首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased climatic variability, including extended periods of drought stress, may compromise on the health of forest ecosystems. The effects of defoliating pests on plantations may also impact on forest productivity. Interactions between climate signals and pest activity are poorly understood. In this study, we examined the combined effects of reduced water availability and defoliation on maximum photosynthetic rate (A(sat)), stomatal conductance (g(s)), plant water status and growth of Eucalyptus globulus Labill. Field-grown plants were subjected to two water-availability regimes, rain-fed (W-) and irrigated (W+). In the summer of the second year of growth, leaves from 75% of crown length removed from trees in both watering treatments and physiological responses within the canopies were examined. We hypothesized that defoliation would result in improved plant water status providing a mechanistic insight into leaf- and canopy-scale gas-exchange responses. Defoliated trees in the W+ treatment exhibited higher A(sat) and g(s) compared with non-defoliated trees, but these responses were not observed in the W- treatment. In contrast, at the whole-plant scale, maximum rates of transpiration (E(max)) and canopy conductance (G(Cmax)) and soil-to-leaf hydraulic conductance (K(P)) increased in both treatments following defoliation. As a result, plant water status was unaffected by defoliation and trees in the defoliated treatments exhibited homeostasis in this respect. Whole-plant soil-to-leaf hydraulic conductance was strongly correlated with leaf scale g(s) and A(sat) following the defoliation, providing a mechanistic insight into compensatory up-regulation of photosynthesis. Above-ground height and diameter growth were unaffected by defoliation in both water availability treatments, suggesting that plants use a range of responses to compensate for the impacts of defoliation.  相似文献   

2.
Increased photosynthetic rates following partial defoliation may arise from changes in leaf biochemistry, water relations or nutrient status. Twelve-month-old field-grown Eucalyptus globulus Labill. seedlings were pruned from below to reduce the green crown depth by 50 (D50) or 70% (D70). Photosynthetic responses to light and CO2 concentration were examined before and one, three and five weeks after partial defoliation. One week after defoliation, photosynthetic rates were greater in seedlings in the D50 (21 micromol m(-2) s(-1)) and D70 (23 micromol m(-2) s(-1)) treatments than in control seedlings (15 micromol m(-2) s(-1)); however, there was little difference in photosynthetic rates between partially defoliated seedlings and control seedlings after 5 weeks. An analysis of the sensitivity of photosynthesis to biochemical parameters revealed that the transient increase in photosynthetic rate in response to partial defoliation was largely a function of the maximum rate of carboxylation (85-87%) and the maximum rate of RuBP regeneration (55-60%) rather than stomatal conductance (12-13%). Nitrogen increased in leaves following partial defoliation (increases of 0.6 and 1.2 g m(-2) for D50 and D70, respectively), but was accumulated in a non-photosynthetic form (i.e., there was no increase in nitrogen concentration of Rubisco or chlorophyll). Increased photosynthetic rates immediately following partial defoliation were primarily a result of increased activity rather than amount of photosynthetic machinery. There was no evidence that phosphorus was responsible for the increase in photosynthetic rates after partial defoliation.  相似文献   

3.
Six-month-old Eucalyptus globulus Labill. seedlings were grown in sand culture irrigated with a nutrient solution containing 6.0 mol N m(-3) for 3 months (November-January). Before rapid growth began in February, seedlings were repotted and irrigated with either 6.0 mol N m(-3) (High-N treatment) or 1.0 mol N m(-3) (Low-N treatment). Seedlings were analyzed during the subsequent flush of growth to determine the role of old leaves, and in particular the leaf protein Rubsico, as a source of N for new leaf growth. During spring growth, the N content of old leaves of High-N seedlings decreased with decreasing leaf dry weight, although there was no change in leaf number. In High-N seedlings, the net loss of N from old leaves provided less than 10% of the N used for new leaf growth, and the new leaves quickly became the dominant sink for N. In contrast, in Low-N seedlings, the net loss of N from old leaves provided 44% of the N used for new leaf growth. During the period of spring growth, the amount of soluble proteins recovered from old leaves of Low-N seedlings dropped, but there was no change in the content of either Rubisco or chlorophyll. The photosynthetic capacity of old leaves remained constant throughout the study period, and there was no evidence that N was remobilized from Rubisco.  相似文献   

