首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small-scale harvesting equipment system has been and continues to grow in use in forestry operations in some regions in the world. This harvest system can include a range of equipment types, such as feller-bunchers or chainsaws, skidders or farm tractors, and chippers. These machines are generally smaller, lower cost and less productive than larger, more advanced forestry machines. The objective of this project was to investigate the feasibility of a small scale harvesting system that would produce feedstock for a biomass power plant. The system had to be cost competitive. A boom-type feller-buncher, a small grapple skidder and a chipper were tested as a small-scale system. In this study, feller-buncher and skidder productivity was determined to be 10.5 m3 per productive machine hour, and production for the chipper was determined to be 18 m3 per productive machine hour. Production from the system did not reach the desired levels of 4 loads/day (25 m3/load); however, the system was able to produce about 3 loads/day. The results showed that the system currently could fill a roadside van for $16.90/m3, but suggested machine modifications could potentially reduce the system cost to $12.73/m3. Residual stand damage was minimal, especially on flatter ground and not operating on a slash layer. Soil disturbance from the harvesting system was predominantly undisturbed or classified as a shallow disturbance.  相似文献   

2.
The aim of this study was to evaluate the response of soil amendment applications on soil and the foliage nutrient status of a Japanese cypress (Chamaecyparis obtusa Endlicher) plantation established following clear-cutting in a pine-wilt-disease (PWD)-disturbed forest. We established four soil amendment treatments [(compound fertilizer (CF), compound fertilizer + biochar (CFB), compound fertilizer + sawdust (CFS) and a non-treated control treatment] in an 8-year-old Japanese cypress plantation. Soil organic carbon (C) and total nitrogen (N) were not significantly different (P > 0.05) between the soil amendment treatments and the control treatments, whereas extractable phosphorus (P), NH4+, K+, and Mg2+ concentrations were significantly affected by the addition of biochar in CF. The mean soil CO2 efflux rates during the study period were the highest in CFB (0.79 g CO2 m?2 h?1), followed by CFS (0.71 g CO2 m?2 h?1), CF (0.62 g CO2 m?2 h?1), and the control (0.46 g CO2 m?2 h?1) treatments. Foliar N and P concentrations were significantly higher in the CFB than in the control treatments. The results suggest that the addition of biochar in CF can enhance extractable soil nutrients and foliar N and P conditions of Japanese cypress established in a PWD-disturbed forest.  相似文献   

3.
A field-based study was carried out to determine the productivity and production cost of the tree length (TL) and the wood assortment (WA) systems implemented under small-scale forestry conditions in two Scots pine stands in Northern Greece. Tree felling and processing productivity were estimated at 8.64 m3 per productive machine hour (PMH?1) and 10.21 m3 PMH?1, respectively. Wood felling and processing times were strongly dependent on dbh and total tree volume. However, when manual debarking was also considered the productivity rates decreased to 1.96 and 1.43 m3 PMH?1, respectively. Skidding productivity was calculated to be 3.35 m3 PMH?1 for TL and 7.17 m3 PMH?1 for WA, respectively. Strong correlations have been found between the net skidding time and (a) the skidding distance and (b) the load per turn in both wood harvesting systems. Production costs varied greatly, from 19.38 € m?3 up to 44.81 € m?3 of roundwood depending on the harvesting system and the inclusion of debarking. The findings suggest that the WA system is more efficient in terms of productivity and production cost than TL, and that there is a substantial optimization potential. The optimization potential can be encoded in four suggestions: (a) opening up of more forest roads to reduce high skidding times, (b) replacement of manual debarking by mechanical debarking at the sawmill, (c) replacement of old pieces of equipment with newer ones and (d) training of the existing workforce.  相似文献   

