首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Grazed grassland management regimes can have various effects on soil fauna. For example, effects on earthworms can be negative through compaction induced by grazing animals, or positive mediated by increases in sward productivity and cattle dung pats providing a food source. Knowledge gaps exist in relation to the behaviour of different earthworm species i.e. their movement towards and aggregation under dung pats, the legacy effects of pats and the spatial area of recruitment. The present study addressed these knowledge gaps in field experiments, over 2 years, using natural and simulated dung pats on two permanent, intensively grazed pastures in Ireland.

Results

Dung pats strongly affected spatial earthworm distribution, with up to four times more earthworms aggregating beneath pats, than in the control locations away from pats. In these earthworm communities comprising 11 species, temporally different aggregation and dispersal patterns were observed, including absence of individual species from control locations, but no clear successional responses. Epigeic species in general, but also certain species of the anecic and endogeic groups were aggregating under dung. Sampling after complete dung pat disappearance (27 weeks after application) suggested an absence of a dung pat legacy effect on earthworm communities. Based on species distributions, the maximum size of the recruitment area from which earthworms moved to pats was estimated to be 3.8 m2 per dung pat. Since actual grazing over 6 weeks would result in the deposition of about 300 dung pats per ha, it is estimated that a surface area of 1140 m2 or about 11% of the total grazing area can be influenced by dung pats in a given grazing period.

Conclusions

This study showed that the presence of dung pats in pastures creates temporary hot spots in spatial earthworm species distribution, which changes over time. The findings highlight the importance of considering dung pats, temporally and spatially, when sampling earthworms in grazed pastures. Published comparisons of grazed and cut grasslands probably reached incorrect conclusions by ignoring or deliberately avoiding dung pats. Furthermore, the observed intense aggregation of earthworms beneath dung pats suggests that earthworm functions need to be assessed separately at these hot spots.
  相似文献   

2.
The extent of post-defaecation redistribution of faeces by cattle in a grazed pasture was determined by adding to dung pats a pigment which is fluorescent in ultra-violet light. Traces of faeces which would normally not be detected were located under ultra-violet irradiation at night. More traces were redistributed from dung pats situated in areas where stock congregated than from dung pats in other areas of paddocks. Most traces occurred at distances of up to 2 m from each indicator dung pat treated with the pigment. The area of sward affected by faeces was over 100 times the area of individual dung pats. It is suggested that the distribution of infective parasitic larvae will follow the distribution of the traces rather than simply that of the dung pats. Grazing behaviour may also be affected by contamination of herbage by traces of faeces.  相似文献   

3.
An experiment is described in which steers and wether sheep separately grazed perennial ryegrass swards, managed so that half of each sward had previously been grazed by sheep and half by cattle. The influence of the presence of dung from the same or the other species on grazing patterns and herbage utilization was examined.
Regression analysis of extended sward height along transects laid across dung pats after grazing revealed that the limits of the rejected herbage were more clearly defined around cattle dung than sheep dung when grazed by cattle, whereas there was less distinct avoidance of herbage around both cattle and sheep dung when grazed by sheep. As grazing proceeded there was a progressive movement of animals from the half of the plot previously grazed by the same species to the half previously grazed by the opposite species, and this movement was more marked in the cattle than in the sheep.
It was concluded that under mixed grazing a greater proportion of the herbage would be available to the sheep giving them an advantage over the cattle.  相似文献   

4.
Two steers excreting similar quantities of organic matter daily were grazed at pasture during the summer of 1961. The four experiments each involved a preliminary period of five days dosing with Cr2O3 to reach a fairly constant excretion. The steers received a daily dose of Cr2O3 either in oil suspension or in shredded paper. The carriers and steers were interchanged for each trial. For two of the trials each steer in turn was harnessed every other day and all its dung collected in a bag. Total faecal excretion of organic matter was measured from the bagged steer and estimated from the Cr2O3 concentration in a composite sample made up from all dung pats voided during the ten-day collection period. In the other two trials the steers were not harnessed and each dung pat was separately sampled and analysed for Cr2O3 in the organic matter. The average recovery of Cr2O3 in the first two trials was 99·1 (oil) or 94·4% (paper). Calculating the faecal organic matter excretion from the concentration of Cr2O3 in the faeces and the quantity given daily overestimated it by 3·5 to 8·0%. There was no significant difference between shredded paper and oil as carriers of Cr2O3 for estimating the quantity of organic matter excreted. There were 37% and 22% less variation between dung pats in Cr2O3 concentration when this was administered in shredded paper than when given in oil suspension.  相似文献   