4.
Biophysical variables influencing the expansion of plant cells (yield threshold, cell wall extensibility and turgor) were measured in individual Eucalyptus globulus leaves from the time of emergence until cessation of growth. Leaf water relations variables and growth rates were determined as relative humidity was changed on an hourly basis. Yield threshold and cell wall extensibility were estimated from plots of leaf growth rate versus turgor. Cell wall extensibility was also measured by the Instron technique, and yield threshold was determined experimentally both by stress relaxation in a psychrometer chamber and by incubation in a range of polyethylene glycol solutions. Once emerging leaves reached approximately 5 cm(2) in size, increases in leaf area were rapid throughout the expansive phase and varied little between light and dark periods. Both leaf growth rate and turgor were sensitive to changes in humidity, and in the longer term, both yield threshold and cell wall extensibility changed as the leaf aged. Rapidly expanding leaves had a very low yield threshold and high cell wall extensibility, whereas mature leaves had low cell wall extensibility. Yield threshold increased with leaf age.  相似文献   

5.
James SA  Bell DT 《Tree physiology》2000,20(15):1007-1018
Light availability strongly affects leaf structure of the distinctive ontogenetic leaf forms of Eucalyptus globulus Labill. ssp. globulus. Late-maturing plants from St. Marys, Tasmania and early maturing plants from Wilsons Promontory, Victoria (hereafter referred to as Wilsons Prom.) were grown for 9 months in 100, 50 or 10% sunlight. Growth, biomass and leaf area were significantly reduced when plants were grown in 10% sunlight. Provenance differences were minimal despite retention of the juvenile leaf form by the Tasmanian plants throughout the study. The time taken for initiation of vegetative phase change by the Wilsons Prom. saplings increased with decreasing light availability, but the nodal position of change on the main stem remained the same. Both juvenile and adult leaves remained horizontal in low light conditions, but became vertical with high irradiance. Leaf dimensions changed with ontogenetic development, but were unaffected by light availability. Juvenile leaves retained a dorsiventral anatomy and adult Wilsons Prom. leaves retained an isobilateral structure despite a tenfold difference in light availability. Stomatal density and distribution showed ontogenetic and treatment differences. At all irradiances, juvenile leaves produced the smallest stomata and adult leaves the largest stomata. Amphistomy decreased with decreasing irradiance. Detrended, correspondence analysis ordination highlighted the structural changes influenced by ontogenetic development and light availability. Adult leaves had characteristics similar to the xeromorphic, sun-leaf type found in arid, high-light conditions. Although juvenile leaves had characteristics typical of mesomorphic leaves, several structural features suggest that these leaves are more sun-adapted than adult leaves.  相似文献   

6.
Pearson M 《Tree physiology》1995,15(3):207-210
To study the effects of a low concentration of ozone on growth and gas exchange in Eucalyptus globulus Labill. seedlings, ozone was applied for 37 days at a concentration of 50 ppb for 7 h daily under conditions of low light (250 micro mol m(-2) s(-1) (PAR)) and controlled temperature (20 degrees C). The seedlings exhibited extreme sensitivity to ozone. The ozone treatment reduced total plant biomass but had no effect on the partitioning of assimilate. Photosynthesis, stomatal conductance and internal CO(2) concentration were all reduced by ozone. The decline in photosynthesis was partly the result of direct effects of ozone on the stomata.  相似文献   

7.
Eucalyptus globulus Labill. seedlings grown under field conditions in Portugal were watered either daily (control) or every 6 days (drought-treated). Relative to those of control plants, rates of leaf production and leaf biomass accumulation were reduced by almost half in drought-treated plants. However, whereas expansion of new leaves on control plants slowed toward the end of the 30 day experiment, expansion of leaves of the same age on drought-treated plants accelerated as a change in weather conditions resulted in midday plant water potentials above -3.0 MPa. In plants that were left unwatered until they wilted and were then watered daily, expansion of the fifth leaf pair from the apex was slower than that of the same pair of leaves of plants watered daily throughout; but it continued for about twice as long and resulted in the same final leaf area. Drought treatment also caused a substantial reduction in the rate of leaf production, which, in part, accounted for the effect of drought on leaf biomass production. In a greenhouse study, witholding water for 15 days had only a slight effect on the length or width of adaxial epidermal cells, and the effect was quickly reversed on rewatering.  相似文献   

