首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Nanofibrous mats of poly (?-caprolactone)/nanoclay nanocomposites were fabricated using electrospinning method. Effects of nanoclay content of the nanocomposite on final nanofiber structures were investigated and characterized by scanning electron microscope (SEM) and differential scanning calorimetry (DSC) analysis. The results showed that the presence of the nanoclay promoted the creation of fibrous structure in comparison with solely poly (?-caprolactone). Furthermore, increase in nanoclay content led to the formation of more uniform nanofiber structures and caused a decrease in the mean nanofiber diameter. DSC results showed that the addition of nanoclay reduced the crystallinity of the nanocomposite in compared with pristine PCL. Studies of the mechanical properties, wettability and degradability showed that the presence of nanoclay improved tensile modulus, tensile strength, wettability and biodegradability of the nanocomposites. To evaluate the effect of nanoclay on the cell adhesion and bioactivity of the poly (?-caprolactone)/nanoclay nanocomposites, fibroblasts cells were seeded on the mats. The results showed that the prepared nanocomposite could be a potential candidate for tissue engineering.  相似文献   

2.
A major goal of biomimetics is the development of chemical compositions and structures that simulate the extracellular matrix. In this study, gelatin-based electrospun composite fibrous membranes were prepared by electrospinning to generate bone scaffold materials. The gelatin-based multicomponent composite fibers were fabricated using co-electrospinning, and the composite fibers of chitosan (CS), gelatin (Gel), hydroxyapatite (HA), and graphene oxide (GO) were successfully fabricated for multi-function characteristics of biomimetic scaffolds. The effect of component concentration on composite fiber morphology, antibacterial properties, and protein adsorption were investigated. Composite fibers exhibited effective antibacterial activity against Staphylococcus aureus and Escherichia coli. The study observed that the composite fibers have higher adsorption capacities of bovine serum albumin (BSA) at pH 5.32–6.00 than at pH 3.90–4.50 or 7.35. The protein adsorption on the surface of the composite fiber increased as the initial BSA concentration increased. The surface of the composite reached adsorption equilibrium at 20 min. These results have specific applications for the development of bone scaffold materials, and broad implications in the field of tissue engineering.  相似文献   

3.
The present study deals with the utilization of psyllium and acrylic acid based hydrogels, synthesized under the influence of γ-radiations, in sustained delivery of copper sulfate, used as a fungicide in agricultural fields. Swelling behavior of the synthesized hydrogel was investigated in distilled water as functions of time, temperature, and pH. It was found that the hydrogel showed maximum of 10,578 % swelling at 25 °C for 24 h. The hydrogel was then checked for its sustained fungicide release behavior. It was observed that the hydrogel has been found to follow Non-Fickian type mechanism for the fungicide release. The ‘n’ and ‘k’ have been found to be 0.71 and 7.61×10−3, respectively.  相似文献   

4.
The aim of this study was to first evaluate whether the chitosan hydrochloride-genipin crosslinking reaction is influenced by factors such as time, and polymer/genipin concentration, and second, to develop crosslinked drug loaded microspheres to improve the control over drug release. Once the crosslinking process was characterized as a function of the factors mentioned above, drug loaded hydrochloride chitosan microspheres with different degrees of crosslinking were obtained. Microspheres were characterized in terms of size, morphology, drug content, surface charge and capacity to control in vitro drug release. Clarithromycin, tramadol hydrochloride, and low molecular weight heparin (LMWH) were used as model drugs. The obtained particles were spherical, positively charged, with a diameter of 1–10 μm. X-Ray diffraction showed that there was an interaction of genipin and each drug with chitosan in the microspheres. In relation to the release profiles, a higher degree of crosslinking led to more control of drug release in the case of clarithromycin and tramadol. For these drugs, optimal release profiles were obtained for microspheres crosslinked with 1 mM genipin at 50 ºC for 5 h and with 5 mM genipin at 50 ºC for 5 h, respectively. In LMWH microspheres, the best release profile corresponded to 0.5 mM genipin, 50 ºC, 5 h. In conclusion, genipin showed to be eligible as a chemical-crosslinking agent delaying the outflow of drugs from the microspheres. However, more studies in vitro and in vivo must be carried out to determine adequate crosslinking conditions for different drugs.  相似文献   