5.
Five binary perennial grass/white clover (Trifolium repens, cv. Menna) mixtures were evaluated over a 3-year period under continuous sheep stocking together with the imposition of a rest period for either an early or a late conservation cut; the experiment with plot sizes of 0·16 ha was replicated three times. The grass species and cultivars used were Merlinda tetraploid and Magella diploid perennial ryegrass (Lolium perenne), Prairial cocksfoot (Dactylis glomerata), Rossa meadow fescue (Festuca pratensis) and Goliath timothy (Phleum pratense). The greatest total lengths of white clover stolon developed in the meadow fescue (171·6 m m?2) and timothy (151·9 m m?2) associations compared with those in tetraploid perennial ryegrass (98·6 m m?2), diploid perennial ryegrass (91·9 m m?2) and cocksfoot (74·6 m m?2) (s.e.d. 16·4, P < 0·001). On average, the proportion of white clover stolon that was buried was between 0·86 and 0·89 and this was more abundant in late than early season. Whereas timothy persisted, the persistence of meadow fescue was low under any of the managements tested and this was markedly reduced by the third grazing season. In the diploid perennial ryegrass sward, a late June to early August rest period for conservation enhanced white clover stolon length. An early April to late May rest period greatly reduced total white clover stolon length in both diploid perennial ryegrass and tetraploid perennial ryegrass associations (diploid perennial ryegrass-unrested 89 m m?2, early rest 56·1 m m?2, late rest 130·7 m m?2; tetraploid perennial ryegrass - unrested 125·1 m m?2, early rest 71 m m?2, late rest 99·7 m m?2; s.e.d. 19·19, P < 0·001). The numbers of white clover stolon growing points per unit stolon length were greatest when the sward was rested during late June to early August ?55·9 m?1 stolon length compared with 45·7 m?1 for an April to late May rest and 46 m?1 in the absence of a rest (s.e.d. 2·59, P < 0·001). Likewise, the percentage of stolon above ground was greatest with the late June to early August rest ?15·78% compared with 10·61% for the April to late May rest and 7·69% for no rest (s.e.d. 1·569, P < 0·001). The complementary percentages of buried stolon indicate the important role this fraction has and the need to study stolon behaviour in grazing studies generally. It is concluded that, in relation to perennial ryegrass as a companion grass, meadow fescue and timothy allow better white clover development and cocksfoot less. However, other attributes have to be considered, for example the poor persistence of meadow fescue and the slower regrowth of timothy, both of which allow the invasion of weed grasses, or the lower acceptability of cocksfoot to livestock. The timing of the rest period before the conservation cut can influence white clover development considerably, but the effects differed with different companion grasses.  相似文献   

6.
In a field experiment carried out over 3 years, the nitrate content of herbage from perennial ryegrass (Lolium perenne) swards increased exponentially with nitrogen application rate, but herbage nitrate content appeared to reach potentially dangerous concentrations only when nitrogen application rates were greater than those needed to stimulate dry-matter production. Thus, on average over all the harvests, maximum yield could be obtained with annual application rates of 400 kg N ha–1 (six applications of 67 kg N ha–1) for perennial ryegrass and 300 kg N ha–1 (six applications of 50 kg N ha–1) for perennial ryegrass/white clover (Trifolium repens) swards, whereas the mean nitrate concentrations were 3340 and 2929 mg NO3 kg–1 dry matter (DM) respectively. Nitrate content, however, varied considerably from harvest to harvest, reaching maxima of 9345 mg NO3 kg–1 DM at 400 kg N ha–1 for perennial ryegrass and 6255 mg NO3 kg–1 DM at 300 kg N ha–1 for perennial ryegrass/white clover. The nitrate content of herbage from perennial ryegrass/white clover swards was always greater than that of perennial ryegrass swards receiving the same rate of nitrogen application, even though in the herbage from the mixed sward the nitrate content of white clover was usually less than half that of the perennial ryegrass component. The physical environment did not have a clearly interpretable effect on nitrate content, although herbage harvested in May had a much lower nitrate content than that harvested at any other time of the season. It was not possible to find a single multiple regression equation relating herbage nitrate content to nitrogen application and to other environmental variables that explained more than 60% of the variance in herbage nitrate, but it is suggested that, by reducing the later-season nitrogen applications from 67 to 50 and finally to 33 kg N ha–1 for perennial ryegrass and from 50 to 33 kg N ha–1 for perennial ryegrass/white clover, it would be possible to achieve over 90% of the maximum yield while reducing average nitrate content to <40% of that at maximum yield, with no samples containing more than 2300 mg NO3 kg –1 DM.  相似文献   

