首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We investigated effects of water stress and external abscisic acid (ABA) supply on shoot growth, stomatal conductance and water status in 1-year-old cuttings of a drought-sensitive poplar genotype Populus x euramericana cv. I-214 (Italica) and a drought-tolerant genotype P. 'popularis 35-44' (popularis). Populus popularis was more productive and maintained higher leaf water potentials throughout the drought treatment than cv. Italica. Supply of ABA to the xylem sap caused a greater decline in growth and more leaf abscission in shoots of cv. Italica than in shoots of P. popularis. Immediately after initiation of the drought treatment in P. popularis, the ABA concentration ([ABA]) of the xylem increased rapidly and stomatal conductance declined; however, stomatal conductance had returned to control values by the third day of the drought treatment, coincident with a gradual decline in xylem [ABA]. In contrast, xylem [ABA] of cv. Italica initially increased more slowly than that of P. popularis in response to the drought treatment, but the increase continued for 3 days at which time a tenfold increase in xylem [ABA] was observed that was followed by abscission of more than 40% of the leaves. We conclude that sensitivity of poplar roots to variation in soil water content varies by clone and that a rapid short-term accumulation of ABA in shoots in response to water stress may contribute to drought tolerance.  相似文献   

2.
Seedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1-2 pmol ABA m(-2) leaf area s(-1)) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil.  相似文献   

3.
Patterns of water relations, xylem sap abscisic acid concentration ([ABA]) and stomatal aperture were characterized and compared in drought-sensitive black walnut (Juglans nigra L.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.) trees co-occurring in a second-growth forest in Missouri, USA. There were strong correlations among reduction in predawn leaf water potential, increased xylem sap [ABA] and stomatal closure in all species. Stomatal conductance was more closely correlated with xylem sap ABA concentration than with ABA flux or xylem sap pH and cation concentrations. In isohydric black walnut, increased concentrations of ABA in the xylem sap appeared to be primarily of root origin, causing stomatal closure in response to soil drying. In anisohydric sugar maple and white oak, however, there were reductions in midday leaf water potential associated with stomatal closure, making it uncertain whether drought-induced xylem sap ABA was of leaf or root origin. The role of root-originated xylem sap ABA in these species as a signal to the shoot of the water status of the roots is, therefore, less certain.  相似文献   

4.
Patterns of water relations, xylem sap abscisic acid (ABA) concentration ([ABA]) and stomatal aperture were compared in drought-sensitive black walnut (Juglans nigra L.) and black willow (Salix nigra Marsh.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.). Strong correlations among reduction in predawn water potential, increase in xylem sap [ABA] and stomatal closure were observed in all species. Stomatal response was more highly correlated with xylem [ABA] than with ABA flux. Xylem sap pH and ion concentrations appeared not to play a major role in the stomatal response of these species. Stomata were more sensitive to relative changes in [ABA] in drought-sensitive black walnut and black willow than in sugar maple and white oak. In the early stages of drought, increased [ABA] in the xylem sap of black walnut and black willow was probably of root origin and provided a signal to the shoot of the water status of the roots. In sugar maple and white oak, leaf water potential declined with the onset of stomatal closure, so that stomatal closure also may have occurred in response to the change in leaf water potential.  相似文献   

5.
Leaf conductance, water relations, growth, and abscisic acid (ABA) concentrations in xylem sap, root apices and leaves were assessed in oak seedlings (Quercus robur L.) grown with a root system divided between two compartments and subjected to one of four treatments: (a) well watered, WW; (b) half of root system exposed to soil drying and half kept well watered, WD; (c) whole root system exposed to drought, DD; and (d) half of root system severed, RE. Sharp decreases in plant stomatal conductance, leaf water potential, hydraulic conductance and leaf growth were observed during DD treatment. No significant differences in plant leaf water potential and stomatal conductance were detected between the WW and WD treatments. Nevertheless, the WD treatment resulted in inhibition of leaf expansion and stimulation of root elongation only in the well-watered compartment. Abscisic acid concentrations did not change in leaves, root tips, or xylem sap of WD- compared to WW-treated plants. Increased concentrations of ABA were observed in xylem sap from DD-treated plant roots, but the total flux of ABA to shoots was reduced compared to that in WW-treated plants, because of decreases in transpiration flux. Similar plant responses to the WD and RE treatments indicate that the responses observed in the WD-treated plants were probably not triggered by a positive signal originating from drying roots.  相似文献   

