首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Docosahexaenoic acid (DHA) is one of the most important long-chain polyunsaturated fatty acids (LC-PUFAs), with numerous health benefits. Crypthecodinium cohnii, a marine heterotrophic dinoflagellate, is successfully used for the industrial production of DHA because it can accumulate DHA at high concentrations within the cells. Glycerol is an interesting renewable substrate for DHA production since it is a by-product of biodiesel production and other industries, and is globally generated in large quantities. The DHA production potential from glycerol, ethanol and glucose is compared by combining fermentation experiments with the pathway-scale kinetic modeling and constraint-based stoichiometric modeling of C. cohnii metabolism. Glycerol has the slowest biomass growth rate among the tested substrates. This is partially compensated by the highest PUFAs fraction, where DHA is dominant. Mathematical modeling reveals that glycerol has the best experimentally observed carbon transformation rate into biomass, reaching the closest values to the theoretical upper limit. In addition to our observations, the published experimental evidence indicates that crude glycerol is readily consumed by C. cohnii, making glycerol an attractive substrate for DHA production.  相似文献   

2.
The effects of various synthetic medium components and their interactions with each other ultimately impact laccase production in fungi. This was studied using a laccase-hyper-producing marine-derived basidiomycete, Cerrena unicolor MTCC 5159. Inducible laccases were produced in the idiophase only after addition of an inducer such as CuSO4. Concentration of carbon and nitrogen acted antagonistically with respect to laccase production. A combination of low nitrogen and high carbon concentration favored both biomass and laccase production. The most favorable combination resulted in 917 U L−1 of laccase. After sufficient growth had occurred, addition of a surfactant such as Tween 80 positively impacted biomass and increased the laccase activity to around 1,300 U L−1. Increasing the surface to volume ratio of the culture vessel further increased its activity to almost 2,000 U L−1.  相似文献   

3.
Thraustochytrids are the most promising microbial source for the commercial production of docosahexaenoic acid (DHA) for its application in the human health, aquaculture, and nutraceutical sectors. The present study isolated 127 thraustochytrid strains from mangrove habitats of the south Andaman Islands, India to study their diversity, polyunsaturated fatty acids (PUFAs), and biotechnological potential. The predominant strains were identified as belonging to two major genera (Thraustochytrium, Aurantiochytrium) based on morphological and molecular characteristics. The strain ANVKK-06 produced the maximum biomass of 5.42 g·L−1, while ANVKK-03 exhibited the maximum total lipid (71.03%). Omega-3 PUFAs such as eicosapentaenoic acid (EPA) accumulated up to 11.03% in ANVKK-04, docosapentaenoic acid (DPA) up to 8.65% in ANVKK-07, and DHA up to 47.19% in ANVKK-06. ANVKK-06 showed the maximum scavenging activity (84.79 ± 2.30%) while ANVKK-03 and ANVKK-10 displayed the highest antibacterial activity against human and fish pathogens, S. aureus (18.69 ± 1.2 mm) and V. parahaemolyticus (18.31 ± 1.0 mm), respectively. All strains were non-toxic as evident by negative blood agar hemolysis, thus, the thraustochytrids are suggested to be a potential source of DHA for application in the health care of human and fish.  相似文献   

4.
Haloarchaea produce C50 carotenoids such as bacterioruberin, which are of biotechnological in-terest. This study aimed to analyze the effect of different environmental and nutritional conditions on the cellular growth and dynamics of carotenoids accumulation in Haloferax mediterranei. The maximum production of carotenoids (40 µg·mL−1) was obtained during the stationary phase of growth, probably due to nutrient-limiting conditions (one-step culture). By seven days of culture, 1 mL culture produced 22.4 mg of dry weight biomass containing 0.18 % (w/w) of carotenoids. On the other hand, carbon-deficient cultures (low C/N ratio) were observed to be optimum for C50 bacterioruberin production by Hfx. mediterranei, but negatively affected the growth of cells. Thus, a two-steps process was evaluated for optimum carotenoids yield. In the first step, a nutri-ent-repleted culture medium enabled the haloarchaea to produce biomass, while in the second step, the biomass was incubated under osmotic stress and in a carbon-deficient medium. Under the conditions used, the obtained biomass contained 0.27% (w/w) of carotenoids after seven days, which accounts for 58.49 µg·mL−1 of carotenoids for a culture with turbidity 14.0.  相似文献   