5.
The main objective of this work was chemically bioactivation of the conducting polyanizidine (PANIZ) by incorporating a polyester such as polycaprolactone (PCL). Modified PANIZ nanocomposites were synthesized through ring opening and chemical oxidation polymerizations. A four-point probe was applied to measure the conductivity of newly synthesized star-like block copolymer (S-PCL-PANIZ) nanocomposite, which was about 0.44 S cm-1. Conductive biodegradable nanofibers were prepared by electrospinning with 25 and 75 % (wt/wt) S-PCL-PANIZ to PCL. The contact angle of each prepared nanofiber was 87±3°, supporting their usefulness for cell culture. The cultured mouse osteoblast MG63 cells demonstrated normal morphology and significantly higher adhesion and spreading on the nanofiber. The bioactivated PANIZ based nanocomposite may be fruitful in tissue engineering to fabricate conducting biodegradable scaffolds with improved cell adhesion properties for various cell cultures.  相似文献   

6.
Thermosensitive chitosan hydrogels—renewable, biocompatible materials—have many applications as injectable biomaterials for localized drug delivery in the treatment of a variety of diseases. To combat infections such as Staphylococcus aureus osteomyelitis, localized antibiotic delivery would allow for higher doses at the site of infection without the risks associated with traditional antibiotic regimens. Fosfomycin, a small antibiotic in its own class, was loaded into a chitosan hydrogel system with varied beta-glycerol phosphate (β-GP) and fosfomycin (FOS) concentrations. The purpose of this study was to elucidate the interactions between FOS and chitosan hydrogel. The Kirby Bauer assay revealed an unexpected concentration-dependent inhibition of S. aureus, with reduced efficacy at the high FOS concentration but only at the low β-GP concentration. No effect of FOS concentration was observed for the planktonic assay. Rheological testing revealed that increasing β-GP concentration increased the storage modulus while decreasing gelation temperature. NMR showed that FOS was removed from the liquid portion of the hydrogel by reaction over 12 h. SEM and FTIR confirmed gels degraded and released organophosphates over 5 days. This work provides insight into the physicochemical interactions between fosfomycin and chitosan hydrogel systems and informs selection of biomaterial components for improving infection treatment.  相似文献   

7.
Present study is focused on the preparation of two layers composite wound dressing for drug release. The outer layer is made of hydrogel which contains of drug and the core layer is made of fabric. The two layers structure of composite dressing is formed by grafting of polyacrylamide-co-acrylic acid hydrogel on cotton fabric using ammonium per sulphate (APS) as chemical initiator and polyethylene glycol (PEG) as crosslinker. The major factors affecting graft copolymerization of hydrogel on cotton fabric are optimized by varying concentration of monomers & initiator, reaction temperature and addition time of crosslinker. Maximum grafting of hydrogel is obtained at 5 % (w/v) APS and 15 % acrylamide/acrylic acid (1:1 w/w ratio) concentration. The FTIR spectra of composite dressing shows characteristics peak of acrylic acid and acrylamide. The composite wound dressing material is loaded with model drug bovine serum albumin (BSA) and drug release behaviour is studied at different pH. The dressing shows drug release in different pH with maximum release of drug in acidic medium.  相似文献   

8.
The present investigation on chemical constituents of the soft coral Sarcophyton cherbonnieri resulted in the isolation of seven new cembranoids, cherbonolides F–L (1–7). The chemical structures of 1–7 were determined by spectroscopic methods, including infrared, one- and two-dimensional (1D and 2D) NMR (COSY, HSQC, HMBC, and NOESY), MS experiments, and a chemical reduction of hydroperoxide by triphenylphosphine. The anti-inflammatory activities of 1–7 against neutrophil proinflammatory responses were evaluated by measuring their inhibitory ability toward N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced superoxide anion generation and elastase release in primary human neutrophils. The results showed that all isolates exhibited moderate activities, while cherbonolide G (2) and cherbonolide H (3) displayed a more active effect than others on the inhibition of elastase release (48.2% ± 6.2%) and superoxide anion generation (44.5% ± 4.6%) at 30 µM, respectively.  相似文献   