6.
Wikberg J  Ogren E 《Tree physiology》2007,27(9):1339-1346
Growth and water-use parameters of four willow (Salix spp.) clones grown in a moderate drought regime or with ample water supply were determined to characterize their water-use efficiency, drought resistance and capacity for drought acclimation. At the end of the 10-week, outdoor pot experiment, clonal differences were observed in: (1) water-use efficiency of aboveground biomass production (WUE); (2) resistance to xylem cavitation; and (3) stomatal conductance to leaf-specific, whole-plant hydraulic conductance ratio (g(st)/K(P); an indicator of water balance). Across clones and regimes, WUE was positively correlated with the assimilation rate to stomatal conductance ratio (A/g(st)), a measure of instantaneous water-use efficiency. Both of these water-use efficiency indicators were generally higher in drought-treated trees compared with well-watered trees. However, the between-treatment differences in (shoot-based) WUE were smaller than expected, considering the differences in A/g(st) for two of the clones, possibly because plants reallocated dry mass from shoots to roots when subject to drought. Higher root hydraulic conductance to shoot hydraulic conductance ratios (K(R)/K(S)) during drought supports this hypothesis. The same clones were also the most sensitive to xylem cavitation and, accordingly, showed the strongest reduction in g(st)/K(P) in response to drought. Drought acclimation was manifested in decreased g(st), g(st)/K(P), osmotic potential and leaf area to vessel internal cross-sectional area ratio, and increased K(R), K(P) and WUE. Increased resistance to stem xylem cavitation in response to drought was observed in only one clone. It is concluded that WUE and drought resistance traits are inter-linked and that both may be enhanced by selection and breeding.  相似文献   

7.
Root tips of intact willow (Salix dasyclados Wimm., Clone 81-090) plants were partially dried by exposure to ambient greenhouse air and then kept in water-vapor-saturated air for up to 3 days. The drying treatment increased abscisic acid (ABA) concentrations in both the root tips subjected to drying and in the xylem sap, while it reduced leaf stomatal conductance and leaf extension rate. Despite the decrease in stomatal conductance, leaf water potentials were unaffected by the root drying treatment, indicating that the treatment reduced hydraulic conductivity between roots and foliage. After roots subjected to drying were returned to a nutrient solution or excised, ABA concentrations in the remaining roots and in the xylem sap, stomatal conductance of mature leaves and extension rate of unfolding leaves all returned to values observed in control plants. The 4-fold increase in xylem sap ABA concentration following the root drying treatment was not solely the result of reduced sap flow, and thus may be considered a potential cause, not merely a consequence, of the observed reduction in stomatal conductance.  相似文献   

8.
This paper studied the seasonal characteristics to resist the drought stress of Haloxylon persicum Bge. Ex Boiss. et Buhse photosynthetic shoots at habitat. The results showed that the predominant drought resistance factors were varied at the different stage from growth to development. In the blooming season (from May 31 to June 29), endogenous ABA contents were rare; stomatal conductance and photosynthesis intensity were the highest at the whole stage from growth to development; soluble sugars contents had a decreasing trend and proline contents increased a little that made proline become the predominant factor to resist the drought under this light water stress. In the hot summer (from June 29 to July 26), ABA contents accumulated rapidly; stomatal conductance dropped to the lowest level of the growth and development; chlorophyll was also decomposed; both soluble sugars and proline contents showed the trend of quickly accumulating, but the former was faster than the latter. It was due to stomatal limitation and osmotic organic molecules accumulation that would affect the photosynthetic shoots to resist severe drought stress. At the late period of the development (from Aug 9 to Aug 22), ABA rapidly accumulated, its contents got to the highest level of whole life-span; stomatal conductance increased a little; proline and soluble sugars contents changed little at high level; while the ratios of ABA to CTK content and ABA to IAA content got up obviously, the effect to resist drought stress on high content ABA was inhibited by endogenous plant hormone CTK and IAA, then the continuing accumulation of proline and soluble sugars would be prevented. Osmosis of organic molecules was the most important factor to adjust leaves to severe water stress at this period. __________ Translated from Scientia Silvae Sinicae, 2005, 41(5) [译自, 林业科学 2005, 41(5)]  相似文献   