5.
Microalgae have been recently recognized as a promising alternative for the effective treatment of anaerobic digestion effluents. However, to date, a widely applied microalgae-based process is still absent, due to several constraints mainly attributed to high ammonia concentrations and turbidity, both hindering microalgal growth. Within this scope, the purpose of the present study was to investigate the performance of two Chlorella strains, SAG 211-11b and a local Algerian isolate, under different nitrogen levels, upon ammonia stripping. The experiments were performed on cylindrical photobioreactors under controlled pH (7.8 ± 0.2) and temperature (25 ± 2 °C). Cultures were monitored for biomass production and substrate consumption. After sampling at the beginning of the stationary phase of growth (12th day) and after the maturation of the cells (24th day), an analysis of the produced biomass was conducted, in terms of its biochemical components. The local isolate grew better than C. vulgaris 211-11b, resulting in 1.43 mg L−1 biomass compared to 1.02 mg L−1 under 25 mg NH4-N L−1, while organic carbon and nutrient consumption varied between the two strains and different conditions. Concerning biomass quality, a high initial NH4-N concentration led to high protein content, while low nitrogen levels favored fatty acid (FA) accumulation, though the production of pigments was inhibited. In particular, the protein content of the final biomass was determined close to 45% of the dry weight in all experimental scenarios with adequate nitrogen, while proteins decreased, and the fatty acids approached 20% in the case of the local isolate grown on the substrate with the lowest initial ammonium nitrogen (25 mg NH4-N L−1). The novelty of the present work lies in the comparison of a microalga with industrial applications against a local isolate of the same species, which may prove to be even more robust and profitable.  相似文献   

6.
Our study focused on investigating the possibilities of controlling the accumulation of carbohydrates in certain microalgae species (Arthrospira platensis Gomont, Chlorella vulgaris Beijer, and Dunaliella salina Teod) to determine their potential in biofuel production (biohydrogen). It was found that after the introduction of carbohydrates (0.05 g⋅L−1) into the nutrient medium, the growth rate of the microalgae biomass increased, and the accumulation of carbohydrates reached 41.1%, 47.9%, and 31.7% for Arthrospira platensis, Chlorella vulgaris, and Dunaliella salina, respectively. Chlorella vulgaris had the highest total carbohydrate content (a mixture of glucose, fructose, sucrose, and maltose, 16.97%) among the studied microalgae, while for Arthrospira platensis and Dunaliella salina, the accumulation of total carbohydrates was 9.59% and 8.68%, respectively. Thus, the introduction of carbohydrates into the nutrient medium can stimulate their accumulation in the microalgae biomass, an application of biofuel production (biohydrogen).  相似文献   

7.
Sergi Abad  Xavier Turon 《Marine drugs》2015,13(12):7275-7284
Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1), biomass (0.7–0.8 g cells/g Substrate) and product (0.14–0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.  相似文献   

8.
The glaucophyte Cyanophora paradoxa (Cp) was chemically investigated to identify pigments efficiently inhibiting malignant melanoma, mammary carcinoma and lung adenocarcinoma cells growth. Cp water and ethanol extracts significantly inhibited the growth of the three cancer cell lines in vitro, at 100 µg·mL−1. Flash chromatography of the Cp ethanol extract, devoid of c-phycocyanin and allophycocyanin, enabled the collection of eight fractions, four of which strongly inhibited cancer cells growth at 100 µg·mL−1. Particularly, two fractions inhibited more than 90% of the melanoma cells growth, one inducing apoptosis in the three cancer cells lines. The detailed analysis of Cp pigment composition resulted in the discrimination of 17 molecules, ten of which were unequivocally identified by high resolution mass spectrometry. Pheophorbide a, β-cryptoxanthin and zeaxanthin were the three main pigments or derivatives responsible for the strong cytotoxicity of Cp fractions in cancer cells. These data point to Cyanophora paradoxa as a new microalgal source to purify potent anticancer pigments, and demonstrate for the first time the strong antiproliferative activity of zeaxanthin and β-cryptoxanthin in melanoma cells.  相似文献   

9.
Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1) compared to N-sufficiency (0.11 g L−1 day−1). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.  相似文献   