9.
Thermal properties of copolyetherester/silica nanocomposites were examined by using DSC and TGA. The segmented block copolyetheresters with various hard segment structures and hard segment contents (HSC) were synthesized and their silica nanocomposite films were prepared by solution casting method. The nano-sized fumed silica particles were found to act as a nucleating agent of the copolyetheresters. The nanocomposites always showed reduced degree of supercooling or faster crystallization than the corresponding copolyetheresters. The nanocomposites also showed increased hard segment crystallinity except HSC 35 sample which had short hard segment length. In case of 2GT [poly(ethylene terephthalate)] copolyetheresters, which were not developed commercially because of their low crystallization rate, the hard segment crystallinity increased considerably. The copolyetherester/silica nanocomposites showed better thermal stability than copolyetheresters.  相似文献   

10.
The products from the dispersion of nanoscale particulates such as the layered clays or the spherical inorganic minerals within the polymeric matrices are called polymeric nanocomposites. In this paper, we prepared poly(vinyl chloride) (PVC) based nanocomposites containing SiO2-kaolinite by melt compounding. The influence of SiO2-kaolinite on the surface properties of PVC was investigated by the use of various surface analysis techniques including a ttenuated total reflectance spectroscopy (ATR), wide angle X-ray diffractometry (WAXD), atomic force microscopy (AFM), scanning electron microscopy (SEM), electron dispersive X-ray spectrometer (EDX), contact angle measurement (CAM), and reflectance spectroscopy (RS). ATR spectroscopy showed possible interaction between layered kaolinite and PVC at surface. Microscopic methods illustrated an increased surface roughness compared to the pure PVC. Contact angle measurements of the resultant PVC nanocomposites demonstrated that the wettability of substrates depends on the surface interactions between kaolinite layers and PVC matrix. Optical properties of nanocomposite films were finally measured by the aid of reflectance spectrophotometer. It can be seen from optical studies that reflectance values were increased after incorporation of SiO2-kaolinite in nanocomposite.  相似文献   

11.
Background:Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. ALG and PLGA microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of risedronate from PLGA microparticles embedded with ALG was studied as a drug delivery system for sustained release of the drug, which can be used in local administrations. Methods:Risedronate-containing PLGA microparticles were fabricated using double emulsion solvent evaporation technique. Ionic cross-linking method was used to fabricate risedronate-loaded ALG. Risedronate-containing PLGA microparticles were then coated with ALG. The calibration curve of risedronate was traced to measure EE and study the release pattern. SEM imaging was carried out, and cell toxicity was examined using MTT assay. Statistical analysis of data was carried out using SPSS ver. 20 software, via one-way ANOVA and Tukey’s tests. Results:SEM imaging showed open porosities on ALGs. The mean EE of PLGA microparticles for risedronate was 57.14 ± 3.70%. Risedronate released completely after 72 h from ALG, and the cumulative release was significantly higher (p = 0.000) compared to PLGA microspheres coated with ALG, which demonstrated sustained released of risedronate until day 28. Risedronate-loaded ALG showed a significant decrease in gingival fibroblasts cell viability (p < 0.05). Conclusion: Alginate-coated PLGA microspheres could release risedronate in a sustained and controlled way and also did not show cell toxicity. Therefore, they seem to be an appropriate system for risedronate delivery in local applications. Key Words: Alginates, Hydrogels, Polylactic acid-polyglycolic acid copolymer, Risedronic acid  相似文献   

12.
Fucoidans, sulfated polysaccharides from brown algae, possess multiple bioactivities in regard to osteogenesis, angiogenesis, and inflammation, all representing key molecular processes for successful bone regeneration. To utilize fucoidans in regenerative medicine, a delivery system is needed which temporarily immobilizes the polysaccharide at the injured site. Hydrogels have become increasingly interesting biomaterials for the support of bone regeneration. Their structural resemblance with the extracellular matrix, their flexible shape, and capacity to deliver bioactive compounds or stem cells into the affected tissue make them promising materials for the support of healing processes. Especially injectable hydrogels stand out due to their minimal invasive application. In the current study, we developed an injectable thermosensitive hydrogel for the delivery of fucoidan based on chitosan, collagen, and β-glycerophosphate (β-GP). Physicochemical parameters such as gelation time, gelation temperature, swelling capacity, pH, and internal microstructure were studied. Further, human bone-derived mesenchymal stem cells (MSC) and human outgrowth endothelial cells (OEC) were cultured on top (2D) or inside the hydrogels (3D) to assess the biocompatibility. We found that the sol-gel transition occurred after approximately 1 min at 37 °C. Fucoidan integration into the hydrogel had no or only a minor impact on the mentioned physicochemical parameters compared to hydrogels which did not contain fucoidan. Release assays showed that 60% and 80% of the fucoidan was released from the hydrogel after two and six days, respectively. The hydrogel was biocompatible with MSC and OEC with a limitation for OEC encapsulation. This study demonstrates the potential of thermosensitive chitosan-collagen hydrogels as a delivery system for fucoidan and MSC for the use in regenerative medicine.  相似文献   