4.
Recent re-measurements of silvicultural trials in conifer plantations on nutrient-poor cedar-hemlock (CH) cutovers on northern Vancouver Island have confirmed co-limitation by nitrogen and phosphorus. Repeated fertilization increased volumes of both cedar and hemlock on CH sites (at 2,500 stems ha?1) by about 100 m3 ha?1 relative to unfertilized plots 22 years following initial fertilization, and increased the productivity of regenerating conifers to a level approximating that of neighbouring hemlock-amabilis fir (HA) sites. More surprising was the response to fertilization on the more-productive HA sites. After 22 years, cedar in fertilized HA plots had produced an extra 180 m3 ha?1 compared to unfertilized HA plots, while hemlock had produced an extra 250 m3 ha?1 in fertilized plots (at 2,500 stems ha?1). Thus, contrary to expectations, the greatest volume responses of both hemlock and cedar to fertilization occurred on the good (HA) sites rather than on the poor (CH) sites. Ecological studies of CH and HA sites supported the hypothesis that the poor nutrient supply and productivity of CH sites is a long-term consequence of excessive moisture, and that the two site types bracket a critical ecological threshold of moisture, aeration and redox.  相似文献   

5.
In the Sustainable Forest Management, deadwood is a fundamental substrate for numerous species, and a key factor in carbon and nutrient cycles. The main aim of the paper is to estimate the amount of deadwood in two Calabrian pine forests (Monte Morello in Italy; Xanthi in Greece) characterized by different stand conditions and management practices. The second aim is to compare two different sampling methods to estimate the volume of lying deadwood: the fixed-area sampling (FAS) method and the line intersect sampling (LIS) method. The results show that the Monte Morello peri-urban forest is characterized by a high quantity of deadwood (75.1 m3 ha?1) divided in 80% of lying deadwood, 18% of standing dead trees, and 2% of stumps. The Xanthi peri-urban forest is characterized by a total amount of deadwood of 9.21 m3 ha?1 divided in 34% of lying deadwood, 18% of standing dead trees and 48% of stumps. The mean volume of lying deadwood in Monte Morello estimated using the FAS is 59.91 m3 ha?1, while using the LIS the mean volume is 64.9 m3 ha?1. In the Xanthi, the mean volume of lying deadwood is 3.11 m3 ha?1 using FAS and 5.49 m3 ha?1 using LIS.  相似文献   

6.
Lack of data on water use of key species of drylands constitutes an obstacle to understanding their role in hydrological processes in this environment. To elucidate seasonal variation in water consumption by Vitellaria paradoxa, the dominant species of parklands of the semi-arid areas of West Africa, we’ve measured its transpiration using heat ratio method (HRM) and seven potential explanatory variables. Sap flux was found to be significantly different among years with 0.64, 0.59 and 0.67 L h?1 dm?2 in 2008, 2009 and 2010, respectively. Sap flux was significantly higher in the dry (0.73 L h?1 dm?2) than in the wet season (0.53 L h?1 dm?2). Nighttime sap flux during dry season (0.48 L h?1 dm?2) was significantly higher than that of the wet season (0.20 L h?1 dm?2) and it contributes on average to 26% of daily sap flow with a maximum reaching 49%. The mean transpiration rate per tree was 151 L day?1 and all measured variables except rainfall and soil water content were significantly correlated with sap flux. These correlations were stronger (higher R value) during the rainy than in the dry season. Vapor Pressure Deficit (VPD) explained the highest proportion of sap flux variation and their curve was of parabolic type (R2 = 0.54) indicating that V. paradoxa can probably down-regulate its canopy conductance beyond a certain threshold of VPD, which is about 3 kPa in the present study. Future studies should investigate such hypothesis as well as the impacts of the variation of V. paradoxa transpiration due to climatic variables on hydrological cycles.  相似文献   