10.
The carotenogenic thraustochytrid Thraustochytrium sp. RT2316-16 was grown in batch and repeated-batch cultures using different feeds containing glucose, or glycerol, and yeast extract, for the production of lipids, phospholipids and carotenoids. RT2316-16 produced canthaxanthin, astaxanthin and β-carotene. The effects of biotin, ascorbic acid, light and temperature were evaluated in some of the experiments. In 2-day-old batch cultures, the combined mass percentage of eicosapentaenoic acid and docosahexaenoic acid in total lipids was between 16.5% (glycerol-based medium in the dark; biomass concentration = 4.2 ± 1.1 g L−1) and 42.6% (glucose-based medium under light; biomass concentration = 3.3 ± 0.1 g L−1), decreasing to 3.8% and 6.1%, respectively, after day 4. In repeated-batch cultures, the total lipids in the biomass increased after glucose or glycerol was fed alone, whereas the total carotenoids (168 ± 7 μg g−1 dry weight (DW)) and phospholipids in the biomass increased after feeding with yeast extract. The biomass with the highest content of phospholipids (28.7 ± 4.3 mg g−1 DW) was obtained using a feed medium formulated with glycerol, yeast extract and ascorbic acid. Glycerol was the best carbon source for the production of a biomass enriched with total lipids (467 ± 45 mg g−1 DW). The composition of carotenoids depended strongly on the composition of the feed. Repeated-batch cultures fed with yeast extract contained canthaxanthin as the main carotenoid, whereas in the cultures fed only with glucose, the biomass contained mainly β-carotene.  相似文献   

11.
Increased interest in marine resources has led to increased screening of marine fungi for novel bioactive compounds and considerable effort is being invested in discovering these metabolites. For compound discovery, small-scale cultures are adequate, but agitated bioreactors are desirable for larger-scale production. Calcarisporium sp. KF525 has recently been described to produce calcaride A, a cyclic polyester with antibiotic activity, in agitated flasks. Here, we describe improvements in the production of calcaride A in both flasks (13-fold improvement) and stirred bioreactors (200-fold improvement). Production of calcaride A in bioreactors was initially substantially lower than in shaken flasks. The cultivation pH (reduced from 6.8 to <5.4), carbon source (sucrose replacing glucose), C/N ratio and nature of mycelial growth (pellets or filaments) were important in improving calcaride A production. Up to 4.5 mg·g−1 biomass (85 mg·L−1) calcaride A were produced in the bioreactor, which was only slightly less than in shaken flasks (14 mg·g−1, 100 mg·L−1). The results demonstrate that a scalable process for calcaride A production could be developed using an iterative approach with flasks and bioreactors.  相似文献   

12.
Cyanobacteria are essential for the vast number of compounds they produce and the possible applications in the pharmaceutical, cosmetical, and food industries. As Lyngbya species’ characterization is limited in the literature, we characterize this cyanobacterium’s growth and biomass. L. purpureum was grown and analyzed under different salinities, culture media, and incubation times to determine the best conditions that favor its cell growth and the general production of proteins, carbohydrates, lipids, and some pigments as phycocyanin and chlorophyll a. In this study, each analyzed biomolecule’s highest content was proteins 431.69 mg g−1, carbohydrates 301.45 mg g−1, lipids 131.5 mg g−1, chlorophyll a 4.09 mg g−1, and phycocyanin 40.4 mg g−1. These results can provide a general context of the possible uses that can be given to biomass and give an opening to investigate possible biocompounds or bio metabolites that can be obtained from it.  相似文献   

13.
A novel strain of Coelastrella terrestris (Chlorophyta) was collected from red mucilage in a glacier foreland in Iceland. Its morphology showed characteristic single, ellipsoidal cells with apical wart-like wall thickenings. Physiological characterization revealed the presence of the rare keto-carotenoid adonixanthin, as well as high levels of unsaturated fatty acids of up to 85%. Initial screening experiments with different carbon sources for accelerated mixotrophic biomass growth were done. Consequently, a scale up to 1.25 L stirred photobioreactor cultivations yielded a maximum of 1.96 mg·L−1 adonixanthin in free and esterified forms. It could be shown that supplementing acetate to the medium increased the volumetric productivity after entering the nitrogen limitation phase compared to autotrophic control cultures. This study describes a promising way of biotechnological adonixanthin production using Coelastrella terrestris.  相似文献   

14.
It has long been explored to use EPA-rich unicellular microalgae as a fish oil alternative for production of the high-value omega-3 fatty acid eicosapentaenoic acid (EPA, 20:5, n-3). However, none of the efforts have ever reached commercial success. This study reported a filamentous yellow-green microalga Tribonema aequale that possesses the ability to grow rapidly and synthesize significant amounts of EPA. A series of studies were conducted in a glass column photobioreactor under laboratory culture conditions and in pilot-scale open raceway ponds outdoors. The emphasis was placed on the specific nutrient requirements and the key operational parameters in raceway ponds such as culture depth and mixing regimes. When optimized, T. aequale cells contained 2.9% of EPA (w/w) and reached a very high biomass concentration of 9.8 g L−1 in the glass column photobioreactor. The cellular EPA content was increased further to 3.5% and the areal biomass and EPA productivities of 16.2 g m−2 d−1 and 542.5 mg m−2 d−1, respectively, were obtained from the outdoor pilot-scale open raceway ponds, which were the record high figures reported thus far from microalgae-based EPA production. It was also observed that T. aequale was highly resistant to microbial contamination and easy for harvesting and dewatering, which provide two additional competitive advantages of this filamentous microalga over the unicellular counterparts for potential commercial production of EPA and other derived co-products.  相似文献   

