首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coupled photosynthesis-stomatal conductance model was parameterized and tested with branches of black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) trees growing in the Northern Study Area of the Boreal Ecosystem-Atmosphere Study (BOREAS) in Manitoba, Canada. Branch samples containing foliage of all age-classes were harvested from a lowland old black spruce (OBS) and an old jack pine (OJP) stand and the responses of photosynthesis (A(n)) and stomatal conductance (g(s)) to temperature, CO(2), light, and leaf-to-air vapor pressure difference (VPD) were determined under controlled laboratory conditions at the beginning, middle, and end of the growing season (Intensive Field Campaigns (IFC) 1, 2, and 3, respectively). The parameterized model was then tested against in situ field gas-exchange measurements in a young jack pine (YJP) and an upland black spruce (UBS) stand as well as in the OBS and OJP stands. Parameterization showed that Rubisco capacity (V(max)), apparent quantum yield (alpha') and Q(10) for sink limitation were the most crucial parameters for the photosynthesis sub-model and that V(max) varied among different measurement series in the laboratory. Verification of the model against the data used to parameterize it yielded correlation coefficients (r) of 0.97 and 0.93 for black spruce and jack pine, respectively, when IFC-specific parameters were used, and 0.77 and 0.87 when IFC-2 parameters were applied to all IFCs. For both measured and modeled g(s), the stomatal conductance sub-model, which linearly relates g(s) to (A(n)h(s))/c(s) (where h(s) and c(s) are relative humidity and CO(2) mole fraction at the leaf surface, respectively), had significantly steeper slopes and higher r values when only the VPD response data were used for parameterization than when all of the response data were used for parameterization. Testing the photosynthesis sub-model against upper canopy field data yielded poor results when laboratory estimates of V(max) were used. Use of the mean V(max) estimated for all upper canopy branches measured on a given day improved model performance for jack pine (from a nonsignificant correlation between measured and modeled A(n) to r = 0.45), but not for black spruce (r = 0.45 for both cases). However, when V(max) was estimated for each branch sample individually, the model accurately predicted the 23 to 137% diurnal variation in A(n) for all stands for both the upper and lower canopy. This was true both when all of the other parameters were IFC-specific (r = 0.93 and 0.92 for black spruce and jack pine, respectively) and when only mid-growing season (IFC-2) values were used (r = 0.92 for both species). Branch-specific V(max) estimates also permitted accurate prediction of field g(s) (r = 0.75 and 0.89 for black spruce and jack pine, respectively), although parameterization with all of the response data overestimated g(s) in the field, whereas parameterization with only the VPD response data provided unbiased predictions. Thus, after parameterization with the laboratory data, accurately modeling the range of A(n) and g(s) encountered in the field for both black spruce and jack pine was reduced to a single unknown parameter, V(max).  相似文献   

2.
土壤温度和水分对长白山3种温带森林土壤呼吸的影响   总被引:7,自引:0,他引:7  
为了研究土壤温度和土壤含水量对阔叶红松林(山地暗棕壤)、云冷杉暗针叶林(山地棕针叶林土壤)和岳桦林(生草森林土)的土壤呼吸的影响,于2001年9月在长白山进行了土壤实验。利用增加土壤样柱的含水量,将土壤含水量分为9%,、21%、30%、37%和43%5个等级,土壤样品分别在0、5、15、25和35的温度下保持24小时。阔叶红松林土壤在0~35范围内,土壤呼吸速率与温度呈正相关。在一定的含水量范围内(21%~37%),土壤呼吸随含水量的增加而升高,当含水量超出该范围,土壤呼吸速率则随含水量的变化而降低。土壤温度和水分对土壤呼吸作用存在明显的交互作用。不同森林类型土壤呼吸作用强弱存在显著差异,大小顺序为阔叶红松林>岳桦林>云冷杉暗针叶林.红松阔叶林土壤呼吸作用的最佳条件是土壤温度35,含水量37%;云冷杉暗针叶林下的山地棕色针叶土壤呼吸作用的最佳条件是25,21%;岳桦林土壤呼吸作用的最佳条件是35,含水量37%。但是,由于长白山阔叶红松林,云冷杉林和岳桦林处在不同的海拔带上,同期不同森林类型土壤温度各不相同,相差4~5,所以野外所测的同期的山地棕色针叶林土呼吸速率应低于暗棕色森林土呼吸速率,山地生草森林土呼吸速率应高于山地棕色针叶林土的呼吸速率。图2表1参25。  相似文献   