8.
Adventitious rooting is essential for vegetative propagation of woody species. We studied the effects of auxin and light on the development of adventitious roots in cuttings obtained from seedlings of Eucalyptus saligna Smith and E. globulus Labill in an attempt to characterize the adventitious rooting process and identify factors controlling rhizogenesis. Root development was scored as rooting percentage, root density (roots per rooted cutting), mean rooting time and root length. In both species, rooting time was reduced in the presence of auxin. Cuttings from 2-month-old E. saligna seedlings were responsive to lower auxin concentrations than comparable cuttings from E. globulus seedlings. Cuttings from 3-month-old E. saligna seedlings rooted promptly and rooting was not significantly affected by light conditions. In contrast, rooting of cuttings from 3-month-old E. globulus seedlings exhibited recalcitrant behavior and no roots were formed if illuminated during the root formation phase. Effective root regeneration of E. globulus cuttings was obtained by a 4-day exposure to 10 mg l(-1) IBA and culture in darkness during the root formation step. Loss of rooting capacity with seedling age was more pronounced in E. globulus than in E. saligna. The possibility of switching adventitious rooting off and on by manipulating light regime and exogenous auxin supply in E. globulus, and the constitutive nature of rooting in E. saligna may provide useful models for examining the rooting process at the biochemical and molecular levels in Eucalyptus.  相似文献   

9.
Thirty families of Eucalyptus globulus L., established in a first-generation open-pollinated progeny test, were evaluated for the production of heartwood. Five trees of each family were harvested at 9 years of age, total tree height was measured and a cross-sectional disc was removed at 25 % stem height to estimate the amount of heartwood. The heartwood proportion of the stemwood cross-sectional area averaged 41 % with significant between-family variation (P = 0.016) ranging from 27 to 53 %. There were also important within-family differences with coefficients of variation of the mean between 4 and 48 %. Moderate heritability values were obtained for heartwood diameter and proportion (h 2 = 0.31 and 0.23, respectively) but low estimates were found for sapwood width (h 2 = 0.17). Strong positive genetic and phenotypic correlations of heartwood diameter were found with stem DBH and with heartwood proportion. Both correlation estimates indicated that larger trees tended to have more heartwood. The results indicate that there is an opportunity to reduce heartwood content in E. globulus through selection and breeding.  相似文献   

10.
Mixtures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman are twice as productive as E. globulus monocultures growing on the same site in East Gippsland, Victoria, Australia, possibly because of increased nitrogen (N) availability owing to N(2) fixation by A. mearnsii. To investigate whether N(2) fixation by A. mearnsii could account for the mixed-species growth responses, we assessed N(2) fixation by the accretion method and the (15)N natural abundance method. Nitrogen gained by E. globulus and A. mearnsii mixtures and monocultures was calculated by the accretion method with plant and soil samples collected 10 years after plantation establishment. Nitrogen in biomass and soil confirmed that A. mearnsii influenced N dynamics. Assuming that the differences in soil, forest floor litter and biomass N of plots containing A. mearnsii compared with E. globulus monocultures were due to N(2) fixation, the 10-year annual mean rates of N(2) fixation were 38 and 86 kg ha(-1) year(-1) in 1:1 mixtures and A. mearnsii monocultures, respectively. Nitrogen fixation by A. mearnsii could not be quantified on the basis of the natural abundance of (15)N because such factors as mycorrhization type and fractionation of N isotopes during N cycling within the plant confounded the effect of the N source on the N isotopic signature of plants. This study shows that A. mearnsii fixed significant quantities of N(2) when mixed with E. globulus. A decline in delta(15)N values of E. globulus and A. mearnsii with time, from 2 to 10 years, is further evidence that N(2) was fixed and cycled through the stands. The increased aboveground biomass production of E. globulus trees in mixtures when compared with monocultures can be attributed to increases in N availability.  相似文献   

