首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Silcretes and associated deep weathering-profiles have been reported in the Cobar area of New South Wales. Re-examination of the relevant field sites and a detailed laboratory study of rock samples showed that siliceous materials outcropping at these locations are bedrock essentially unaltered since Palaeozoic burial and deformation. There is no reason for applying the term silcrete to any of the rock outcrops we have examined. Geomorphic inferences that depend on the presence of silcrete in the Cobar area are therefore open to question.  相似文献   

2.
Abstract

Yields were evaluated three years after applied treatments to determine if responses that were not evident during earlier years eventually occurred. Potassium sulfate was applied to established, non‐irrigated, K deficient trees on fine textured soil by banding, placing in augered holes, adding to the backfilled trenches, and by injecting into the soil. Trenches were dug in the fall beside trees to break roots and ammended during backfilling with K2SO4, dolomite lime or combinations of the two. Additional trees received a heavy compost mulch in the early fall. Trenching treatments were generally detrimental. Trenching alone reduced yield and leaf Ca but increased fruit soluble solids content. Trenching plus K2SO4, trenching and lime, all soil amendments, and mushroom compost elevated leaf K from deficient or below normal to the normal range, but decreased leaf Mg. Most K application techniques eventually increased yield, but simple surface applications of K2SO4 in a narrow band were as effective as other more costly procedures. Mulching treatments appear to be as effective as K additions and produce quicker yield responses. Mushroom composts and alfalfa increased leaf N and yield in two years. Mushroom compost doubled yield even three years after a single application.  相似文献   

3.
The biomass, abundance, species diversity and length-frequency distribution of macrozooplankton and micronekton at a deep-ocean dumpsite southeast of Tasmania, Australia, were compared with those of the surrounding water masses. The dumping of jarosite – a waste product of zinc refining that contains trace quantities of heavy metals – began in 1973. The dumpsite, which typically receives 170,000 tonnes of jarosite per annum, is in an oceanographically, and biologically, dynamic area. Depending on season and large-scale oceanographic effects, the dumpsite can be dominated by high-salinity, warm waters of subtropical origin or low-salinity, cool waters of subantarctic origin. The comparisons of the macrozooplankton and micronekton parameters between water masses, and between the two years of the study (1992, 1993), did not show any changes that could be attributed to the jarosite dumping. Micronekton abundance was significantly lower over the dumpsite in 1992; however, this appears to be due to the presence of a warm-core eddy in the region of the dumpsite in that year. Changes in the regional oceanography between years also appear to account for significantly greater micronekton biomass over the dumpsite in 1993.  相似文献   

4.
Fumigation of field soil with chloropicrin alone or followed by methyl bromide, each at 220Kg·ha?1, released 20–30 parts/106 NH+4-N which persisted for 75 days; such fumigation also doubled the amount of bicarbonate-extractable phosphate 28 days after fumigation. Soil fumigation increased both the vegetative and grain yields as well as increasing the content of N in the grain and the content of K and Cl in the tops at ear emergence. Root growth and the phosphate uptake activity of the roots were increased by soil fumigation.  相似文献   

5.
6.
Five field experiments are described which measured the effect of three sources of nitrogen (N) fertilizer, applied at 45 kg N/ha, on the incidence of take‐all and grain yield of wheat. The N fertilizers were ammonium sulphate, ammonium chloride, and sodium nitrate. Compared with the Nil N treatment, ammonium‐nitrogen fertilizer, either as ammonium sulphate (ASdr) or ammonium chloride (ACdr) drilled with the seed, lowered the severity of take‐all. Sodium nitrate topdressed (SNtd) to the soil surface reduced the severity of take‐all in three of five experiments, while ammonium sulphate topdressed (Astd) reduced the severity in four of the five experiments. Ammonium sulphate and ammonium chloride drilled with the seed were equally effective in reducing the severity of take‐all in three of the five experiments. However, ACdr was more effective than ASdr in reducing the severity of take‐all in one experiment whereas ASdr was more effective than ACdr in another experiment. In these two experiments (1 and 5), the effects of the reduction in take‐all severity between the ASdr and ACdr treatments did not affect grain yield. The results suggest that grain yield losses from take‐all are most severe where wheat plants are deficient in N. Chloride containing fertilizers are unlikely to control take‐all disease of wheat on soils of southwestern Australia.  相似文献   