9.
Stöhr A  Lösch R 《Tree physiology》2004,24(2):169-180
We report on diurnal and seasonal variations in sap flow rate and stem water potential of Fraxinus excelsior L. saplings growing at the edge of a Fraxino-Aceretum forest in western Germany. Because of shallow soil, the trees were subjected to drought in summer. When soil water availability was not limiting, sap flow rate was related to changes in solar radiation and vapor pressure deficit. Maximum transpiration rates per leaf area were 3.5-7.4 mmol m-2 s-1, and maximum daily totals were 1.7-3.3 kg m-2 day-1. Under drought conditions, stem water potential dropped to midday minima of -2.6 to -3.5 MPa and sap flow rate was strongly related to this parameter. After the drought period, reduced apparent (whole-plant) hydraulic conductance was observed, which was attributed to a continued reduction in stomatal conductance after the drought stress had ceased. A model was developed that linked sap flow rate directly to climatic variables and stem water potential. Good correlation between measured and simulated sap flow rates allowed the model to be used for data interpretation.  相似文献   

10.
Nocturnal water flux has been observed in trees under a variety of environmental conditions and can be a significant contributor to diel canopy water flux. Elevated atmospheric CO(2) (elevated [CO(2)]) can have an important effect on day-time plant water fluxes, but it is not known whether it also affects nocturnal water fluxes. We examined the effects of elevated [CO(2)] on nocturnal water flux of field-grown Eucalyptus saligna trees using sap flux through the tree stem expressed on a sapwood area (J(s)) and leaf area (E(t)) basis. After 19 months growth under well-watered conditions, drought was imposed by withholding water for 5 months in the summer, ending with a rain event that restored soil moisture. Reductions in J(s) and E(t) were observed during the severe drought period in the dry treatment under elevated [CO(2)], but not during moderate- and post-drought periods. Elevated [CO(2)] affected night-time sap flux density which included the stem recharge period, called 'total night flux' (19:00 to 05:00, J(s,r)), but not during the post-recharge period, which primarily consisted of canopy transpiration (23:00 to 05:00, J(s,c)). Elevated [CO(2)] wet (EW) trees exhibited higher J(s,r) than ambient [CO(2)] wet trees (AW) indicating greater water flux in elevated [CO(2)] under well-watered conditions. However, under drought conditions, elevated [CO(2)] dry (ED) trees exhibited significantly lower J(s,r) than ambient [CO(2)] dry trees (AD), indicating less water flux during stem recharge under elevated [CO(2)]. J(s,c) did not differ between ambient and elevated [CO(2)]. Vapour pressure deficit (D) was clearly the major influence on night-time sap flux. D was positively correlated with J(s,r) and had its greatest impact on J(s,r) at high D in ambient [CO(2)]. Our results suggest that elevated [CO(2)] may reduce night-time water flux in E. saligna when soil water content is low and D is high. While elevated [CO(2)] affected J(s,r), it did not affect day-time water flux in wet soil, suggesting that the responses of J(s,r) to environmental factors cannot be directly inferred from day-time patterns. Changes in J(s,r) are likely to influence pre-dawn leaf water potential, and plant responses to water stress. Nocturnal fluxes are clearly important for predicting effects of climate change on forest physiology and hydrology.  相似文献   

