首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Cork oak (Quercus suber L.) is an autochthonous tree species that is being used for reforestation in heavy-metal-contaminated areas in Spain. A hydroponics experiment was carried out to characterize the effects of Cd on several morphological and physiological parameters in this species, including shoot length, nutrient concentrations and allocation in different organs, leaf pigment concentrations, photosynthetic efficiency, root ferric chelate reductase (FCR) activity and organic acid concentrations in xylem sap. Four different Cd treatments were applied, adding Cd chelated with EDTA or as chloride salt at two different concentrations (10 and 50 μM Cd). After 1 month of Cd treatment, plant growth was significantly inhibited in all treatments. Results indicate that Cd accumulates in all organs 7- to 500-fold when compared with control plants. The highest Cd concentration was found in the 50 μM CdCl(2) treatment, which led to concentrations of ~30, 123 and 1153 μg Cd g(-1) dry weight in leaves, stems and roots, respectively. In the strongest Cd treatments the concentrations of P and Ca decreased in some plant parts, whereas the Mn leaf concentrations decreased with three of the four Cd treatments applied. The concentrations of chlorophyll and carotenoids on an area basis decreased, whereas the (zeaxanthin plus antheraxanthin)/(total violaxanthin cycle carotenoids) ratio and the non-photochemical quenching increased significantly in all Cd treatments. Cadmium treatments caused significant increases in the activity of the enzyme FCR in roots and in the concentrations of organic acids in xylem sap. Some of the physiological changes found support the fact that Cd induces a deficiency of Fe in cork oak, although the plant Fe concentrations were not reduced significantly. At higher concentrations the effects of Cd were more pronounced, and were more marked when Cd was in the free ion form than when present in the form of Cd-EDTA.  相似文献   

2.
Patterns of water relations, xylem sap abscisic acid concentration ([ABA]) and stomatal aperture were characterized and compared in drought-sensitive black walnut (Juglans nigra L.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.) trees co-occurring in a second-growth forest in Missouri, USA. There were strong correlations among reduction in predawn leaf water potential, increased xylem sap [ABA] and stomatal closure in all species. Stomatal conductance was more closely correlated with xylem sap ABA concentration than with ABA flux or xylem sap pH and cation concentrations. In isohydric black walnut, increased concentrations of ABA in the xylem sap appeared to be primarily of root origin, causing stomatal closure in response to soil drying. In anisohydric sugar maple and white oak, however, there were reductions in midday leaf water potential associated with stomatal closure, making it uncertain whether drought-induced xylem sap ABA was of leaf or root origin. The role of root-originated xylem sap ABA in these species as a signal to the shoot of the water status of the roots is, therefore, less certain.  相似文献   

3.
Whole vine (K(plant)) and individual root (K(root)) hydraulic conductances were measured in kiwifruit (Actinidia chinensis Planch. var. chinensis 'Hort16A') vines to observe hydraulic responses following partial root system excision. Heat dissipation and compensation heat pulse techniques were used to measure sap flow in trunks and individual roots, respectively. Sap flux and measurements of xylem pressure potential (Ψ) were used to calculate K(plant) and K(root) in vines with zero and ~80% of roots severed. Whole vine transpiration (E), Ψ and K(plant) were significantly reduced within 24 h of root pruning, and did not recover within 6 weeks. Sap flux in intact roots increased within 24 h of root pruning, driven by an increase in the pressure gradient between the soil and canopy and without any change in root hydraulic conductance. Photosynthesis (A) and stomatal conductance (g(s)) were reduced, without significant effects on leaf internal CO(2) concentration (c(i)). Shoot growth rates were maintained; fruit growth and dry matter content were increased following pruning. The woody roots of kiwifruit did not demonstrate a rapid dynamic response to root system damage as has been observed previously in monocot seedlings. Increased sap flux in intact roots with no change in K(root) and only a moderate decline in shoot A suggests that under normal growing conditions root hydraulic conductance greatly exceeds requirements for adequate shoot hydration.  相似文献   