3.
IntroductionMethane (CH4) and Nitrous oxide (NZO) are tWoimportant greenhouse gases that also play an important role in photochemical reactions in atmosphere.The global warming potential of CH4 and NZO areestimated tO be about 62 and 290 times that of carbon dioxide respeCtively. The concentration of thesegases have been increasing rapidly since the start ofthe industrial age, currently at rate of about 1% and0.25% per year respeCtively (Lelieveld et al. 1993),and 70%-90% of these gases …  相似文献   

4.
Zhu GF  Li X  Su YH  Lu L  Huang CL 《Tree physiology》2011,31(2):178-195
A combined model to simulate CO? and H?O gas exchange at the leaf scale was parameterized using data obtained from in situ leaf-scale observations of diurnal and seasonal changes in CO? and H?O gas exchange. The Farquhar et al.-type model of photosynthesis was parameterized by using the Bayesian approach and the Ball et al.-type stomatal conductance model was optimized using the linear least-squares procedure. The results show that the seasonal physiological changes in photosynthetic parameters (e.g., V(cmax25), J(max25), R(d25) and g(m25)) in the biochemical model of photosynthesis and m in the stomatal conductance model should be counted in estimating long-term CO? and H?O gas exchange. Overall, the coupled model successfully reproduced the observed response in net assimilation and transpiration rates.  相似文献   

5.
Soil samples were taken from depth of 0–12 cm in the virgin broad-leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L−1 and 200 μL·L−1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could product N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L−1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p<0.05), and between N2O emission and water content (r2=0.2968, p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L−1 (r2=0.3573, p<0.05). Temperature was an important factor controlling CH4 oxidation. However, when 20 μL·L−1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content. Foundation item: This paper was supported by Chinese Academy of Sciences. Biography: ZHANG Xiu-jun (1960-), female, Ph. Doctor, lecture in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110015, P.R. China. Responsible editor: Song Funan  相似文献   

6.
低温胁迫对蓝莓枝条呼吸作用及生理生化指标的影响   总被引:2,自引:0,他引:2  
为明确蓝莓枝条不同部位的耐低温能力,利用人工模拟低温胁迫的方法研究了蓝莓1年生枝条尖端、1年生枝条基端和2年生枝条对低温胁迫的生理响应。结果表明:低温胁迫下蓝莓不同部位枝条的各生理指标之间虽然具有一定的相关性,但不同生理指标的相关系数差异较大,即蓝莓枝条不同生理过程对低温的敏感性明显不同。其中,0℃时1年生枝条特别是其尖端的呼吸速率明显高于2年生枝条,但其呼吸作用对低温也特别敏感,当温度降低到-10℃时即均发生明显的降低,且1年生枝条尖端的降低幅度最大。另外,低温胁迫下1年生枝条尖端的丙二醛(MDA)含量和相对电导率增加幅度也明显大于1年生枝条基端和2年生枝条,即1年生枝条尖端对低温胁迫更为敏感。低温胁迫下不同部位枝条虽可以通过增加可溶性糖(SS)和可溶性蛋白(SP)等渗透调节物质,以及增强SOD和POD等抗氧化酶活性的方式来提高其抗寒能力,但当温度降低到-40℃时,不但抑制了蓝莓1年生枝条尖端可溶性蛋白的合成,并且1年生枝条尖端和基端的SOD活性较-20℃时也有不同程度的降低,即-40℃时1年生枝条特别是其尖端蛋白质合成的抑制以及抗氧化酶活性的降低可能是导致其蓝莓在我国北方大兴安岭地区易发生冻、干梢现象的主要原因。而1年生枝条基端和2年生枝条具有较强抗低温能力的原因除了其本身代谢活性较低,对低温不敏感外,低温下有效积累渗透调节物质和增强抗氧化酶的活性在降低其膜质过氧化程度和电解质外渗方面发挥了重要的作用。  相似文献   