7.
The objectives of this experiment were to study the effects of different grazing managements in spring on herbage intake and performance of summer-calving dairy cows and to examine the effects of regrowth in early June on herbage intake and cow performance. Four spring-grazing treatments were applied to predominantly perennial ryegrass swards: Control (C), sward grazed by cows to 6–8 cm sward surface height (SSH); CG16, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to a target SSH of 16cm in early June; CG8, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to 8cm in early June; and SG8, sward grazed by sheep to 2–3 cm SSH in May and allowed to regrow to 8 cm in early June, All swards were continuously stocked by summer-calving (May and July) primiparous and multiparous cows from 16 June to 7 September, to a target SSH of 8–10cm. Spring treatments bad marked effects on herbage intakes and milk production. Estimated in July by n alkane analysis, the mean herbage intake ± s.e.d. of cows on each treatment were 1·8, 1·4, 1·4 and 3·0 ± 0·31 kg dry matter (DM) 100 kg live weight (LW)?1 d?1 (P < 0·01) for treatments C, CG16, CG8 and SG8 respectively. Measured in August, intakes were 1·8, 20, 2·1 and 2·4 ± O·33kg DM 100kg LW?1 d?1 respectively. Severe spring grazing led to increased milk yield and reduced milk fat content from summer-calving cows fed 5·2 kg d?1 of a proprietary concentrate. Average milk yields for the eleven experimental cows on each treatment were 24·3, 23·4, 26·2 and 29·0 ± 1·20 kgd?1 (P < 0·01) for C, CG16, CG8 and SG8, and average milk fat contents were 45·4. 42·4, 43·9 and 40·9 ± 1·02gkg?1 (P<0·05) respectively. The results suggest that severe grazing of swards in early season could improve herbage intake and milk yield of summer-calving cows in mid- and late season. The most favourable spring treatment in this respect was severe grazing by sheep. However, this advantage could be negated in midseason by lax grazing at that time.  相似文献   

8.
The sustainability of white clover in grass/clover swards of an upland sheep system, which included silage making, was studied over 5 years for four nitrogen fertilizer rates [0 (N0), 50 (N50), 100 (N100) and 150 (N150) kg N ha?1]. A common stocking rate of 6 ewes ha?1 was used at all rates of N fertilizer with additional stocking rates at the N0 fertilizer rate of 4 ewes ha?1 and at the N150 fertilizer rate of 10 ewes ha?1. Grazed sward height was controlled, for ewes with their lambs, from spring until weaning in late summer by adjusting the proportions of the total area to be grazed in response to changes in herbage growth; surplus pasture areas were harvested for silage. Thereafter sward height was controlled on separate areas for ewes and weaned lambs. Areas of pasture continuously grazed in one year were used to make silage in the next year. For treatments N0 and N150, white clover stolon densities (s.e.m.) were 7670 (205·4) and 2296 (99·8) cm m?2, growing point densities were 4459 (148·9) and 1584 (76·0) m?2 and growing point densities per unit length of stolon were 0·71 (0·015) and 0·67 (0·026) cm?1 respectively, while grass tiller densities were 13 765 (209·1) and 18 825 (269·9) m?2 for treatments N0 and N150 respectively. White clover stolon density increased over the first year from 780 (91·7) cm m?2 and was maintained thereafter until year 5, reaching 8234 (814·3) and 2787 (570·8) cm m?2 for treatments N0 and N150 respectively. Growing point density of white clover increased on treatment N0 from 705 (123·1) m?2 to 2734 (260·7) m?2 in year 5 and it returned to the initial level on treatment N150 having peaked in the intermediate years. Stolon density of white clover was maintained when the management involved the annual interchange of continuously grazed and ensiled areas. The non‐grazing period during ensiling reduced grass tiller density during the late spring and summer, when white clover has the most competitive advantage in relation to grass. The increase in stolon length of white clover in this period appears to compensate for the loss of stolon during periods when the sward is grazed and over winter when white clover is at a competitive disadvantage in relation to grass. The implications for the management of sheep systems and the sustainability of white clover are discussed.  相似文献   