7.
The effect of host plant infection on the mycorrhizal response of non-host plants was examined in a double pot system. The absence of nutrient transfer from a mature host (sorghum) to a young-non-host (cabbage) indicates the inability of the atypical infection of non-host plants to take up nutrients. However, nutrient transfer between mature and young sorghum plants, possibly through mycelial connections, was observed. The direction of this nutrient transfer seemed to depend on the nutrient status of the nurse plant. Because the nurse plants were grown in P-deficient soil, mature sorghum competed with young sorghum plants. Sorghum infected with vesicular-arbuscular (VA) mycorrhiza was better equipped than non-infected sorghum to compete with young cabbage for soil nutrients.  相似文献   

8.
Journal of Soils and Sediments - Contaminated sediments in rivers, lakes, and harbors around the world result in diminished ecological health, degradation of environmental resources, economic...  相似文献   

9.
Five field experiments measured the effect of three sources of nitrogen (N) fertilizer, applied at 45 kg N/ha, on the incidence of take‐all and grain yield of wheat. The N fertilizers were ammonium sulphate, ammonium chloride and sodium nitrate. Compared with the nil N treatment, ammonium nitrogen fertilizer, either as ammonium sulphate (ASdr) or ammonium chloride (ACdr) drilled with the seed, lowered the severity of take‐all. Sodium nitrate topdressed (SNtd) to the soil surface reduced the severity of take‐all in three of the five experiments, while ammonium sulphate topdressed (AStd) reduced the severity in four experiments. Ammonium sulphate and ammonium chloride drilled with the seed were equally effective in reducing the severity of take‐all in three of the five experiments. However, ACdr was more effective than ASdr in reducing the severity of take‐all in one experiment, whereas ASdr was more effective than ACdr in another experiment. In experiments 1 and 5, the reduction in take‐all severity between the ASdr and ACdr treatments did not affect grain yield. Results suggested that grain yield losses from take‐all are most severe where wheat plants are deficient in N. Fertilizers containing chloride are unlikely to control take‐all disease of wheat on soils of southwestern Australia.  相似文献   

10.
On the high terrace to the north of Akashi City, Sanyo District. th ere is a heavy text ured soil which is charac te rized by the presence of altern ate red and gray bands in lower hor izons (photo.) . This soil is called "Tora-han" Soil as a local name by reason of its morph ological resemblance to “tora” (tiger*). Heavy textured soils which have tiger-like (or zebra-like) mot tlings in lower hor izons are also found in other parts of Japan alm ost excl usively on high ter races , and hav e long attracted th e attent ion of Japanese pedologists.  相似文献   

11.
Alpine and tundra grasslands constitute 7% world terrestrial land but 13% of the total global soil carbon (C) and 10% of the global soil nitrogen (N). Under the current climate change scenario of global warming, these grasslands will contribute significantly to the changing global C and N cycles. It is important to understand the controlling factors on soil N cycling in these ecosystems. To evaluate climate effects on N cycling, soil N mineralization and nitrification rates (0–15 cm) were measured using an in situ closed-top tube incubation across altitudes and positions from 2006 to 2008 in alpine meadows. The data indicated that soil N mineralization and nitrification rates decreased with increasing altitude, but only significantly (P < 0.05) between the lowest and the two higher altitudes. Soil N mineralization and nitrification rates of south-facing slopes were higher than north-facing slopes at each altitude. This suggests that soil temperature and soil water content (WC) were the controlling factors for soil N mineralization and nitrification rates across altitude with soil WC being the most important factors over positions. Soil nitrification rate depended on soil N mineralization rate, and both rates may increase in response to regional warming of the alpine meadow.  相似文献   