13.
Over the last few years, significant research has been conducted in the construction of artificial bone scaffolds. In the present study, different types of polymer scaffolds, such as chitosan-alginate (Chi-Alg) and chitosan-alginate with fucoidan (Chi-Alg-fucoidan), were developed by a freeze-drying method, and each was characterized as a bone graft substitute. The porosity, water uptake and retention ability of the prepared scaffolds showed similar efficacy. The pore size of the Chi-Alg and Chi-Alg-fucoidan scaffolds were measured from scanning electron microscopy and found to be 62–490 and 56–437 µm, respectively. In vitro studies using the MG-63 cell line revealed profound cytocompatibility, increased cell proliferation and enhanced alkaline phosphatase secretion in the Chi-Alg-fucoidan scaffold compared to the Chi-Alg scaffold. Further, protein adsorption and mineralization were about two times greater in the Chi-Alg-fucoidan scaffold than the Chi-Alg scaffold. Hence, we suggest that Chi-Alg-fucoidan will be a promising biomaterial for bone tissue regeneration.  相似文献   

14.
Three complex polyoxygenated diterpenoids possessing uncommon tetradecahydro-2,13:6,9-diepoxybenzo[10]annulene scaffold, namely ximaoornatins A–C (1–3), one new eunicellin-type diterpene, litophynin K (4), and a related known compound, litophynol B (5) were isolated from the South China Sea soft coral Sinularia ornata. The structures and absolute configurations of 1–4 were established by extensive spectroscopic analysis, X-ray diffraction analysis, and/or modified Mosher’s method. A plausible biosynthetic relationship of 1 and its potential precursor 4 was proposed. In a bioassay, none of the isolated compounds showed obvious anti-inflammatory activity on LPS-induced TNF-α release in RAW264.7 macrophages and PTP1B inhibitory effects.  相似文献   

15.
Four new eunicellin-type hirsutalins S–V (1–4), along with a known compound (–)-6α-hydroxy polyanthellin A (5), were isolated from the soft coral Cladiella hirsuta. The structures of the metabolites were determined by extensive spectroscopic analysis. Cytotoxity of compounds 1–5 against the proliferation of a limited panel of cancer cell lines was measured. Anti-inflammatory activity of compounds 1–5 was evaluated by measuring their ability in suppressing superoxide anion generation and elastase release in fMLP/CB-induced human neutrophils.  相似文献   

16.
New four eunicellin-based diterpenoids, krempfielins J–M (1–4) were isolated from the organic extract of a Taiwanese soft coral Cladiella krempfi. The structures of the new metabolites were elucidated on the basis of extensive spectroscopic analysis. The structure of compound 2 is rare due to the presence of the highly oxygenated pattern. Anti-inflammatory activity of 1–6 to inhibit the superoxide anion generation and elastase release in FMLP/CB-induced human neutrophils was also evaluated, and 2 and 4 were shown to possess the ability to inhibit the elastase release.  相似文献   

17.
A novel electrically conductive nanocomposite consisting of poly(N-vinylpyrrolidone) (PVP) modified polyaniline (PANI) and cloisite clay nanoparticles was obtained via insitu polymerization method. The synthesized nanocomposite was characterized using FT-IR, XRD, conductivity measurement and cyclic voltammetry techniques. The electrical conductivity measurements of prepared nanocomposite showed that the nanocomposite is electrically conductive. Also cyclic voltammetry studies revealed that the synthesized nanocomposite is electro active. Electrochemical corrosion studies including open circuit potential measurements and tafel tests were carried out in various corrosive environments to evaluate the anticorrosive property of the nanocomposite coating on iron samples. Results showed that the coating of this nanocomposite on iron was useful in decreasing corrosion current and corrosion rate of iron in comparison with bare iron and pure polyaniline coated samples. A positive shift in corrosion potential and a significant decrease in corrosion current were observed for nanocomposite coated iron samples in sodium chloride 3.5 %, hydrochloric acid 0.1 M and sulfuric acid 0.1 M solutions.  相似文献   