7.
温度对杉木林土壤呼吸的影响(英文)   总被引:2,自引:0,他引:2  
Soil samples collected from the surface soil (0(10 cm) in an 88-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping, Fujian, China were incubated for 90 days at the temperatures of 15°C, 25°C and 35°C in laboratory. The soil CO2 evolution rates were measured at the incubation time of 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80 and 90 days. The results showed that CO2 evolution rates of soil samples varied significantly with incubation time and temperature during the incubation period. Mean CO2 evolution rate and cumulative amount of CO2 evolution from soil were highest at 35°C, followed by those at 25°C, and 15°C. Substantial differences in CO2 evolution rate were found in Q10 values calculated for the 2nd and 90th day of incubation. The Q10 value for the average CO2 evolution rate was 2.0 at the temperature range of 15-25°C, but it decreased to 1.2 at 25- 35°C. Soil CO2 evolution rates decreased with the incubation time. The cumulative mineralized C at the end of incubation period (on the 90th day) was less than 10% of the initial C amounts prior to incubation.  相似文献   

8.
Both aboveground and belowground climate affects net primary production (NNP) and forest growth. Little is known about how above and belowground factors interact. The BIOMASS-model was tested to simulate photosynthetic recovery over a wide range of soil temperatures created by snow cover manipulations on tree-scale plots in a 20-year-old Scots pine stand in northern Sweden. The differences in timing of soil warming between the plots covered a span of two months. Carbon assimilation in needles, sap flow, needle water potential and climatic parameters were measured in the field. The simulations revealed that an early start of soil warming gave a relatively early photosynthetic recovery and a 7.5% increase of NPP. Late soil warming delayed the photosynthetic recovery and reduced the NPP by 13.7%. This indicated that soil temperature needed to be accounted for, as well as air temperature, when analysing photosynthetic recovery and NPP in boreal environment. The effects of differences in soil temperature were reflected in the simulated photosynthetic recovery. The model did not fully capture the delay of photosynthetic recovery caused by a late soil warming. It was possible to integrate the complexity of the soil climate effects into a threshold date for soil thaw, using sapflow measurements together with information about air temperature and a day degree sum, as long as water availability was not limiting water uptake by roots. Although a more realistic mechanism than that currently in BIOMASS is desirable as climate change shifts the typical patterns of interplay between air and soil temperature dynamics.  相似文献   

9.
为促使黄甜竹提早出笋和延长出笋期,采用杏鲍菇废菌糠和麦壳为发热材料,谷壳为保温材料;设计不同覆盖厚度,对黄甜竹林地进行覆盖试验。结果显示:当覆盖杏鲍菇废菌糠的厚度为10cm时,最高土温达31℃,最低土温17℃;当厚度为20cm时,最高土温39℃,最低土温20℃。当覆盖麦壳的厚度为8cm时,最高土温度28℃,最低土温14℃;当厚度为16cm时,最高土温39℃,最低土温16℃。覆盖麦壳8cm时的出笋期最长,比对照延长52d;出笋数也最多,达363个,比对照增加19.0%;浮鞭数最少、浮鞭长度最小、浮鞭鞭径也最小。因此,利用林地覆盖技术提早黄甜竹出笋,延长出笋期,可选用麦壳作发热材料,厚度控制在8cm左右,然后再加盖20cm厚的保温材料谷壳,其覆盖效果最好。  相似文献   

10.
One-year old seedlings of trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.) were subject to seven soil temperatures (5, 10, 15, 20, 25, 30 and 35 °C) for 4 months. All aspen seedlings, about 40% of jack pine, 20% of white spruce and black spruce survived the 35 °C treatment. The seedlings were harvested at the end of the fourth month to determine biomass and biomass allocation. It was found that soil temperature, species and interactions between soil temperature and species significantly affected root biomass, foliage biomass, stem biomass and total mass of the seedling. The relationship between biomass and soil temperature was modeled using third-order polynomials. The model showed that the optimum soil temperature for total biomass was 22.4, 19.4, 16.0 and 13.7 °C, respectively, for jack pine, aspen, black spruce and white spruce. The optimum soil temperature was higher for leaf than for root in jack pine, aspen and black spruce, but the trend was the opposite for white spruce. Among the species, aspen was the most sensitive to soil temperature: the maximum total biomass for aspen was about 7 times of the minimum value while the corresponding values were only 2.2, 2.4 and 2.3 times, respectively, for black spruce, jack pine and white spruce. Soil temperature did not significantly affect the shoot/root (S/R) ratio, root mass ratio (RMR), leaf mass ratio (LMR), or stem mass ratio (SMR) (P>0.05) with the exception of black spruce which had much higher S/R ratios at low (5 °C) and high (30 °C) soil temperatures. There were significant differences between species in all the above ratios (P<0.05). Aspen and white spruce had the smallest S/R ratio but highest RMR while black spruce had the highest S/R but lowest RMR. Jack pine had the highest LMR but lowest SMR while aspen had the smallest LMR but highest SMR. Both LMR and SMR were significantly higher for black spruce than for white spruce.  相似文献   