11.
Stomatal responsiveness to evaporative demand (air vapour pressure deficit (VPD)) ranges widely between species and cultivars, and mechanisms for stomatal control in response to VPD remain obscure. The interaction of irrigation and soil moisture with VPD on stomatal conductance is particularly difficult to predict, but nevertheless is critical to instantaneous transpiration and vulnerability to desiccation. Stomatal sensitivity to VPD and soil moisture was investigated in Semillon, an anisohydric Vitis vinifera L. variety whose leaf water potential (Ψ(l)) is frequently lower than that of other grapevine varieties grown under similar conditions in the warm grape-growing regions of Australia. A survey of Semillon vines across seven vineyards revealed that, regardless of irrigation treatment, midday Ψ(l) was dependent on not only soil moisture but VPD at the time of measurement. Predawn Ψ(l) was more closely correlated to not only soil moisture in dry vineyards but to night-time VPD in drip-irrigated vineyards, with incomplete rehydration during high night-time VPD. Daytime stomatal conductance was low only under severe plant water deficits, induced by extremes in dry soil. Stomatal response to VPD was inconsistent across irrigation regime; however, in an unirrigated vineyard, stomatal sensitivity to VPD-the magnitude of stomatal response to VPD-was heightened under dry soils. It was also found that stomatal sensitivity was proportional to the magnitude of stomatal conductance at a reference VPD of 1kPa. Exogenous abscisic acid (ABA) applied to roots of Semillon vines growing in a hydroponic system induced stomatal closure and, in field vines, petiole xylem sap ABA concentrations rose throughout the morning and were higher in vines with low Ψ(l). These data indicate that despite high stomatal conductance of this anisohydric variety when grown in medium to high soil moisture, increased concentrations of ABA as a result of very limited soil moisture may augment stomatal responsiveness to low VPD.  相似文献   

12.
Water relations in woody species are intimately related to xylem hydraulic properties. High CO(2) concentrations ([CO(2)]) generally decrease transpiration and stomatal conductance (g(s)), but there is little information about the effect of atmospheric [CO(2)] on xylem hydraulic properties. To determine the relationship between water flow and hydraulic structure at high [CO(2)], we investigated responses of sun and shade leaves of 4-year-old saplings of diffuse-porous Betula maximowicziana Regel and ring-porous Quercus mongolica Fisch. ex Ledeb. ssp. crispula (Blume) Menitsky grown on fertile brown forest soil or infertile volcanic ash soil and exposed to 500 micromol CO(2) mol(-1) for 3 years. Regardless of species and soil type, elevated [CO(2)] consistently decreased water flow (i.e., g(s) and leaf-specific hydraulic conductivity) and total vessel area of the petiole in sun leaves; however, it had no effect on these parameters in shade leaves, perhaps because g(s) of shade leaves was already low. Changes in water flow at elevated [CO(2)] were associated with changes in petiole hydraulic properties.  相似文献   

13.
Water use, hydraulic properties and xylem vulnerability to cavitation were studied in the coffee (Coffea arabica L.) cultivars San Ramon, Yellow Caturra and Typica growing in the field under similar environmental conditions. The cultivars differed in growth habit, crown morphology and total leaf surface area. Sap flow, stomatal conductance (g(s)), crown conductance (g(c)), apparent hydraulic conductance of the soil-leaf pathway (G(t)), leaf water potential (Psi(L)) and xylem vulnerability to loss of hydraulic conductivity were assessed under well-watered conditions and during a 21-day period when irrigation was withheld. Sap flow, g(c), and G(t) were greatest in Typica both with and without irrigation, lowest in San Ramon, which was relatively unresponsive to the withholding of irrigation, and intermediate in Yellow Caturra. The cultivars had similar g(s) when well watered, but withholding water decreased g(s) more in Typica and Yellow Caturra than in San Ramon. Typica had substantially lower Psi(L) near the end of the unirrigated period than the other cultivars (-2.5 versus -1.8 MPa), consistent with the relatively high sap flow in this cultivar. Xylem vulnerability curves indicated that Typica was less susceptible to loss of hydraulic conductivity than the other cultivars, consistent with the more negative Psi(L) values of Typica in the field during the period of low soil water availability. During soil drying, water use declined linearly with relative conductivity loss predicted from vulnerability curves. However, cultivar-specific relationships between water use and predicted conductivity loss were not observed because of pronounced hysteresis during recovery of water use following soil water recharge. All cultivars shared the same functional relationship between integrated daily sap flow and G(t), but they had different operating ranges. The three cultivars also shared common functional relationships between hydraulic architecture and water use despite consistent differences in water use under irrigated and dry soil conditions. We conclude that hydraulic architectural traits, rate of water use per plant and crown architecture are important determinants of short- and long-term variations in the water balance of Coffea arabica.  相似文献   