4.
Root tips of intact willow (Salix dasyclados Wimm., Clone 81-090) plants were partially dried by exposure to ambient greenhouse air and then kept in water-vapor-saturated air for up to 3 days. The drying treatment increased abscisic acid (ABA) concentrations in both the root tips subjected to drying and in the xylem sap, while it reduced leaf stomatal conductance and leaf extension rate. Despite the decrease in stomatal conductance, leaf water potentials were unaffected by the root drying treatment, indicating that the treatment reduced hydraulic conductivity between roots and foliage. After roots subjected to drying were returned to a nutrient solution or excised, ABA concentrations in the remaining roots and in the xylem sap, stomatal conductance of mature leaves and extension rate of unfolding leaves all returned to values observed in control plants. The 4-fold increase in xylem sap ABA concentration following the root drying treatment was not solely the result of reduced sap flow, and thus may be considered a potential cause, not merely a consequence, of the observed reduction in stomatal conductance.  相似文献   

5.
We investigated effects of water stress and external abscisic acid (ABA) supply on shoot growth, stomatal conductance and water status in 1-year-old cuttings of a drought-sensitive poplar genotype Populus x euramericana cv. I-214 (Italica) and a drought-tolerant genotype P. 'popularis 35-44' (popularis). Populus popularis was more productive and maintained higher leaf water potentials throughout the drought treatment than cv. Italica. Supply of ABA to the xylem sap caused a greater decline in growth and more leaf abscission in shoots of cv. Italica than in shoots of P. popularis. Immediately after initiation of the drought treatment in P. popularis, the ABA concentration ([ABA]) of the xylem increased rapidly and stomatal conductance declined; however, stomatal conductance had returned to control values by the third day of the drought treatment, coincident with a gradual decline in xylem [ABA]. In contrast, xylem [ABA] of cv. Italica initially increased more slowly than that of P. popularis in response to the drought treatment, but the increase continued for 3 days at which time a tenfold increase in xylem [ABA] was observed that was followed by abscission of more than 40% of the leaves. We conclude that sensitivity of poplar roots to variation in soil water content varies by clone and that a rapid short-term accumulation of ABA in shoots in response to water stress may contribute to drought tolerance.  相似文献   

6.
During different phases of the annual growth cycle, xylem sap was collected from trunk segments of adult beech (Fagus sylvatica L.) trees by the water displacement technique. Irrespective of the height of the trunk, both sulfate and reduced sulfur compounds were detected in the xylem sap throughout the year. Sulfate was the predominant sulfur compound in all samples analyzed. Its concentration in the xylem sap varied between 10 and 350 micro mol l(-1), with highest concentrations in April, shortly before bud break. In contrast to other tree species, cysteine and not glutathione was the predominant thiol transported in the xylem sap of beech trees. The cysteine concentration ranged between 0.1 and 1 micro mol l(-1). As observed for sulfate, maximum cysteine concentrations were found in April. Apparently, both sulfate and cysteine transport contribute to the sulfur supply of the developing leaves. Seasonal changes in the axial distribution of cysteine and sulfate differed, indicating differences in the source-sink relations of these sulfur compounds. High, but uniform, xylem sap sulfate concentrations in April may originate from balanced sulfate uptake by the roots, whereas high cysteine concentrations in April, increasing with increasing height of the trunk, may originate in part from protein breakdown in the trunk. Reversal of the axial distribution of xylem sap cysteine in late summer-early fall to higher concentrations in the lower part of the trunk than in the upper part of the trunk suggests that the upper part of the trunk becomes a sink for cysteine as a result of the synthesis of storage proteins at this time of the year.  相似文献   

