation significantly but with limited inflammatory mediator generation; (2) 10–100 ng/mL V. vulnificus LPS maximized O2 generation with concomitant release of thromboxane B2 (TXB2), matrix metalloproteinase-9 (MMP-9), and several cytokines and chemokines; (3) 1000–100,000 ng/mL V. vulnificus LPS, with the exception of TXB2, yielded both attenuated O2 production, and a progressive decrease in MMP-9, cytokines and chemokines investigated. Thus concentration-dependent treatment of neonatal brain microglia with V. vulnificus MO6-24/O LPS resulted in a significant rise in O2 production, followed by a progressive decrease in O2 release, with concomitant release of lactic dehydrogenase (LDH), and generation of TXB2, MMP-9, cytokines and chemokines. We hypothesize that the inflammatory mediators investigated may be cytotoxic to microglia in vitro, by an as yet undetermined autocrine mechanism. Although V. vulnificus LPS was less potent than E. coli LPS in vitro, inflammatory mediator release by the former was clearly more efficacious. Finally, we hypothesize that should V. vulnificus LPS gain entry into the CNS, it would be possible that microglia might become activated, resulting in high levels of O2 as well as neuroinflammatory TXB2, MMP-9, cytokines and chemokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号