9.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

10.
Abstract This field study investigated the effect of timing of nitrogen (N) fertilizer application in spring on the survival of grazed perennial ryegrass (Lolium perenne cv. Dobson and Yatsyn) over summer in a subtropical environment. There were five N fertilizer treatments: no applied N, 46 kg N ha?1 on 22 October or 22 November or 22 December, or on 22 October and again on 22 December. Water‐soluble carbohydrate (WSC) concentration of perennial ryegrass plants entering the summer was altered by varying defoliation frequency, with defoliation interval based on the number of leaves per tiller. Frequent defoliation was set at a regrowth level of one leaf per tiller and less frequent defoliation at a regrowth level of three leaves per tiller, over a total of two by three‐leaf per tiller regrowth periods. Application of N fertilizer was found to have no significant effect (P > 0·05) on survival of perennial ryegrass plants over summer. On the other hand, defoliation had a marked effect on perennial ryegrass persistence, with frequent defoliation decreasing ryegrass plant density (51 vs. 88 plants m?2; P < 0·001) and increasing the density of tropical weed grasses (99 vs. 73 plants m?2; P < 0·001) by autumn. Frequently defoliated plants had a lower stubble WSC content on a per plant basis than less frequently defoliated plants in spring (103 vs. 201 mg per plant; P < 0·001) and summer (59 vs. 101 mg per plant; P < 0·001). The lower WSC content was associated with a smaller root system in spring (1·50 vs. 2·14 g per plant; P < 0·001) and autumn (1·79 vs. 2·66 g per plant; P < 0·01), and this was reflected in 0·29 more plants being pulled from the soil by livestock between November 1996 and April 1997. Rhizoctonia fungus was associated with roots of pulled plants, but not with roots of seemingly healthy plants, indicating that this fungus may have a role in a weakened root system, which was more prone to sod pulling. Nitrogen applied in October and November resulted in a reduced WSC concentration, although the effect was restricted to 1 month after N application. The present study indicates that survival of perennial ryegrass plants over the summer in a subtropical region is prejudiced by frequent defoliation, which is associated with a lower WSC concentration and a shallower root system. Under grazing, sod pulling is a reflection of this weaker root system and contributes to plant mortality.  相似文献   

11.
The study was designed to test the hypothesis that grazing management in early season could alter sward structure to facilitate greater animal performance during critical periods. The effects of grazing a mixed perennial ryegrass/white clover sward at different sward surface heights, by cattle or sheep, in early season on sward composition and structure, and on the performance of weaned lambs when they subsequently grazed these swards in late season were determined. In two consecutive years, from mid‐May until mid‐July, replicate plots (three plots per treatment) were grazed by either suckler cows and calves or ewes and lambs at 4 or 8 cm sward surface heights (Phase 1). From mid‐August (Year 1) or early August (Year 2), weaned lambs continuously grazed, for a period of 36 d (Year 1) or 43 d (Year 2) (Phase 2), the same swards maintained at 4 cm (treatment 4–4), 8 cm (treatment 8–8) or swards which had been allowed to increase from 4 to 8 cm (treatment 4–8). Grazing by both cattle and sheep at a sward surface height of 4 cm compared with 8 cm in Phase 1 resulted in a higher (P < 0·001) number of vegetative grass tillers per m2 in Phase 2, although the effect was more pronounced after grazing by sheep. Sheep grazing at 8 cm in Phase 1 produced a higher number of reproductive tillers per m2 and a greater mass of reproductive stem (P < 0·001) than the other treatment combinations. The mass of white clover lamina was higher under cattle grazing (P < 0·05), especially on the 8‐cm treatment, and white clover accounted for a greater proportion of the herbage mass. These effects had mainly disappeared by the end of Phase 2. On the 4–4 and 8–8 sward height treatments the liveweight gain of the weaned lambs was higher (P < 0·05) on the swards previously grazed by cattle than those grazed by sheep. The proportion of white clover in the diet and the herbage intake also tended to be higher when the weaned lambs followed cattle. However, there was no difference in liveweight gain, proportion of white clover in the diet or herbage intake between swards previously grazed by cattle or sheep on the 4–8 sward height treatment. It is concluded that grazing grass/white clover swards by cattle compared with sheep for the first half of the grazing season resulted in less reproductive grass stem and a slightly higher white clover content in the sward, but these effects are transient and disappear from the sward by the end of the grazing season. They can also be eliminated by a short period of rest from grazing in mid‐season. Nevertheless these changes in sward structure can increase the performance of weaned lambs when they graze these swards in late season.  相似文献   