11.
用蓝桉(Eucalyptusglobulus)离体芽器官诱导培养,分化形成丛生芽,年繁殖系数3 ̄(12)。0.1~0.5mg/L的6-BA或0.5~0.8mg/L的KT诱导外植体(带节茎段)腋芽萌动的效果最佳,诱导率分别达80.3%和81.5%。1.5~20mg/L的6~BA或20~2.5mg/L的KT分别与0.5~1.0mg/L的NAA组合,对于促进腋芽分化形成丛生芽及继代培养中芽的增殖具有最佳效果。培养基中的无机盐浓度、蔗糖含量对蓝桉试管苗的生根具有显著影响;IBA促进蓝桉试管苗的生根。至目前为止,在1/2MS无机盐培养基+IBA1.2~1.4mg/L+S5g/L中诱导生根,生根率最高可达26.4%。  相似文献   

12.
13.
蓝桉、直干桉综合丰产技术试验示范   总被引:3,自引:0,他引:3  
试验林采用正交设计,因素为树种、整地方式、密度、施肥,各因素取3个水平,3次重复。用生长量、生物量与投入产出进行评价。试验结果:3.5年生蓝桉、直干桉幼林最佳处理平均高9.5m,平均胸径8.9cm,每hm2蓄积量70.5126m3,最佳处理比最差处理树高大28.4%,胸径大34.9%,蓄积量大183%。用已取得的技术成果营造的示范林,3.5年生平均高9.8m,平均胸径6.5cm,累计产桉叶2.43万kg/hm2,3年生左右,通过桉油及薪柴的收入可以回收全部造林及加工成本。  相似文献   

14.
Seedlings of Eucalyptus grandis Hill ex Maiden, E. pilularis Smith and E. gummifera (Sol. ex Gaertner) Hochr. were grown in solution culture with 100 micromol phosphorus (P). After eight weeks, half of the seedlings were transferred to solution cultures containing 1 micromol P. After a further four weeks, growth, net photosynthesis and foliar P and nitrogen (N) concentrations were measured. The seeds of E. grandis came from a relatively fertile site and those of the other two species from phosphorus-deficient sites. Growth and net photosynthesis did not change in E. pilularis subjected to the low-P treatment, whereas in E. grandis, and to a limited extent in E. gummifera, the low-P treatment resulted in an increase in net photosynthesis that was associated with higher foliar N concentrations (especially protein-N), possibly as a result of nitrogen being retranslocated from the roots. In response to the low-P treatment, leaf phosphorus concentration was reduced by 50-60% in E. grandis and E. pilularis and by 20-30% in E. gummifera. Of the chemical fractions examined, the greatest decrease occurred in the inorganic-P pool. The data suggest that photosynthesis is not limited by leaf phosphorus concentrations typical of those found in Eucalyptus seedlings growing on phosphorus-deficient sites.  相似文献   

15.
A significant and well-supported hypothesis is that increased growth following nitrogen (N) fertilization is a function of the relationships among photosynthesis, tissue N content and the light environment-specifically, the within-canopy allocation of N among leaves and the within-leaf allocation of N between Rubisco and chlorophyll. We tested this hypothesis in a field trial that included annual applications of N,P,K fertilizer (from planting) to a Eucalyptus globulus Labill. plantation growing on uniform leached sands. Growth of 4-year-old E. globulus increased significantly in response to fertilization. Leaf N and phosphorus concentrations were 0.1-0.5 g m(-2) and 0.4-0.5 g m(-2) higher in fertilized trees compared to unfertilized trees, respectively. Stomatal conductance (g(s)) at the maximum photosynthetic rate (A(max)) was between 0.2 and 0.4 mol m(-2) s(-1) higher in fertilized trees, but A(max) and the concentration of Rubisco (Rub(a)) were unaffected by fertilization. This seeming paradox, where there was no response of A(max) to fertilization despite increases in g(s) and leaf N concentration, was explained by reduced in vivo specific activity of Rubisco in fertilized trees. Acclimation to light, measured by redistribution of N between Rubisco and chlorophyll, was unaffected by fertilization. Distribution of leaf N followed irradiance gradients, but A(max) did not. Maximum photosynthetic rate was correlated with leaf N concentration only in unfertilized trees. These findings indicate that the relationships among photosynthesis, N and the light environment in E. globulus are affected by N,P,K fertilization.  相似文献   