15.
The production, characterization, and antioxidant capacity of the carotenoid fucoxanthin from the marine diatom Odontella aurita were investigated. The results showed that low light and nitrogen-replete culture medium enhanced the biosynthesis of fucoxanthin. The maximum biomass concentration of 6.36 g L−1 and maximum fucoxanthin concentration of 18.47 mg g−1 were obtained in cultures grown in a bubble column photobioreactor (Ø 3.0 cm inner diameter), resulting in a fucoxanthin volumetric productivity of 7.96 mg L−1 day−1. A slight reduction in biomass production was observed in the scaling up of O. aurita culture in a flat plate photobioreactor, yet yielded a comparable fucoxanthin volumetric productivity. A rapid method was developed for extraction and purification of fucoxanthin. The purified fucoxanthin was identified as all-trans-fucoxanthin, which exhibited strong antioxidant properties, with the effective concentration for 50% scavenging (EC50) of 1,1-dihpenyl-2-picrylhydrazyl (DPPH) radical and 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical being 0.14 and 0.03 mg mL−1, respectively. Our results suggested that O. aurita can be a natural source of fucoxanthin for human health and nutrition.  相似文献   

16.
Grateloupia turuturu Yamada, 1941, is a red seaweed widely used for food in Japan and Korea which was recorded on the Atlantic Coast of Europe about twenty years ago. This seaweed presents eicosapentaenoic acid (EPA) and other polyunsaturated fatty acids (PUFAs) in its lipid fraction, a feature that sparked the interest on its potential applications. In seaweeds, PUFAs are mostly esterified to polar lipids, emerging as healthy phytochemicals. However, to date, these biomolecules are still unknown for G. turuturu. The present work aimed to identify the polar lipid profile of G. turuturu, using modern lipidomics approaches based on high performance liquid chromatography coupled to high resolution mass spectrometry (LC–MS) and gas chromatography coupled to mass spectrometry (GC–MS). The health benefits of polar lipids were identified by health lipid indices and the assessment of antioxidant and anti-inflammatory activities. The polar lipids profile identified from G. turuturu included 205 lipid species distributed over glycolipids, phospholipids, betaine lipids and phosphosphingolipids, which featured a high number of lipid species with EPA and PUFAs. The nutritional value of G. turuturu has been shown by its protein content, fatty acyl composition and health lipid indices, thus confirming G. turuturu as an alternative source of protein and lipids. Some of the lipid species assigned were associated to biological activity, as polar lipid extracts showed antioxidant activity evidenced by free radical scavenging potential for the 2,2′-azino-bis-3-ethyl benzothiazoline-6-sulfonic acid (ABTS+) radical (IC50 ca. 130.4 μg mL−1) and for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (IC25 ca. 129.1 μg mL−1) and anti-inflammatory activity by inhibition of the COX-2 enzyme (IC50 ca. 33 µg mL−1). Both antioxidant and anti-inflammatory activities were detected using a low concentration of extracts. This integrative approach contributes to increase the knowledge of G. turuturu as a species capable of providing nutrients and bioactive molecules with potential applications in the nutraceutical, pharmaceutical and cosmeceutical industries.  相似文献   

17.
Ostreopsis cf. ovata produces palytoxin analogues including ovatoxins (OVTXs) and a putative palytoxin (p-PLTX), which can accumulate in marine organisms and may possibly lead to food intoxication. However, purified ovatoxins are not widely available and their toxicities are still unknown. The aim of this study was to improve understanding of the ecophysiology of Ostreopsis cf. ovata and its toxin production as well as to optimize the purification process for ovatoxin. During Ostreopsis blooms in 2011 and 2012 in Villefranche-sur-Mer (France, NW Mediterranean Sea), microalgae epiphytic cells and marine organisms were collected and analyzed both by LC-MS/MS and hemolysis assay. Results obtained with these two methods were comparable, suggesting ovatoxins have hemolytic properties. An average of 223 μg·kg−1 of palytoxin equivalent of whole flesh was found, thus exceeding the threshold of 30 μg·kg−1 in shellfish recommended by the European Food Safety Authority (EFSA). Ostreopsis cells showed the same toxin profile both in situ and in laboratory culture, with ovatoxin-a (OVTX-a) being the most abundant analogue (~50%), followed by OVTX-b (~15%), p-PLTX (12%), OVTX-d (8%), OVTX-c (5%) and OVTX-e (4%). Ostreopsis cf. ovata produced up to 2 g of biomass per L of culture, with a maximum concentration of 300 pg PLTX equivalent cell−1. Thus, an approximate amount of 10 mg of PLTX-group toxins may be produced with 10 L of this strain. Toxin extracts obtained from collected biomass were purified using different techniques such as liquid-liquid partition or size exclusion. Among these methods, open-column chromatography with Sephadex LH20 phase yielded the best results with a cleanup efficiency of 93% and recovery of about 85%, representing an increase of toxin percentage by 13 fold. Hence, this purification step should be incorporated into future isolation exercises.  相似文献   