12.
Results from a field investigation indicated that dairy cows defaecated on average 13.9 times per day. Defaecations averaged 114 in.2 (0.07 m2) in area and showed little difference in size in winter, spring and summer, although the cows defaecated significantly more often and dung consistency was less firm during the summer. The percentage area of paddock covered by dung patches after 24 hours' grazing ranged from 0.31% to 0.68%, depending principally on the stocking rate. Dung-patch distribution over the paddock was uniform in spring and snmmer, but not in winter. The grazing pattern of two groups of dairy cows (blinkered and non-blinkered) on a pasture containing dung patches was recorded over 4 days. Both groups exhibited a similar grazing pattern, suggesting that sight was not a primary aid to the selection of herbage. The resulte suggested that the smell of the dung patches was the primary cause for the rejection of the surrounding herbage. The results from this and the two previous papers are used to discuss the influence that the dung patch may have on the utilization of pasture by the grazing animal.  相似文献   

13.
Perennial ryegrass/white clover pastures were grazed at different times in the winter to study the effect of time of grazing on subsequent plant growth. In 1983–84, 1984–85, and 1985–86, pastures were grazed to a residual of 400 kg dry matter ha-1 by sheep once in early December (D), January (J), February (F), March (M), or April (A) and compared with an ungrazed control (C). Rates of herbage accumulation on C in the winter were low, averaging 6, -9, and 2 kg dry matter ha-1 in December, January, and February, respectively. Little forage production occurred during the month immediately following winter grazing. Herbage accumulation rate then increased sufficiently to replace the forage removed from winter-grazed paddocks by early spring. By May, herbage mass on grazed treatments was similar to C except for D and A which averaged 20 and 47% less forage than C, respectively (P<0·01). Herbage accumulation rates of D were unique among winter grazing treatments in never exceeding those of C. By May 1986, D yielded less perennial ryegrass compared with C (P<0·05). Grazing reduced the number of leaves per ryegrass tiller for 1 to 2 months following grazing. By May, J, F and M had numerically more tillers m-2 and more leaves per tiller than C. Similar May yields of J, F, M, and C resulted from fewer but larger and slightly less leafy tillers of ungrazed compared with winter grazed plants.  相似文献   

14.
High (H; 27 350 m?1:) or low (L. 13 300 m-1) tiller density perennial ryegrass swards were created in the mid- and late grazing season by imposing different sward heights in the spring. Summer-calving cows then grazed these swards from 6 June to 2 September 1992 and were offered 5 kg fresh weight hd?1 d?1 of either a barley (S) or a molassed sugar beet pulp (F) based supplement. The factorial combination of sward and supplement types resulted in four experimental swards being grazed by thirteen Holstein/Friesian cows each. Supplement F contained more crude fibre (110 vs. 58 g kg?1) and less metabolizable energy [12–5 vs. 13–2 MJ kg?1 dry matter (DM)] than supplement S. Herbage on the H sward contained more metabolizable energy (11–9 vs. 104 MJ kg?1 DM) and crude protein (232 vs. 205 g kg?1 DM), had fewer rejected areas f 16–5 vs. 26–9%) and a higher live-dead tiller ratio (4–6 vs. 2–1) than that on the L sward. Sward, but not supplement type, significantly affected the intake of grazed herbage (P<0–001). On average, the herbage intakes of cows grazing II swards were higher than for L swards (14–5 vs. 11 6kg DM d?1) and those of cows on the S and F supplements were 12–6 and 13–5 kg DM d?1 respectively. Averaged over the grazing period, sward and supplement had no significant effects on milk yield, milk composition or yield of constituents. When expressed on an average weekly basis, cows grazing an L sward and offered the F supplement on occasions had significantly lower milk yields and higher milk fat contents (P<005) than those grazing an H sward and offered the S supplement. There were no significant effects on cow live weight or condition score change. The results suggested that grazing swards with a high density of live tillers increased herbage intakes and on occasions milk yield, relative to low density swards. However, small increases in energy intake from sward and supplement effects were used primarily to ameliorate liveweight loss.  相似文献   