11.
Xu L  Baldocchi DD 《Tree physiology》2003,23(13):865-877
Understanding seasonal changes in photosynthetic parameters and stomatal conductance is crucial for modeling long-term carbon uptake and energy fluxes of ecosystems. Gas exchange measurements of CO2 and light response curves on blue oak leaves (Quercus douglasii H. & A.) were conducted weekly throughout the growing season to study the seasonality of photosynthetic capacity (Vcmax) and Ball-Berry slope (m) under prolonged summer drought and high temperature. A leaf photosynthetic model was used to determine Vcmax. There was a pronounced seasonal pattern in Vcmax. The maximum value of Vcmax, 127 micromol m(-2) s(-1), was reached shortly after leaf expansion in early summer, when air temperature was moderate and soil water availability was high. Thereafter, Vcmax declined as the soil water profile became depleted and the trees experienced extreme air temperatures, exceeding 40 degrees C. The decline in Vcmax was gradual in midsummer, however, despite extremely low predawn leaf water potentials (Psipd, approximately -4.0 MPa). Overall, temporal changes in Vcmax were well correlated with changes in leaf nitrogen content. During spring leaf development, high rates of leaf dark respiration (Rd, 5-6 micromol m(-2) s(-1)) were observed. Once a leaf reached maturity, Rd remained low, around 0.5 micromol m(-2) s(-1). In contrast to the strong seasonality of Vcmax, m and marginal water cost per unit carbon gain (partial partial differential E/ partial partial differential A) were relatively constant over the season, even when leaf Psipd dropped to -6.8 MPa. The constancy of partial partial differential E/ partial partial differential A suggests that stomata behaved optimally under severe water-stress conditions. We discuss the implications of our findings in the context of modeling carbon and water vapor exchange between ecosystems and the atmosphere.  相似文献   

12.
Abstract

In a growth chamber experiment, root suckering of aspen (Populus tremuloides Michx.) was assessed in relation to timing of cutting and soil temperature. Aspen seedlings were grown in large pots for 3 years before experimentation. In a 2×2 factorial experiment, 3-year-old seedlings were cut at the end of the dormant period or after leaf flush and grown at two soil temperatures (8 or 20°C) for 39 days. Root systems were evaluated for suckering response and carbohydrate reserve status. There were no differences between the two soil temperatures and times of cut in the number of sucker buds initiated on the roots, but the number of buds that developed into suckers was much greater at 20°C. Cutting the dormant seedlings delayed suckering by nearly a week, resulting in smaller suckers at the time of harvest. However, cutting the seedlings when dormant produced almost twice the number of suckers than when cutting occurred after leaf-out. Total non-structural carbohydrates (TNC) of roots declined from 35.6% of dry weight at the end of the dormant season to 21.6% at the time of leaf-out, but there were no differences between the soil temperature and timing of cut treatments. After the 39 day growth period, root systems had 7% lower root TNC in the 20°C treatment than in the 8°C treatment, likely to support the development of the emerging suckers and higher respiration demands.  相似文献   