7.
This study suggests that Iceland may be able to produce sufficient liquid hydrocarbon fuels from biological sources in the future to substitute the Icelandic 2016 consumption of fossil fuels, by using forest products. The authors evaluate a strategy to put forest on up to 35,000 km2 in Iceland to 2050. The preliminary study shows that Iceland could reach climate neutrality around 2050 and be a significant net carbon sequester for the next 250 years. Approximate estimates suggest that the total forest biomass production could reach about 10 million m3yr?1, comprising 3.1 million m3yr?1 of roundwood, 3.1 million m3yr?1 for generic biomass, and about 4.2 million m3yr?1 woody material for biofuel use. This could result in a net annual carbon dioxide sequestration of 2–2.5 mill ton CO2 yr?1 by 2100. The calculations suggest that such an afforestation and land restoration undertaking would be long term profitable in economic terms and that the payback time would be about 2050. The method applied in this study is that of a static mass balance calculations at different time points into the future. Parallel to this work, a full integrated regional forest production model is being developed and will be applied to this issue.  相似文献   

8.
Extreme droughts can adversely affect the dynamics of soil respiration in tree plantations. We used a severe drought in southwestern China as a case study to estimate the effects of drought on temporal variations in soil respiration in a plantation of Eucalyptus globulus. We documented a clear seasonal pattern in soil respiration with the highest values (100.9 mg C–CO2 m?2 h?1) recorded in June and the lowest values (28.7 mg C–CO2 m?2 h?1) in January. The variation in soil respiration was closely associated with the dynamics of soil water driven by the drought. Soil respiration was nearly twice as great in the wet seasons as in the dry seasons. Soil water content accounted for 83–91% of variation in soil respiration, while a combined soil water and soil temperature model explained 90–99% of the variation in soil respiration. Soil water had pronounced effects on soil respiration at the moisture threshold of 6–10%. Soil water was strongly related to changes in soil parameters (i.e., bulk density, pH, soil organic carbon, and available nitrogen). These strongly influenced seasonal variation in soil respiration. We found that soil respiration was strongly suppressed by severe drought. Drought resulted in a shortage of soil water which reduced formation of soil organic carbon, impacted soil acid–base properties and soil texture, and affected soil nutrient availability.  相似文献   

9.
This study analyses the trade-off between bioenergy production and soil conservation through thinning operations in Norway spruce (Picea abies L. Karst) plantations in Denmark. Thinning operations were evaluated under different regimes and intensities for a complete rotation period of sixty years and for different site qualities (site-classes I–VI). Applying a dynamic forest growth modeling tool, evolution of forest structure was predicted to observe the potentials for biomass production and inevitable soil degradation. Results showed thinning from below, with a higher utilization (maintenance of a minimum basal area of 25 mha?1) could produce more bioenergy. However, these operations require simultaneous severe forest soil degradation. Therefore, the optimum thinning for bioenergy production under preservation constraints was thinning from above with a lower intensity (maintenance of a minimum basal area of 45 m2 ha?1). The ratio of bioenergy win (kWh) to soil-loss (mha?1) was calculated for this regime varying between 74,894 kWh m?3 in a high quality site (site-class I) and 6,516 kWh m?3 in a low quality site (site-class VI) with an average of 44,282 kWh m?3. However, this could not always preserve the highest amount of growing stock essential for natural dynamics of forest ecosystem with an exception of the low quality sites (site-class VI). Thus, when aiming at bioenergy production through thinning operations, trade-offs with soil conservation and growing stock preservation should be regarded to prevent environmental degradation.  相似文献   