14.
Stomatal conductance was quantified with sap flux sensors and whole-tree chambers in mature Norway spruce (Picea abies (L.) Karst.) trees after 3 years of exposure to elevated CO(2) concentration ([CO(2)]) in a 13-year nutrient optimization experiment. The long-term nutrient optimization treatment increased tree height by 3.7 m (67%) and basal diameter by 8 cm (68%); the short-term elevated [CO(2)] exposure had no effect on tree size or allometry. Nighttime transpiration was estimated as approximately 7% of daily transpiration in unchambered trees; accounting for the effect of nighttime flux on the processing of sap flux signals increased estimated daily water uptake by approximately 30%. Crown averaged stomatal conductance (g(s)) was described by a Jarvis-type model. The addition of a stomatal response time constant (tau) and total capacitance of stored water (C(tot)) improved the fit of the model. Model estimates for C(tot) scaled with sapwood volume of the bole in fertilized trees. Hydraulic support-defined as a lumped variable of leaf-specific hydraulic conductivity and water potential gradient (K(l)DeltaPsi) -was estimated from height, sapwood-to-leaf area ratio (A(s):A(l)) and changes in tracheid dimensions. Hydraulic support explained 55% of the variation in g(s) at reference conditions for trees across nutrient and [CO(2)] treatments. Removal of approximately 50% of A(l) from three trees yielded results suggesting that stomatal compensation (i.e., an increase in g(s)) after pruning scales inversely with K(l)DeltaPsi, indicating that the higher the potential hydraulic support after pruning, the less complete the stomatal compensation for the increase in A(s):A(l).  相似文献   

15.
A multiplicative model of stomatal conductance was developed and tested in two functionally distinct ecotypes of Acer rubrum L. (red maple). The model overcomes the main limitation of the commonly used Ball-Berry model (Ball et al. 1987) by accounting for stomatal behavior under soil drying conditions. We combined the Ball-Berry model with an integrated expression of abscisic acid (ABA)-based stomatal response to ABA concentration ([ABA]) in bulk leaf tissue (gfac), which coupled physiological changes at the leaf level with those in the root. The factor gfac = exp(-beta[ABA]L) incorporated the stomatal response to [ABA] into the Ball-Berry model by down regulating stomatal conductance (gs) in response to physiological changes in the root. The down regulation of gs is pertinent under conditions where soil drying may modify the delivery of chemical signals to leaf stomata. Model testing indicated that the multiplicative model was capable of predicting gs in red maple under wide ranges of soil and atmospheric conditions. Concordance correlation coefficients were high (between 0.59 and 0.94) for the tested ecotypes under three environmental conditions (atmospheric, rhizospheric and minimal stress). The study supported the use of gfac as a gas exchange function that controls water stress effects on gs and aids in the prediction of gs responses.  相似文献   

16.
Under certain environmental conditions, nocturnal transpiration can be relatively high in temperate and tropical woody species. We have previously shown that nocturnal sap flow accounts for up to 28% of total daily transpiration in woody species growing in a nutrient-poor Brazilian Cerrado ecosystem. In the present study, we assessed the effect of increased nutrient supply on nocturnal transpiration in three dominant Cerrado tree species to explore the hypothesis that, in nutrient-poor systems, continued transpiration at night may enhance delivery of nutrients to root-absorbing surfaces. We compared nocturnal transpiration of trees growing in unfertilized plots and plots to which nitrogen (N) and phosphorus (P) had been added twice yearly from 1998 to 2005. Three independent indicators of nocturnal transpiration were evaluated: sap flow in terminal branches, stomatal conductance (g(s)), and disequilibrium in water potential between covered and exposed leaves (DeltaPsi(L)). In the unfertilized trees, about 25% of the total daily sap flow occurred at night. Nocturnal sap flow was consistently lower in the N- and P-fertilized trees, significantly so in trees in the N treatment. Similarly, nocturnal g(s) was consistently lower in fertilized trees than in unfertilized trees where it sometimes reached values of 150 mmol m(-2) s(-1) by the end of the dark period. Predawn gs and the percentage of nocturnal sap flow were linearly related. Nocturnal DeltaPsi(L) was significantly greater in the unfertilized trees than in N- and P-fertilized trees. The absolute magnitude of DeltaPsi(L) increased linearly with the percentage of nocturnal sap flow. These results are consistent with the idea that enhancing nutrient uptake by allowing additional transpiration to occur at night when evaporative demand is lower may avoid excessive dehydration associated with increased stomatal opening during the day when evaporative demand is high.  相似文献   