13.
Calibration of a recently developed water flow and storage model based on experimental data for a young diffuse-porous beech tree (Fagus sylvatica L.) and a young ring-porous oak tree (Quercus robur L.) revealed that differences in stem wood anatomy between species strongly affect the calibrated values of the hydraulic model parameters. The hydraulic capacitance (C) of the stem storage tissue was higher in oak than in beech (939.8 versus 212.3 mg MPa(-1)). Model simulation of the elastic modulus (epsilon) revealed that this difference was linked to the higher elasticity of the stem storage tissue of oak compared with beech. Furthermore, the hydraulic resistance (R (x)) of beech was about twice that of oak (0.1829 versus 0.1072 MPa s mg(-1)). To determine the physiological meaning of the R (x) parameter identified by model calibration, we analyzed the stem wood anatomy of the beech and oak trees. Calculation of stem specific hydraulic conductivity (k (s)) of beech and oak with the Hagen-Poiseuille equation confirmed the differences in R (x) predicted by the model. The contributions of different vessel diameter classes to the total hydraulic conductivity of the xylem were calculated. As expected, the few big vessels contributed much more to total conductivity than the many small vessels. Compared with beech, the larger vessels of oak resulted in a higher k (s) (10.66 versus 4.90 kg m(-1) s(-1) MPa(-1)). The calculated ratio of k (s) of oak to beech was 2, confirming the R (x) ratio obtained by model calibration. Thus, validation of the R (x) parameter of the model led to identification of its physiological meaning.  相似文献   

14.
An increased risk of frost is expected during the growing season, as climate warming increases spring temperatures in the Arctic. Because deciduous species have a growth season limited in length and also have generally larger conduit volumes, they are more likely than evergreens to be injured by freeze-thaw-induced cavitation during the growing season. To test whether growth at elevated temperature increases susceptibility to freeze-thaw damage, we grew a deciduous arctic shrub species (Salix pulchra Cham.) in simulated Alaskan summer temperatures and at 5 degrees C above the ambient simulation (+5 degrees C plants) in controlled environments. Stem specific hydraulic conductivity (k(s)) and leaf stomatal conductance (g(s)) were measured in plants grown at both temperatures before and after a freeze treatment simulating a mid-season frost. Before the freeze treatment, specific xylem conductivity was 2.5 times higher and stomatal conductances were 1.3 times higher in +5 degrees C plants than in ambient-grown plants. Reductions in hydraulic conductivity and stomatal conductance as a result of the freeze were 3.5 and 1.8 times greater respectively in +5 degrees C plants than in ambient-grown plants. Many of the +5 degrees C plants showed extensive leaf damage. Plants grown in the two treatments also differed in comparative xylem anatomy; +5 degrees C plants had larger vessel diameters (25.4 versus 22.6 micro m) and higher vessel densities (71 versus 67.4 vessels mm(-2)) than ambient-grown plants. Our results suggest that higher growing season temperatures will increase the susceptibility of arctic deciduous shrubs to frost damage, which may offset their competitive growth advantage.  相似文献   

15.
16.
We used three methods to measure boundary layer conductance to heat transfer (g(bH)) and water vapor transfer (g(bV)) in foliated branches of Abies amabilis Dougl. ex J. Forbes, a subalpine forest tree that produces clumped shoot morphology on sun-formed branches. Boundary layer conductances estimated in the field from energy balance measurements increased linearly from approximately 10 mm s(-1) at low wind speeds (< 0.1 m s(-1)) to over 150 mm s(-1) at wind speeds of 2.0 m s(-1). Boundary layer conductances measured on shoot models in a wind tunnel were consistently higher than field measurements. The difference between wind tunnel values and field measurements was attributable to variation in path length between the two experimental environments. Boundary layer conductance estimated by subtracting stomatal resistance (r(sV)) measured with a porometer from the total branch vapor phase resistance were unusually small. Sensitivity analysis demonstrated that this method is not suitable for coniferous foliage or when stomatal conductance (g(sV)) is small compared with g(bV). Analysis of the relative magnitudes of g(sV) and g(bV) revealed that, under most conditions, A. amabilis branches are well coupled (i.e., g(sV) is the dominant controller of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become substantially higher than air temperature when radiation is high and wind speed is low. Over a two-month period, the maximum difference between leaf and air temperatures exceeded 6 degrees C. Leaf temperature exceeded air temperature by more than 2 degrees C on 10% of the daylight hours during this period. Consideration of both the photosynthetic temperature response of A. amabilis foliage as well as the summer air temperature conditions in its habitat suggests that these elevated leaf temperatures do not have a significant impact on carbon gain during the growing season.  相似文献   