10.
A survey of harvesting contracts was conducted in the Alpine regions of France and Italy. The main goal was to produce a benchmark for the harvesting contract rates in the area that may guide forest owners and logging contractors when making their harvesting decisions. The sample included 443 contracts, evenly distributed between France and Italy. The mean tract size was 9.17 ha, while the mean lot size was slightly larger than 500 m3 under bark (ub). Mean removal intensity varied from 70 to 120 m3 ub ha?1, depending on country and harvesting technique (i.e. ground-based or cable-yarder based). Mean contract rate was 35€ m?3 ub, but individual contract rates varied significantly between countries and for different harvest techniques. Regression analysis showed that contract rate was strongly affected by tree size, extraction distance and harvest technique. Contrary to expectation, neither tract size nor lot size had any effect on contract rate. This may be explained by the widespread use of mobile operations that are specifically designed for handling small lots and incur minimum relocation cost. The technical factors explored in the study could only explain 40 % of the variability in the dataset, and therefore at least part of the variability must derive from non-technical factors such as local market dynamics and national economics. The study did find significant differences between countries. In particular, ground-based operations were more cost efficient in France, and cable yarder-based operations in Italy.  相似文献   

11.
A hemicellulose hydrolysate containing 19 g L?1 xylose was prepared from the culm of bamboo (Phyllostachys pubescens) by hydrolysis with 3 % sulphuric acid with a liquor to solid ratio of 10 (g g?1) at 121 °C for 1 h. After detoxification of the hydrolysate with a commercially available activated char followed by neutralisation with calcium carbonate, the resulting sugar solution was subjected to fermentation using the yeast, Candida magnoliae. The maximum xylitol production (10.5 g L?1) and the maximum xylitol volumetric productivity (0.42 g L?1 h?1) were attained under agitation set at 400 min?1 and aeration rate of 0.67 vvm (volume of air per volume of medium per minute). According to the results, a suitable control of the oxygen supply permits the xylitol formation from bamboo hemicellulose hydrolysate.  相似文献   

12.
In the Northern and Baltic countries, grey alder is a prospective tree species for short-rotation forestry. Hence, knowledge about the functioning of such forest ecosystems is critical in order to manage them in a sustainable and environmentally sound way. The 17-year-long continuous time series study is conducted in a grey alder plantation growing on abandoned agricultural land. The results of above- and below-ground biomass and production of the 17-year-old stand are compared to the earlier published respective data from the same stand at the ages of 5 and 10 years. The objectives of the current study were to assess (1) above-ground biomass (AGB) and production; (2) below-ground biomass: coarse root biomass (CRB), fine root biomass (FRB) and fine root production (FRP); (3) carbon (C) and nitrogen (N) accumulation dynamics in grey alder stand growing on former arable land. The main results of the 17-year-old stand were as follows: AGB 120.8 t ha?1; current annual increment of the stem mass 5.7 t ha year?1; calculated CRB 22.3 t ha?1; FRB 81 ± 10 g m?2; nodule biomass 31 ± 19 g m?2; fine root necromass 11 ± 2 g m?2; FRP 53 g DM m?2 year?1; fine root turnover rate 0.54 year?1; and fine root longevity 1.9 years. FRB was strongly correlated with the stand basal area and stem mass. Fine root efficiency was the highest at the age of 10 years; at the age of 17 years, it had slightly reduced. Grey alder stand significantly increased N and Corg content in topsoil. The role of fine roots for the sequestration of C is quite modest compared to leaf litter C flux.  相似文献   

13.
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares natural forest with nearby shaded cacao agroforests for all major above and belowground biomass C pools (n = 6 plots) and net primary production (n = 3 plots). Total biomass (above- and belowground to 250 cm soil depth) in the forest (approx. 150 Mg C ha?1) was more than eight times higher than in the agroforest (19 Mg C ha?1). Total net primary production (NPP, above- and belowground) was larger in the forest than in the agroforest (approx. 29 vs. 20 Mg dry matter (DM) ha?1 year?1), while wood increment was twice as high in the forest (approx. 6 vs. 3 Mg DM ha?1 year?1). The SOC pools to 250 cm depth amounted to 134 and 78 Mg C ha?1 in the forest and agroforest stands, respectively. Replacement of tropical moist forest by cacao agroforest reduces the biomass C pool by approximately 130 Mg C ha?1; another 50 Mg C ha?1 may be released from the soil. Further, the replacement of forest by cacao agroforest also results in a 70–80 % decrease of the annual C sequestration potential due to a significantly smaller stem increment.  相似文献   