15.
The performance of timothy in mixtures with perennial ryegrass was assessed under a simulated intensive grazing management over two harvest years in 1974–75. Three seed rates of S23 perennial ryegrass were factorially combined with three rates of Scots timothy and compared with pure stands of each grass. All were sown with Huia white clover. When cut six times at monthly intervals and with an annual N input of 350 kg ha?1, there were no significant differences in total DM production in either year. The 2-year mean DM yield for the nine mixtures and six pure swards was 9·77 t ha?1 (range 9·34–10·16). Compared with the pure ryegrass swards, in both years the ryegrass-timothy mixtures produced earlier spring growth but were significantly lower yielding at the second cut. Over the first five cuts the proptortion of timothy in the three mixtures with 22·4 kg ha?1 ryegrass seed averaged 26% in the first year and 37% in the second. Corresponding calculated mean DM yields of timothy were 2·75 and 3·00 t ha?1. It is concluded that an early timothy variety is capable of competing with a late-heading perennial ryegrass in frequently cut swards managed to simulate intensive grazing. The strong development of timothy in the dry summer of 1975 suggests that in mixtures of late perennial ryegrass varieties, an early variety of timothy should be beneficial for its spring growth in grazed swards.  相似文献   

16.
The change in structure of continuously grazed versus infrequently cut swards of perennial ryegrass ( Lolium perenne L), cv. S23, was investigated during their first full harvest year. Measurements were made from early May until late September. The intensity of stocking by sheep in the grazed sward was adjusted in an attempt to maintain a high level of radiation interception and the cut sward was harvested at approximately monthly intervals.
The herbage mass, lamina area index and radiation interception of the cut sward varied in a cyclic pattern between harvests but in the grazed sward these parameters showed considerably less variation, although they all increased early in the season and then declined later. The proportion of dead material above ground increased throughout the season in both sward types but was more marked in the grazed sward.
There were major differences between the grazed and cut swards in the number of tillers per unit ground area; the difference became more marked throughout the season and by September the tiller densities in the grazed and cut swards were 3·204 m-2 and 6·203 m-2 respectively. Divergence in tiller density was associated with differences in specific stem weight and leaf area per tiller.
Rates of appearance and death of leaves on tillers in the grazed sward were determined. During May, leaf appearance exceeded leaf death but this was reversed in June. During the rest of the season as a new leaf appeared on a tiller so the oldest leaf died.  相似文献   

17.
The pool of nitrate-N (NO3-N) in the soil is more prone to losses than that of ammonium-N (NH4+-N) so any shift towards NO3-N dominance in the soil pools, caused by management intensity, could have environmental implications. The change in the balance of soil NH4+-N and NO3-N content with time was studied using grazed grass swards receiving different fertilizer N inputs. In addition, the effect of past management on net nitrification of 400 μg NH4+-N g–1 was investigated in a soil incubation study. Mineral N was determined at frequent intervals (at least every 2 weeks) throughout the year in the top 5 or 7·5 cm of a sandy clay-loam soil at the Agricultural Research Institute of Northern Ireland at Hillsborough, County Down, for a 7-year period (1989–90 to 1995–96). The treatments were a perennial ryegrass–white clover sward receiving no fertilizer N, together with perennial ryegrass swards receiving 100, 200, 300, 400 or 500 kg N ha–1 year–1 as calcium ammonium nitrate. The plots were continuously grazed by beef steers from April to October to maintain a constant sward height of 7 cm. There was little or no change in average soil NO3-N and NH4+-N content from 1989–90 to 1995–96 on the grass–clover sward and plots receiving 100 and 200 kg N ha–1 year–1. However, with the plots receiving 300, 400 and 500 kg N ha–1 year–1 NO3-N became progressively more dominant with time. The incubation study confirmed that this was due to an increase in net nitrification rate. There was evidence that rapid microbial assimilation of NO3-N occurred during the soil incubations. Past management history can play an important role in determining soil NO3-N content and hence potential losses of N to the environment.  相似文献   