17.
Soil temperature is a main factor limiting root growth in the boreal forest. To simulate the possible soil-warming effect of future climate change, 5-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were subjected to three simulated growing seasons in controlled environment rooms. The seedlings were acclimated to a soil temperature of 16 degrees C during the first (GS I) and third growing seasons (GS III), but were assigned to random soil-temperature treatments of 9, 13, 18 and 21 degrees C during the second growing season (GS II). In GS II, shoot diameter growth was lowest in the 21 degrees C treatment and root growth was lowest in the 9 degrees C treatment. In GS III, shoot height and root length growth improved in seedlings that had been kept at 9 degrees C during GS II, indicating compensatory growth in response to increased soil temperature. The temporary decrease in soil temperature had no long-lasting significant effect on seedling biomass or total nutrient uptake. At the end of GS III, fine roots of seedlings exposed to a soil temperature of 21 degrees C in GS II were distributed more evenly between the organic and mineral soil layers than roots of seedlings in the other treatments. During GS II and GS III, root growth started earlier than shoot growth, decreased during the rapid shoot elongation phase and increased again as shoot growth decreased.  相似文献   

18.
A multiplicative model of stomatal conductance was developed and tested in two functionally distinct ecotypes of Acer rubrum L. (red maple). The model overcomes the main limitation of the commonly used Ball-Berry model (Ball et al. 1987) by accounting for stomatal behavior under soil drying conditions. We combined the Ball-Berry model with an integrated expression of abscisic acid (ABA)-based stomatal response to ABA concentration ([ABA]) in bulk leaf tissue (gfac), which coupled physiological changes at the leaf level with those in the root. The factor gfac = exp(-beta[ABA]L) incorporated the stomatal response to [ABA] into the Ball-Berry model by down regulating stomatal conductance (gs) in response to physiological changes in the root. The down regulation of gs is pertinent under conditions where soil drying may modify the delivery of chemical signals to leaf stomata. Model testing indicated that the multiplicative model was capable of predicting gs in red maple under wide ranges of soil and atmospheric conditions. Concordance correlation coefficients were high (between 0.59 and 0.94) for the tested ecotypes under three environmental conditions (atmospheric, rhizospheric and minimal stress). The study supported the use of gfac as a gas exchange function that controls water stress effects on gs and aids in the prediction of gs responses.  相似文献   

19.
Soil respiration (SR) was monitored periodically throughout 2001 in a Scots pine (Pinus sylvestris L.) stand located in the Belgian Campine region. As expected for a temperate maritime forest, temperature was the dominant control over SR during most of the year. However, during late spring and summer, when soil water content (SWC) was limiting, SR was insensitive to temperature (Q(10) = 1.24). We observed that during prolonged rain-free periods, when SWC was less than 15% (v/v), SR decreased dramatically (up to 50%) and SWC took over control of SR. During such drought periods, however, rain events sometimes stimulated SR and restored temperature control over SR, even though SWC in the mineral soil was low. We hypothesize that restoration of temperature control occurred only when rain events adequately rewetted the uppermost soil layers, where most of the respiratory activity occurred. To quantify the rewetting capacity of rain events, an index (I(w)) was designed that incorporated rainfall intensity, time elapsed since the last rain event, and atmospheric vapor pressure deficit (a proxy for evaporative water losses). To simulate SR fluxes, a model was developed that included the effects of soil temperature and, under drought and non-rewetting conditions (I(w) and SWC < threshold), an SWC response function. The model explained 95% of the temporal variability in SR observed during summer, whereas the temperature function alone explained only 73% of this variability. Our results revealed that, in addition to temperature and SWC, rain plays a role in determining the total amount of carbon released from soils, even in a maritime climate.  相似文献   

20.
基于江苏省泰州市2007—2020年气候资料和银杏超小卷叶蛾Pammene ginkgoicola Liu发生数据,运用Pearson相关性分析和线性回归分析法,分析气温和降水因子对银杏超小卷叶蛾发生影响,建立虫害发生率的回归预测模型.结果表明:银杏超小卷叶蛾发生率与羽化和孵化期平均降水量呈极显著正相关关系(P<0.0...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号