14.
We derived a formula for estimating the relationship between stem carbon weight and stem volume, which was calculated from DBH and tree height using a combination of stem analysis and soft X-ray densitometry. The results indicate carbon weight in a 33-year-old coastal Japanese black pine (Pinus thunbergii) forest is approximately 68,186 kg ha?1 in Yamagata Prefecture and 38,253 kg ha?1in a 42-year-old black pine forest in Hokkaido Prefecture, Japan. Also, age-related changes in the stem density following oven-drying of samples of black pine trees are small: the oven-dried density (hereafter “density”) of black pine trees in the two locations mentioned above were 425.6 (kg m?3) and 523.2 (kg m?3) respectively, which is comparable to the density (converted from basic density) of black pine of Land Use, Land-Use Change and Forestry (LULUCF) (533 kg m?3). When compared with the carbon weight by the oven-dried density of LULUCF, the carbon weights calculated from each density were 27 % lower in Yamagata and 6 % lower in Hokkaido. This difference directly affects carbon weight for large-scale estimation and thus can create an error at a regional scale. This methodology can contribute to the management of forests acting as carbon sinks.  相似文献   

15.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

16.
A provenance test was initiated in spring 2002 at the New Mexico State University Agricultural Science Center at Farmington to examine the adaptability of various hybrid poplar (Populus spp.) crosses to the high elevation, semi-arid conditions of this region of the Southwestern United States. Ten crosses of P. deltoides, P. maximowiczii, P. nigra and P. trichocarpa obtained from nurseries in the Pacific Northwest were grown in replicates (3 plots × 16 trees) under drip irrigation programmed to match tree evapotranspiration (ET) rates. By the end of year 10, six crosses had maintained a 90 % or higher survival rate and had an average wood volume of 246 m3 ha?1. The P. deltoides × P. nigra (P. × canadensis) clone OP-367 surpassed a ten-year commercial target of 25-cm diameter at breast height (DBH) after eight seasons, and by the end of 2011 attained a DBH of 28.0 cm, height of 19.9 m and wood volume of 473 m3 ha?1. Results suggest that hybrid poplar production is possible in this type of semi-arid environment using appropriate germplasm and drip irrigation regimes scheduled according to tree ET demand.  相似文献   

17.
Downed and standing deadwood (DW) is a key resource for maintaining forest biodiversity. Although extreme events such as windthrow and fires produce large quantities of DW, this substrate is often drastically reduced by logging activities. To elucidate the respecting consequences of salvage-logging, we assessed both quantity and quality of storm-derived DW (storms Vivian 1990 and Lothar 1999) in Swiss forests using a sample of 90 windthrow sites with ≥3 ha complete windthrow and at elevations ranging from 350 to 1,800 m a.s.l. The majority had been salvage-logged (SL) a few years after the windthrow. On each site, we recorded DW amount and quality on six circular sample plots 20 or 50 m2 in size. DW volume on SL sites was surprisingly high, with 76.4 m3 ha?1 on average 20 years after Vivian and 73.8 m3 ha?1 10 years after Lothar. In comparison, DW volumes on unsalvaged sites, that is, with no post-windthrow intervention (NI), amounted to 270 m3 ha?1. A wide variety of wood decay stages and diameter classes (10 to ≥70 cm) was found on both NI and SL sites, suggesting considerable habitat diversity for DW-associated species irrespective of the treatment. The considerable amounts of DW left after salvage-logging distinctly exceed the minimum DW volumes in forest stands proposed by Müller and Bütler (Eur J For Res 129: 981–992, 2010) in a conservation context, which demonstrates the importance of wind disturbance for biodiversity. Further studies should quantify DW of individual tree species, since habitat requirements are species-specific.  相似文献   