12.
In the present study, four high-pressure (HP) treatments (100, 200, 300, and 400 MPa) of 9 min duration were evaluated to assess their effect on the lipid fraction (fat-soluble vitamins and fatty acid profile) of an orange juice-milk and a vegetable beverage. After HP treatment, nonsignificant changes in vitamin D(2) and D(3) contents were observed for both beverages. An increase in vitamin E activity was observed in HP beverages when pressures >100 MPa were applied, mainly due to an increase in α-tocopherol content. Only a small reduction in fat content was found for the orange juice-milk beverage, but no changes were observed for the vegetable beverage. A significant decrease in SFA levels was observed in HP-treated (300-400 MPa) orange juice-milk. With regard to MUFA, a significant increase in oleic acid (C(18:1)) was found in both liquid foods. Nonsignificant differences in the PUFA profiles were observed after HP processing.  相似文献   

13.
14.
Maturity is one of the most important factors associated with the quality evaluation of fruit and vegetables. This work aims to investigate the effect of the maturation process of the olive fruit on the phenolic fraction and fatty acid of irrigated Chétoui cultivar. The phenolic composition was studied by using reverse-phase high-performance liquid chromatography followed by LC-MS and GC-MS analyses and fatty acids by GC. Oleuropein was the major phenolic compound at all stages of ripeness. Unexpectedly, both phenolic compounds hydroxytyrosol and oleuropein exhibited the same trends during maturation. Indeed, the oleuropein levels decreased during the ripening process and were not inversely correlated with the concentrations of hydroxytyrosol. The antioxidant capacity of olive extracts was evaluated by measuring the radical scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the beta-carotene linoleate model system. The IC 50 and AAC values of the olive extracts decreased from 3.68 to 1.61 microg/mL and from 645 to 431, respectively. There was a correlation between the antioxidant activity and the oleuropein concentration. The fatty acid composition was quantified in olive fruit during maturation and showed that fatty acids were characterized by the highest level of oleic acid, which reached 65.2%.  相似文献   

15.
16.
Wang Genxu  Li Yuanshou  Wang Yibo  Wu Qingbo 《Geoderma》2008,143(1-2):143-152
Bearing a total organic carbon (TOC) content of 9.3–10.7 kg C/m2, alpine grassland soils of the Qinghai–Tibet plateau's permafrost region bear a greater organic carbon pool than do grassland soils in other regions of China or than tropical savannah soils. The easily released light fraction organic carbon (LFOC) accounts for 34–54% of the TOC and is particularly enriched in the topsoil (0–0.10 m). The LFOC in the organic carbon pool of alpine cold meadow and alpine cold steppe soils decreased at exponential and quadratic rates, respectively, as the vegetative cover decreased. When the vegetative cover of alpine cold meadows decreased from > 80 dm2/m2 to 60 dm2/m2, the topsoil TOC and LFOC dropped by 20.4% and 38.4%, respectively. Similarly, when the vegetative cover of alpine cold meadow decreased from 50 dm2/m2 to 30 dm2/m2 and < 15 dm2/m2, the topsoil LFOC content dropped by 60% and 86.7%, respectively. Under climatic warming, the degradation of permafrost and vegetation have resulted in serious soil organic carbon (SOC) loss from the carbon pool. Land cover changes that occurred between 1986 and 2000 are estimated to have resulted in a 1.8 Gg C (120 Mg C/yr) loss in SOC, and a concomitant 65% decrease in the LFOC, in the 0–0.30 m soil layer in the Qinghai–Tibet plateau's permafrost regions. Since the region's ecosystems are quite sensitive to global climate changes, if global warming persists, alpine cold grassland ecosystems are expected to further degrade. Hence, the influence of global climatic change on soil carbon emissions from alpine grasslands should receive more attention.  相似文献   