7.
Amino acid profiles of leaf, stem, and root tissues from nodulated and nonnodulated Leucaena leucocephala (Lam.) de Wit plants were determined by gas chromatography-mass spectrometry. High concentrations of mimosine and several other potentially toxic nonprotein amino acids, including pipecolic acid and two isomers of hydroxypipecolic acid, were identified in the tissues. Five metabolites remain unidentified. Of the foliar free amino acid nitrogen, 57-66% was associated with the potentially toxic amino acids. Major constituents in the leaf tissues of nonnodulated plants were mimosine and hydroxypipecolic acid (isomer 1). Mimosine was recovered in both the neutral plus basic and acidic amino acid fractions. Major differences between amino acid profiles of nodulated and nonnodulated roots were the low percentages of asparagine + aspartate (3.6% of the total pool compared to 33% in nodulated plants) and pipecolic acid in nonnodulated roots (1% of the total compared to 12.5% in nodulated plants). A novel plant betaine (dihydroxypipecolic acid betaine) was identified by fast-atom-bombardment mass spectrometry in leaf tissues, albeit at relatively low concentrations (< 1 micro mol per gram fresh weight). Analyses of the xylem sap collected from nodulated plants confirmed that Leucaena is an asparagine transporter, as suggested by the high concentrations of asparagine and the low concentrations of ureides in its root nodules. Amino acid profiles of xylem sap from nonnodulated plants showed extremely low concentrations of asparagine + aspartate (0.12 micro mol ml(-1)), whereas asparagine + aspartate was the major constituent (4.38 micro mol ml(-1)) in the xylem sap of nodulated plants. Two nonprotein amino acids, pipecolic acid and hydroxypipecolic acid, were major constituents of the xylem sap of nodulated and nonnodulated plants, respectively. Three unidentified compounds detected in xylem sap samples from both nodulated and nonnodulated plants did not correspond with any of the peaks characterized from tissue samples.  相似文献   

8.
We studied seasonal variation in xylem sap pH of Juglans regia L. Our main objectives were to (1) test the effect of temperature on seasonal changes in xylem sap pH and (2) study the involvement of plasma membrane H+-ATPase of vessel-associated cells in the control of sap pH. For this purpose, orchard-grown trees were compared with trees grown in a heated (> or = 15 degrees C) greenhouse. During autumn, sap pH was not directly influenced by temperature. A seasonal change in H+-ATPase activity resulting from seasonal variation in the amount of protein was measured in orchard-grown trees, whereas no significant seasonal changes were recorded in greenhouse-grown trees. Our data suggest that H+-ATPase does not regulate xylem sap pH directly by donating protons to the xylem, but by facilitating secondary active H+/sugar transport, among other mechanisms.  相似文献   

9.
Patterns of water relations, xylem sap abscisic acid (ABA) concentration ([ABA]) and stomatal aperture were compared in drought-sensitive black walnut (Juglans nigra L.) and black willow (Salix nigra Marsh.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.). Strong correlations among reduction in predawn water potential, increase in xylem sap [ABA] and stomatal closure were observed in all species. Stomatal response was more highly correlated with xylem [ABA] than with ABA flux. Xylem sap pH and ion concentrations appeared not to play a major role in the stomatal response of these species. Stomata were more sensitive to relative changes in [ABA] in drought-sensitive black walnut and black willow than in sugar maple and white oak. In the early stages of drought, increased [ABA] in the xylem sap of black walnut and black willow was probably of root origin and provided a signal to the shoot of the water status of the roots. In sugar maple and white oak, leaf water potential declined with the onset of stomatal closure, so that stomatal closure also may have occurred in response to the change in leaf water potential.  相似文献   

10.
Temporal changes in inorganic and organic sulfur compounds (sulfate, glutathione, cysteine, methionine) were analyzed in xylem sap of 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing on acidic soils at a healthy and a declining stand in the Fichtelgebirge (North Bavaria, Germany). Studies were carried out (1) to quantify glutathione (GSH) transport in the xylem of spruce, (2) to study the significance of reduced sulfur versus sulfate (SO(4) (2-)) transport in the xylem, and (3) to compare total sulfur (S) transport in the xylem with the amount of foliar uptake of SO(2) in an air-polluted environment. Glutathione was the main reduced S compound in the xylem ranging in concentration from 0.5 to 5 &mgr;mol l(-1). Concentrations of inorganic SO(4) (2-) in the xylem sap were up to 50 times higher than those of GSH ranging from 60 to 230 &mgr;mol l(-1). During the growing season, concentrations of all S compounds in the xylem were highest in May (up to 246 &mgr;mol l(-1)) and decreased during summer and fall (up to 21 &mgr;mol l(-1)). On average, SO(4) (2-) concentrations in xylem sap were 30% higher at the declining site compared with the healthy site. Diurnal changes in organic S compounds were significant for GSH and cysteine with high concentrations during the night and low concentrations during the day. Diurnal changes in inorganic concentrations were not significant. Xylem sap concentrations of SO(4) (2-) and cysteine were twice as high and GSH concentrations were tenfold higher in surface roots than in branches. At both sites, transport of organic S was low (up to 3% of total S) compared to transport of SO(4) (2-). Annual transport of total S in the xylem (SO(4) (2-) was the main component) ranged from 60 to 197 mmol tree(-1) year(-1) at the healthy site and from 123 to 239 mmol tree(-1) year(-1) at the declining site. Although gaseous uptake of SO(2) was estimated to be similar at both sites (38 mmol tree(-1) year(-1); Horn et al. 1989), the ratio between annual gaseous uptake of SO(2) and transport of S in the xylem was 1:4 and 1:5 at the healthy and declining sites, respectively.  相似文献   