16.
This paper represents the first part of the results from a glasshouse experiment designed to compare the competition of ECM and VAM fungi on root colonization and effects on growth of two Eucalyptus species (E.globulus and E.urophylla).One ECM fungus(Laccaria lateritia) and three VAM fungi belonging to genera Glomus,Acaulospora and Scutellospora,along with field soil as well,were used to inoculate Eucalyptus seedlings alone or in combination.Both ECM and VAM fungi colonized and formed mycorrhizal associations on roots of inoculated seedlings,though infective rates of VAM and ECM tips per meter varied according to inoculant fungi and plant ages. There were some regressive interactions for colonization between the two fungi,as a general trend for ECM root colonization levels to increase with time at the expense of VAM colonization was observed during 16 weeks. The effect of phosphorus levels in soils on mycorrhizal formation was discussed.  相似文献   

17.
本项研究历时4年,研究结果显示,营造蓝桉纯林会引起林地土壤肥力明显降低,有机质、全N、有效N、P、K、交换性Ca2+、Mg2+等7项指标均直接受影响。蓝桉人工林,经造林初期林地施肥能提高其生长量,但不能阻止林地土壤肥力下降。由于施肥促进了林木的生长,故也加强了对土壤肥力的消耗。  相似文献   

18.
The effects of simulated acid mist treatment on net photosynthesis were determined on Eucalyptus globulus trees. Net assimilation decreased for all the three levels but after 3—4 days recovered only in the pH 3.5 one. Acidity effects are discussed in terms of morphological change to the leaves and as alteration of stomatal and mesophyll resistances. 1 Research work supported by C.N.R., Italy. Special grant I.P.R.A. sub-project 1. paper N. 2014  相似文献   

19.
In August 1990, a 2-ha plantation was established in an area where rainfall (about 515 mm year(-1)) was insufficient to meet evaporative demand. On nine occasions between September 1991 and April 1993, pressure-volume curves were constructed for irrigated and rainfed Eucalyptus globulus ssp. globulus Labill. and E. nitens (Deane and Maiden) Maiden trees. During the experiment, rainfed trees experienced six periods when predawn water potential was significantly lower than that of irrigated trees. In early spring of 1991 and 1992, osmotic potentials at full turgor and turgor loss point in the irrigated E. nitens were significantly lower than at other times of the year, probably because of winter hardening. Water stress reduced osmotic potential and increased bulk elastic modulus in E. nitens, whereas the reverse occurred in E. globulus. However, treatment differences with respect to changes in osmotic and elastic properties were commonly overshadowed by interspecific differences. These were most apparent at the end of the sixth period of water stress when osmotic potentials at full and zero turgor were significantly higher and bulk elastic modulus and relative water content at turgor loss point were significantly lower in E. globulus than in E. nitens. We conclude that the drought-tolerance responses of E. globulus make it a more suitable species than E. nitens for establishment on sites where moderate water stress is experienced.  相似文献   

20.
The genus Mycosphaerella Johanson contains many pathogens capable of causing a severe impact on the growth of susceptible eucalypt species. The lack of knowledge about which species are present in Tasmania and their potential risk to the plantation industry prompted this study into the Mycosphaerella species occurring on Eucalyptus globulus and Eucalyptus nitens plantations in Tasmania. A total of 36 plantation and five road verge sites of E. globulus and E. nitens were sampled. Five Mycosphaerella species and three species from associated anamorph genera were isolated and identified in Tasmania; Mycosphaerella nubilosa, Mycosphaerella cryptica, Mycosphaerella tasmaniensis, Mycosphaerella grandis, Mycosphaerella vespa, Coniothyrium ovatum, Sonderhenia eucalypticola and Sonderhenia eucalyptorum. The most frequently isolated species with the highest incidence and severity of infection were M. cryptica and M. nubilosa. These two species appear to have the greatest potential to damage juvenile eucalypt plantations in Tasmania. A link between Mycosphaerella vespa and Coniothyrium ovatum is described for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号