18.
Abstract The implications for the agricultural productivity of the UK upland sheep systems of reducing nitrogen fertilizer application and lowering stocking rates on perennial ryegrass/white clover swards were studied over 4 years at a site in Wales. The system involved grazing ewes and lambs from birth to weaning on swards maintained at a constant height with surplus herbage made into silage, thereafter ewes and weaned lambs grazed on separate areas until the onset of winter with adjustments to the size of the areas grazed and utilizing surplus pasture areas for silage. Four stocking rates [SR 18, 15, 12 and 9 ewes ha?1 on the total area (grazed and ensiled)] and two levels of annual nitrogen fertilizer application (N 200 and 50 kg ha?1) were studied in five treatments (N200/SR18, N200/SR15, N50/SR15, N50/SR12 and N50/SR9). Average white clover content was negatively correlated with the level of annual nitrogen fertilizer application. White clover content of the swards was maintained over the duration of the experiment with an increasing proportion of clover in the swards receiving 50 kg N ha?1. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain from birth to weaning in all treatments but fewer lambs reached the slaughter live weight by September at the higher stocking rates and with the lower level of fertilizer application. Three of the five treatments provided adequate winter fodder as silage (N200/SR15, N50/SR12 and N50/SR9). Because of the failure to make adequate winter fodder and the failure of white clover to fully compensate for reduction in nitrogen fertilizer application, it is concluded that nitrogen fertilizer can only be reduced on upland sheep pastures if accompanied by reduced stocking rates.  相似文献   

19.
Seven forage types (diploid and tetraploid perennial ryegrass, Italian ryegrass and hybrid ryegrass, a low‐input mixture of perennial ryegrass, cocksfoot, timothy and meadow fescue, a mixture of perennial ryegrass and white clover, and monoculture of red clover) were sown in late July 2004. Each received one of four rates of dairy cattle slurry in three annual applications by trailing shoe, which supplied average nitrogen (N) inputs of 0·0, 114·9, 204·8 and 301·2 kg N ha?1 annum?1. Treatments were cut either three or four times annually over four years. Average dry‐matter yield (DM) response to slurry N was 15·6 kg DM kg?1 N. Lowest recovery of slurry N was in the second application each year (after first cut). The data suggest that slurry applied to Italian ryegrass, and also to swards containing legumes on soils with high phosphorus content, will produce a lower DM response to slurry N and result in a lower slurry N recovery than on swards of perennial ryegrass or cocksfoot‐dominant low‐input mixtures. Apparent recovery of slurry N was low at the second cut, especially when first‐cut yields had been high. To maximize slurry N recovery, application to regrowths with potentially slow rates of growth or high legume content should be avoided.  相似文献   

20.
In a trial lasting 3 years at Jealott's Hill and 2 years at Ravenscroft Hall, a total of 73 January- March-calving Friesian x Holstein cows and heifers were given a diet consisting almost exclusively of ensiled and grazed ryegrass for an entire lactation to establish the level of milk production which grass alone can support. From calving to turnout in April/May (average duration 87 days), the animals were given high digestibility (DOMD = 678g kg-1 DM) ryegrass silage ad libitum. After turnout, they grazed ryegrass swards until housing in autumn. Thereafter, the cattle were given ryegrass silage of lower digestibility (DOMD = 600–620 g kg-1 DM) for the remainder of the lactation and during the dry period.
Mean silage dry matter intakes from calving to turnout were 13–2 kg day-1 at Jealott's Hill and 11·5 kg day-1 at Ravenscroft Hall. Average milk yields were 21-1 kg day-1 for cows and 16-1 kg day-1 for heifers with 39-2g fat kg-1, 29-6g protein kg-1 and 47–9 g lactose kg-1. Over the complete lactation, average milk yields were 4680 kg and 4006 kg for the cows and heifers, respectively, with 39-4 g fat kg-1, 31·4 g protein kg-1 and 46·9 g lactose kg-1. Animal health and fertility were satisfactory. The results demonstrated the value of high quality grazed and ensiled ryegrass and provided a measure of milk production from grass only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号