11.
During summer 1994, sugar maple (Acer saccharum Marsh.) seedlings were grown in open-top chambers supplied with air containing near ambient ozone concentration (control, low O(3)) or three times the ambient ozone concentration (high O(3)). The rate of CO(2) assimilation was significantly reduced by chronic exposure to a high concentration of ozone during the summer. During fall, seedlings were removed from the open-top chambers and acclimated to cold under natural conditions. In both species during cold acclimation, the starch concentration decreased, whereas the sucrose concentration increased. There was no treatment effect on the freezing tolerance of roots, even though roots in the high-O(3) treatment accumulated higher concentrations of the cryoprotective oligosaccharides raffinose and stachyose than control roots. Cold acclimation occurred earlier and stachyose concentration of stems was higher in high-O(3)-treated seedlings than in low-O(3)-treated seedlings. Cold acclimation was associated with an earlier accumulation of ABA in the xylem sap of high-O(3)-treated seedlings compared with low-O(3)-treated seedlings.  相似文献   

12.
Schell J 《Tree physiology》1997,17(7):479-483
The presence and concentration of mineral nutrients and organic acids were analyzed in root xylem sap of mature beech trees (Fagus sylvatica L.). An interdependence between malate concentration, pH, and calcium and magnesium concentrations was observed. Significant correlations were found between low pH values and high calcium and magnesium concentrations, low pH values and high malate concentration, and high malate concentration and high total calcium and magnesium concentrations. The observed correlations suggest that malic acid determines the chemical milieu of the xylem sap and tends to form complexes with hydrated or exchangeable adsorbed cations, thereby influencing the mobilization and translocation of calcium and magnesium in beech sapwood.  相似文献   

13.
We used a Scholander pressure chamber to assess the effects of various extraction methods under different environmental conditions on element concentrations in xylem sap of 3-year-old Picea abies (L.) Karst. seedlings. Sap from excised shoots contained higher element concentrations when extracted at low than at high over-pressures. When comparing plants differing in water status, we found that a high extraction over-pressure introduced a systematic error into the data. For example, in well-watered non-transpiring plants relative to unwatered transpiring plants, potassium concentrations were 70% higher in sap extracted at 0.1 MPa over-pressure, but only 10% higher in sap extracted at 1.0 MPa over-pressure. Moreover, treatment effects depended on the time of day when the sap was extracted. Increased water flux in transpiring plants relative to non-transpiring plants resulted in reduced xylem sap element concentrations when samples were collected after 9 h of transpiration, but not after 4 to 6 h of transpiration. Drought had little effect on xylem sap element concentrations, indicating that rates of element release into xylem conduits, element depletion by growing tissues, and water flow maintained a balance that may prevent nutrient stress during short-term drought.  相似文献   

14.
Leaf conductance, water relations, growth, and abscisic acid (ABA) concentrations in xylem sap, root apices and leaves were assessed in oak seedlings (Quercus robur L.) grown with a root system divided between two compartments and subjected to one of four treatments: (a) well watered, WW; (b) half of root system exposed to soil drying and half kept well watered, WD; (c) whole root system exposed to drought, DD; and (d) half of root system severed, RE. Sharp decreases in plant stomatal conductance, leaf water potential, hydraulic conductance and leaf growth were observed during DD treatment. No significant differences in plant leaf water potential and stomatal conductance were detected between the WW and WD treatments. Nevertheless, the WD treatment resulted in inhibition of leaf expansion and stimulation of root elongation only in the well-watered compartment. Abscisic acid concentrations did not change in leaves, root tips, or xylem sap of WD- compared to WW-treated plants. Increased concentrations of ABA were observed in xylem sap from DD-treated plant roots, but the total flux of ABA to shoots was reduced compared to that in WW-treated plants, because of decreases in transpiration flux. Similar plant responses to the WD and RE treatments indicate that the responses observed in the WD-treated plants were probably not triggered by a positive signal originating from drying roots.  相似文献   