18.
Projections show that the cultivation of microalgae will extend to the production of bio-based compounds, such as biofuels, cosmetics, and medicines. This will generate co-products or residues that will need to be valorized to reduce the environmental impact and the cost of the process. This study explored the ability of lipid-extracted Chlorella vulgaris residue as a sole carbon and nitrogen source for growing oleaginous yeasts without any pretreatment. Both wild-type Yarrowia lipolytica W29 and mutant JMY3501 (which was designed to accumulate more lipids without their remobilization or degradation) showed a similar growth rate of 0.28 h−1 at different pH levels (3.5, 5.5, and 7.5). However, the W29 cell growth had the best cell number on microalgal residue at a pH of 7.5, while three times fewer cells were produced at all pH levels when JMY3501 was grown on microalgal residue. The JMY3501 growth curves were similar at pH 3.5, 5.5, and 7.5, while the fatty-acid composition differed significantly, with an accumulation of α-linolenic acid on microalgal residue at a pH of 7.5. Our results demonstrate the potential valorization of Chlorella vulgaris residue for Yarrowia lipolytica growth and the positive effect of a pH of 7.5 on the fatty acid profile.  相似文献   

19.
Presently, there is a high demand for nutritionally enhanced foods, so it is a current challenge to look at new raw food sources that can supplement beneficially the human diet. The nutritional profile and key secondary metabolites of red seaweeds (Rhodophyta) are gaining interest because of this challenge. In this context, the possible use of the red seaweed Chondracanthus teedei var. lusitanicus (Gigartinales) as a novel nutraceutical source was investigated. As a result, we highlight the high mineral content of this seaweed, representing 29.35 g 100 g−1 of its dry weight (DW). Despite the low levels of calcium and phosphorus (0.26 and 0.20 g 100 g−1 DW, respectively), this seaweed is an interesting source of nitrogen and potassium (2.13 and 2.29 g−1 DW, accordingly). Furthermore, the high content of carbohydrates (56.03 g 100 g−1 DW), which acts as dietary fibers, confers a low caloric content of this raw food source. Thus, this study demonstrates that C. teedei var. lusitanicus is in fact an unexploited potential resource with the capability to provide key minerals to the human diet with promising nutraceutical properties.  相似文献   

20.
Chrysolaminarin, a kind of water-soluble bioactive β-glucan produced by certain microalgae, is a potential candidate for food/pharmaceutical applications. This study identified a marine microalga Isochrysis zhangjiangensis, in which chrysolaminarin production was investigated via nutrient (nitrogen, phosphorus, or sulfur) deprivations (-N, -P, or -S conditions) along with an increase in light intensity. A characterization of the antioxidant activities of the chrysolaminarin produced under each condition was also conducted. The results showed that nutrient deprivation caused a significant increase in chrysolaminarin accumulation, though this was accompanied by diminished biomass production and photosynthetic activity. -S was the best strategy to induce chrysolaminarin accumulation. An increase in light intensity from 80 (LL) to 150 (HL) µE·m−2·s−1 further enhanced chrysolaminarin production. Compared with -N, -S caused more suitable stress and reduced carbon allocation toward neutral lipid production, which enabled a higher chrysolaminarin accumulation capacity. The highest chrysolaminarin content and concentration reached 41.7% of dry weight (%DW) and 632.2 mg/L, respectively, under HL-S, with a corresponding productivity of 155.1 mg/L/day achieved, which exceeds most of the photoautotrophic microalgae previously reported. The chrysolaminarin produced under HL-N (Iz-N) had a relatively competitive hydroxyl radical scavenging activity at low concentrations, while the chrysolaminarin produced under HL-S (Iz-S) exhibited an overall better activity, comparable to the commercial yeast β-glucan, demonstrating I. zhangjiangensis as a promising bioactive chrysolaminarin producer from CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号