17.
In this study, benthic flux measurements of inorganic nitrogen (i.e., $ {\text{NH}}^{ + }_{4} $ , $ {\text{NO}}^{ - }_{2} $ ?+? $ {\text{NO}}^{ - }_{3} $ ) were made using a batch incubation system at different stations (i.e., shallow sandy macrophyte and unvegetated beds, and deep central mud) over four seasons in Lake Illawarra, NSW, Australia, to study the influence of different primary producers (i.e., seagrasses, microphytobenthos (MPB) and macroalgae) and/or different sediment types (i.e., sand or mud) on the benthic fluxes. In general, nutrient fluxes displayed typical diel variations, with lower flux out of sediments (release) or enhanced uptake by the sediment in the light, due to the photosynthetic activities of the plant-MPB-sediment community in Lake Illawarra during photosynthetic periods. A distinct seasonal pattern of inorganic-N fluxes was also observed (e.g., the marked difference between summers 2002 and 2003). This may be explained by the seasonal variations in the biomass and activity (growing or decay phases) of MPB, seagrass and macroalgae, which may influence their nutrient assimilation and alter the chemical conditions of surface sediments that influence the benthic geochemical processes and thus benthic nutrient fluxes. On an annual basis, unvegetated sediments displayed net DIN effluxes, while seagrass beds showed a net DIN uptake, and the highest DIN uptakes coincided with the largest standing crop of seagrass and/or macroalgae and the highest levels of benthic community production. This may be due to the enhanced denitrification and/or assimilation activity by rooted plants and macroalgae, and the effect is most efficient during periods of net growth (e.g., in Spring 2002).  相似文献   

18.
Abstract

The effect of four consecutive years of tillage method [conventional tillage (CT) or no‐tillage (NT)] and fertilizer N rate (84, 168, 336 kg N·ha‐1·yr) on soil carbon, nitrogen and and gaseous profiles was examined in a Wharton‐Cookport (Aquic Hapludults‐Aquic Fragiudults) silt loam soil in West Virginia cropped to continuous maize (Zea mays L.). At midseason (July) of the last cropping year, soil mineral N profile differences were generally discernible only at the high N (336 kg·ha‐1) rate in the topsoil (0‐ to 30‐cm layer). Ammonium (NH4 +‐N) levels at this time were significantly (p ≤ 0.05) higher under CT, while NO3 ‐N levels were the same under both tillage methods. However, after silage harvest in September NH4 +‐N levels were the same under both tillage systems, while NO3 ‐N levels were significantly higher under CT. Although no significant (p ≥ 0.05) tillage effects were found for TC, the level was increased by ~16% under NT in the surface soil (0 to 15‐cm) layer at the low N (84 kg·ha‐1) rate treatment. Total N (TN) was significantly (p ≤ 0.05) increased under NT compared to CT only in the soil surface layer at the high N rate treatment. Soils under both tillage methods after cropping appeared to be equally well aerated to the deepest layer (60 cm) as O2 levels were near atmospheric concentrations, and no gases commonly associated with more anaerobic environments (CH4, C2H4) were detected. Carbon dioxide (CO2) levels increased 30‐ to 40‐times atmospheric levels in the deepest layers, and were generally higher under NT. The incidence of detectable N2O (‐0.36 × 10 ‐2μg·ml‐1) was two‐ to seven‐times more numerous at the high N rate, and twice as numerous under NT compared to CT. These results generally corroborate previous results for soil mineral N changes as related to tillage method, but not for organic C, N and microbial activity, as has usually been reported, especially for more arid region soils.  相似文献   

19.
This research was conducted to correct the ion of zinc (Zn) deficiencies and to examine the efficiency of foliar Zn application on pear groves along with iron and boron. The treatments consisted of control, soil and foliar applications. Every foliar applied Zn elevated considerably Zn contents of the leaves. But, increases in fruit Zn contents were rather limited as compared to Zn contents of the leaves. It is thought that accumulation of Zn in the fruits was due to movement of Zn from the leaves well-supplied with Zn to the fruits. Therefore, foliar application of Zn should be conducted at least four times at the rate of 0.1% to increase Zn contents in the fruits in terms of human's daily Zn intake. Foliar applications of Zn alone and combined Zn + Fe, Zn + B and Zn + Fe + B applications significantly increased Zn, Fe and B concentrations, respectively, in the pear trees, as well.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号