15.
Watanabe T  Osaki M 《Tree physiology》2002,22(11):785-792
Melastoma malabathricum L. (melastoma) is an Al-accumulating woody plant that grows in tropical Southeast Asia in acid soils with high aluminum (Al) concentrations and low nutrient concentrations. Because oxalate serves as a ligand for Al accumulation in melastoma leaves and citrate is the ligand associated with Al translocation from roots to shoots, we investigated the role of organic acids in the adaptation of melastoma to growth on these soils. Phosphorus starvation increased oxalate concentration in the rhizosphere, enabling melastoma to solubilize insoluble aluminum phosphate in the rhizosphere. Increased availability of P and Al in the rhizosphere enhanced growth. In the xylem sap, the concentration of citrate increased with increasing Al concentration. In contrast, the concentrations of malate, succinate and alpha-ketoglutarate in the xylem sap decreased with increasing Al concentration, suggesting that tricarboxylic acid cycle enzymes were affected by Al treatment.  相似文献   

16.
In a field study, the composition and concentrations of amino compounds in the xylem sap of the mistletoe, Viscum album L., and in the xylem sap of two host species, an evergreen conifer (Abies alba Mill.) and a deciduous broad-leaved tree (Populus x euramericana), were analyzed. The xylem sap of both hosts and mistletoe contained large, but similar amounts of total organic nitrogen in low molecular weight amino compounds (TONLW). Nevertheless, individual amino compounds accumulated in the xylem sap of mistletoe relative to the host xylem sap, indicating selective uptake. In the xylem sap of Populus, major amino compounds (asparagine (Asn) and glutamine (Gln)) and the bulk parameters, TONLW and proteinogenic amino acids, showed significant seasonal variation. In Abies and in mistletoe on either host, variation of amino compounds in xylem sap was largely explained by inter-annual differences, not by seasonal variation. In both hosts, TONLW in the xylem sap was dominated by Gln. There was a steady decrease in relative abundance of Gln from the host xylem sap to the mistletoe xylem sap and to the stems and leaves of mistletoe. Simultaneously, the abundance of arginine (Arg) increased. Arginine was the predominant amino compound in the stems and leaves of mistletoe, occurring at concentrations previously observed only in leaves of trees exposed to excess nitrogen. We conclude that Gln (2 mol N mol(-1)) delivered by the host xylem sap is converted, in mistletoe, to Arg (4 mol N mol(-1)) and that the organic carbon liberated from Gln contributes significantly to the parasite's heterotrophic carbon gain. Statistical analyses of the data support this conclusion. Accumulation of Arg in mistletoe is an indication of excess N supply as a result of the uptake of amino compounds from the host xylem sap and a lack of phloem uploading.  相似文献   

17.
Studies of small trees growing in pots have established that individual amino acids or amides are translocated in the xylem sap of a range of tree species following bud burst, as a consequence of nitrogen (N) remobilization from storage. This paper reports the first study of N translocation in the xylem of large, deciduous, field-grown trees during N remobilization in the spring. We applied 15N fertilizer to the soil around 10-year-old Prunus avium L. and Populus trichocharpa Torr. & Gray ex Hook var. Hastata (Dode) A. Henry x Populus balsamifera L. var. Michauxii (Dode) Farwell trees before bud burst to label N taken up by the roots. Recovery of unlabeled N in xylem sap and leaves was used to demonstrate that P. avium remobilizes N in both glutamine (Gln) and asparagine (Asn). Sap concentrations of both amides rose sharply after bud burst, peaking 14 days after bud burst for Gln, and remaining high some 45 days for Asn. There was no 15N enrichment of either amide until 21 days after bud burst. In the Populus trees, nearly all the N was translocated in the sap as Gln, the concentration of which peaked and then declined before the amide was enriched with 15N, 40 days after bud burst. Xylem sap of clonal P. avium trees was sampled at different positions in the crown to assess if the amino acid and amide composition of the sap varied within the crown. Sap was sampled during remobilization (when the concentration of Gln was maximal), at the end of remobilization and at the end of the experiment (68 days after bud burst). Although the date of sampling had a highly significant effect on sap composition, the effect of position of sampling was marginal. The results are discussed in relation to N translocation in adult trees and the possibility of measuring N remobilization by calculating the flux of N translocation in the xylem.  相似文献   