18.
Sponge-derived scalaranes are remarkable sesterterpenoids previously found to exhibit profound inhibitory effects against neutrophilic inflammation. In our current work, we constructed the metabolomic profile of marine sponge Lendenfeldia sp. for the first time using a tandem mass spectrometry (MS/MS) molecular networking approach. The results highlighted the rich chemical diversity of these scalaranes, motivating us to conduct further research to discover novel scalaranes targeting neutrophilic inflammation. MS- and NMR-assisted isolation and elucidation led to the discovery of seven new homoscalaranes, lendenfeldaranes K–Q (1–7), characterized by methylation at C-24, together with five known derivatives, lendenfeldarane B (8), 25-nor-24-methyl-12,24-dioxoscalar-16-en-22-oic acid (9), 24-methyl-12,24,25-trioxoscalar-16-en-22-oic acid (10), felixin B (11), and 23-hydroxy-20-methyldeoxoscalarin (12). Scalaranes 1–4 and 6–12 were assayed against superoxide anion generation and elastase release, which represented the neutrophilic inflammatory responses of respiratory burst and degranulation, respectively. The results indicated that 1–3 and 6–12 exhibited potential anti-inflammatory activities (IC50 for superoxide anion scavenging: 0.87~6.57 μM; IC50 for elastase release: 1.12~6.97 μM).  相似文献   

19.
Background:Solvent casting/particulate leaching is one of the most conventional methods for fabricating polymer/ceramic composite scaffolds. In this method, the solvent generally affects resulting scaffold properties, including porosity and degradation rate. Methods:Herein, composite scaffolds of PLGA/nHA with different percentages of nHA (25, 35, and 45 wt. %) were prepared by the solvent casting/particle leaching combined with freeze drying. The effects of two different solvents, DIO and NMP, on morphology, porosity, bioactivity, degradation rate, and biocompatibility of the resulting scaffolds were investigated. Results:The results revealed that increasing the nHA percentages had no significant effect on the porosity and interconectivity of scaffolds (p > 0.05), whereas altering the solvent from DIO into NMP decreased the porosity from about 87% into 71%, respectively. Moreover, scaffolds of DIO illustrated the high results of cell proliferation compared to those of NMP; the cell viability of GD25 decreased from 85% to 65% for GN25. The findings also indicated that scaffolds prepared by NMP had a higher rate of losing weight in comparison to DIO. Adding nHA to PLGA had a significant effect on the bioactivity of scaffolds (p < 0.05), composite scaffolds with 45 wt % nHA had at least 30% more weight gain compared to the neat polymer scaffolds. Conclusion:The DIO scaffolds have higher rates of porosity, interconnectivity, bioactivity, and biocompatibility than NMP scaffolds due to its high evaporation rate. Key Words: Freeze drying, Porosity, Solvents  相似文献   

20.
The objective of this study is to examine the feasibility of using visible light to form gels from polysaccharide precursors. Hydrogel formation by visible light irradiation would be very beneficial because visible light is a benign light source and ready available when compared with other light sources such as UV. Dextran-methacylate was synthesized and photocrosslinked using (−)-riboflavin as a photoinitiator and L-arginine as a co-initiator under the visible light. The effect of various concentrations of (−)-riboflavin and L-arginine on the photo-crosslinking of dextran-methacrylate hydrogel was investigated. The fabricated hydrogel was characterized by FT-IR and SEM. The photoinitiator [(−)-riboflavin] and co-initiator (L-arginine) as well as dextran precursor are completely biocompatible. The optimum condition for the biocompatible dextran-based hydrogel formation under the harmless light source (visible light) was elucidated in this study. In general, the (−)-riboflavin, 0.01–0.5 %, and L-arginine, 5–20 % of the weight of dextran-methacrylate were the best condition in forming dextran-based hydrogels under the visible light. The three-dimensional hydrogel structure was verified by SEM morphology of swollen hydrogels. Photocrosslinking under the visible light source would enlarge the applications of this type of photocrosslinking in the biomedical area (e.g., eyes or other light-sensitive organs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号