18.
The impacts of wood harvest, biomass removal and inter-rotation site management practices on productivity of Acacia mangium in South Sumatra were studied over 12 years across successive rotations. The productivity measured as MAI increased from 29.4 m3 ha?1 year?1 in the first to 48.0 m3 ha?1 year?1 in the second rotation. Whole tree harvesting (total stem, branches and leaves) caused a 21 % reduction in volume compared to harvesting merchantable wood alone in the next rotation. The rates of nutrients accumulation in trees were highest during the first year of growth, and declined from age 2 years. Significant amounts of nutrients were recycled through litter fall from 1 year after planting. Results highlight the importance of management which promotes nutrient supply on stand growth. Removal of slash and litter lowered soil pH, by about 0.1 unit. A small reduction was also found in soil organic carbon and nitrogen in the top soil during the first 3–4 years but values returned to pre-harvest levels by the end of the rotation. Extractable soil phosphorus and exchangeable cations decreased by the end of second rotation but these measures underestimate the nutrient pools available for A. mangium. These findings along with results from other studies have helped to implement operations which promote conservation of site resources for sustainable production in the region.  相似文献   

19.
We investigated the dynamics of litterfall and litter decomposition of Sasa dwarf bamboo (Sasa senanensis) and trees to clarify the characteristics of organic matter and nitrogen cycling between plant and soil in a natural cool-temperate mixed forest ecosystem dominated by an understory vegetation of Sasa. Mean annual Sasa litterfall over the 3-year study period was 164 g m?2 year?1, which accounted for approximately 29% of total litterfall. Litter decomposition of Sasa leaf and Sasa culm was significantly slower than that of tree leaf during first and second years. The slow decomposition rates of both Sasa litter types were caused by a significantly higher silicate than in tree leaf. Nitrogen concentration in litter increased as decomposition progressed, especially in Sasa leaf and tree leaf. As a result of the slow decomposition of both Sasa litter types, 111 and 73% of nitrogen to the initial amounts were retained in Sasa leaf and Sasa culm after 3 years, respectively. The amounts of retained nitrogen in Sasa leaf, Sasa culm, and tree leaf after 3 years were 1.29, 0.47, and 3.92 g N m?2, respectively, indicating that the differences of litter decomposition rates among the litter types influence on the nitrogen cycling in forest ecosystem through the differences of the nitrogen release from litter.  相似文献   

20.
Some land-use systems in Saskatchewan, Canada include the nitrogen-fixing trees buffaloberry (Shepherdia argentea Nutt.), caragana (Caragana arborescens Lam.) and sea buckthorn (Hippophae rhamnoides L.). These species provide various ecological functions such as ameliorating soil moisture, light and temperature but little work has been done quantifying biological nitrogen fixation by these species. Greenhouse experiments were conducted to quantify N2-fixation using the 15N natural abundance and the 15N dilution methods. Buffaloberry failed to form nodules in all but one of the four replicates in the natural abundance experiment. Using the 15N dilution method, the percentage of N derived from atmosphere (%Ndfa) in the shoot of buffaloberry averaged 64 %. For caragana, the mean  %Ndfa was 59 and 65 % and seabuckthorn was 70 and 73 % measured using the natural abundance and dilution methods, respectively. Because of large variability in biomass production between plants grown in the natural abundance experiment and the dilution experiment, the amounts of N2 fixed also were very variable. Buffaloberry fixed an average of 0.89 g N m?2; the average for caragana ranged from 1.14 to 4.12 g N m?2 and seabuckthorn ranged from 0.85 to 3.77 g N m?2 in the natural abundance and dilution experiments, respectively. This corresponds to 16 kg N ha?1 year?1 for buffaloberry; an average of 15–73 kg N ha?1 year?1 in caragana and 11–67 kg N ha?1 year?1 in seabuckthorn. The substantial amounts of N2 fixed by these species indicate that they have the potential to contribute to the overall N balance in land-use systems in which they are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号