18.
Seedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1-2 pmol ABA m(-2) leaf area s(-1)) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil.  相似文献   

19.
It is predicted that dryland salinity will affect up to 17 Mha of the Australian landscape by 2050, and therefore, monitoring the health of tree plantings and remnant native vegetation in saline areas is increasingly important. Casuarina glauca Sieber ex Spreng. has considerable salinity tolerance and is commonly planted in areas with a shallow, saline water table. To evaluate the potential of using the nitrogenous composition of xylem sap to assess salinity stress in C. glauca, the responses of trees grown with various soil salinities in a greenhouse were compared with those of trees growing in field plots with different water table depths and groundwater salinities. In the greenhouse, increasing soil salinity led to increased allocation of nitrogen (N) to proline and arginine in both stem and root xylem sap, with coincident decreases in citrulline and asparagine. Although the field plots were ranked as increasingly saline-based on ground water salinity and depth-only the allocation of N to citrulline differed significantly between the field plots. Within each plot, temporal variation in the composition of the xylem sap was related to rainfall, rainfall infiltration and soil salinity. Periods of low rainfall and infiltration and higher soil salinity corresponded with increased allocation of N to proline and arginine in the xylem sap. The allocation of N to citrulline and asparagine increased following rainfall events where rain was calculated to have infiltrated sufficiently to decrease soil salinity. The relationship between nitrogenous composition of the xylem sap of C. glauca and soil salinity indicates that the analysis of xylem sap is an effective method for assessing changes in salinity stress in trees at a particular site over time. However, the composition of the xylem sap proved less useful as a comparative index of salinity stress in trees growing at different sites.  相似文献   

20.
Size, dry weight and mineral nutrient content of fruit, leaves, shoots, canes, leader, stem and roots of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson var. deliciosa) vines, aged from one to five years, were measured. The distribution of fruit yield among single canes was examined in three of the vines. Total dry weight increased from a mean of 1.29 kg vine(-1) for one-year-old vines to 29.2 kg vine(-1) for five-year-old vines. The proportion of total dry weight in roots declined from the first to the third year (55 to 40%) and then remained approximately constant, whereas the proportion of dry weight in fruits increased from the first to the third year before attaining a more or less constant value. The proportion of total canopy dry weight contained in the current season's growth (fruit, leaves and shoots) averaged 75% for all ages. Roots of five-year-old vines had only penetrated a small proportion of the total soil volume available. Total fruit yield increased linearly with number of floral shoots for whole vines and single canes within vines, but with cane size (length or dry weight) for whole vines only. The productivity of single canes declined from 2.5 kg m(-1) for canes shorter than 0.25 m to about 1.1 kg m(-1) for canes longer than 1.0 m, in accordance with a declining bud density with increasing cane length. For vines of all ages, mineral nutrient concentrations in various tissues were similar, except that Ca in leaves and S in leaves and shoots increased with vine age. Major sites of accumulation of N, Ca, Mg, S, Fe, Mn and B were the leaves, whereas P and K accumulated predominantly in the fruits, Zn in the leader, and Na and Cu in the roots. Estimated annual mineral nutrient uptake increased with vine size and fruit yield, and for five-year-old vines the values per hectare were 141 kg N, 19 kg P, 169 kg K, 161 kg Ca, 28 kg Mg, 32 kg S, and less than 2 kg for Na and all micronutrients. The nutrient content of the harvested fruit provided an inaccurate estimate of annual nutrient uptake of the developing vines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号