17.
In 1991 and 1992, mature maple trees (Acer saccharum Marsh.) were freeze-stressed or drought-stressed by preventing precipitation (snow or rain) from reaching the forest floor under selected trees. Lack of snow cover caused a decrease in soil temperature to well below 0 degrees C from December to April and a lowering of the soil water content to 10%. The abscisic acid (ABA) concentration in the spring sap of deep-soil frost-stressed trees was significantly higher than in control or drought-stressed trees. The increase in ABA concentration in the xylem sap in the spring of 1991 and 1992 preceded symptoms of canopy decline and a decrease in leaf area that were observed during the summers of 1991 and 1992. These results suggest a role for ABA in root-to-shoot communication in response to environmental stress. The largest differences in ABA concentration induced by the treatments was found in sap collected at the end of sap flow. The increase in ABA concentration in spring sap at the end of the sap flow could be used as an early indicator of stress suffered by trees during the winter. Not only did the increase in ABA concentration occur before any visible symptoms of tree decline appeared, but the trees that showed the most evident decline had the highest ABA concentrations in the spring sap. Leaf ABA concentration was not a good indicator of induced stress.  相似文献   

18.
Chronic decline and Sudden death are two syndromes of cork oak (Quercus suber) dieback. Mortality is associated with water stress, but underlying physiological mechanisms are poorly understood. Here, we investigated the physiological performance of declining trees during the summer drought. Leaf water potential, gas-exchange, fluorescence of photosystem II and leaf and root starch concentration were compared in healthy (asymptomatic) and declining trees. Low annual cork increment in declining trees indicated tree decline for several years. All trees showed similar water status in spring. In summer, declining trees showed lower predawn leaf water potential (?2.0 vs. ?0.8 MPa), but unexpectedly higher midday leaf water potential than healthy trees (?2.8 vs. ?3.3 MPa). The higher midday water potential was linked to by means of strongly reduced stomatal conductance and, consequently, transpiration. This study is pioneer showing that declining trees had high midday water potential. A tendency for lower sap flow driving force (the difference between predawn and midday water potential) in declining trees was also associated with reduced photosynthesis, suggesting that chronic dieback may be associated with low carbon uptake. However, starch in roots and leaves was very low and not correlated to the health status of trees. Declining trees showed lower water-use efficiency and non-photochemical quenching in summer, indicating less resistance to drought. Contrarily to chronic decline, one tree that underwent sudden death presented predawn leaf water potential below the cavitation threshold.  相似文献   

19.
白梭梭同化枝对干旱胁迫的生理生态响应   总被引:8,自引:1,他引:7  
对白梭梭同化枝自然水分胁迫下的季节抗旱特征进行研究。结果表明:自然干旱胁迫条件下,不同生长发育时期同化枝的主导抗旱生理因子不同。5月31日至6月29日盛花期间,同化枝内源ABA含量甚微,气孔导度值与光合强度处于生长发育过程的最高水平,可溶性糖含量呈现下降趋势,而脯氨酸含量略有增加,植物通过渗透调节作用适应此阶段轻度干旱胁迫;6月29日至7月26日盛夏期间,ABA迅速积累,气孔导度值降为生长发育过程的最低值,叶绿素分解,可溶性糖与脯氨酸均呈现快速积累趋势,且可溶性糖积累强度大于脯氨酸;8月9日至8月22日同化枝生长发育后期,ABA急剧积累为生长发育过程的最高浓度,气孔导度值有所增大,脯氨酸和可溶性糖保持在高水平平稳变化。此阶段高浓度ABA调节植物生理过程适应干旱的效应受CTK、IAA两种内源激素的抑制,进而抑制脯氨酸和可溶性糖的继续积累。  相似文献   

20.
Environmental controls on sap flow in a northern hardwood forest   总被引:1,自引:0,他引:1  
Our objective was to gain a detailed understanding of how photosynthetically active radiation (PAR), vapor pressure deficit (D) and soil water interact to control transpiration in the dominant canopy species of a mixed hardwood forest in northern Lower Michigan. An improved understanding of how these environmental factors affect whole-tree water use in unmanaged ecosystems is necessary in assessing the consequences of climate change on the terrestrial water cycle. We used continuously heated sap flow sensors to measure transpiration in mature trees of four species during two successive drought events. The measurements were scaled to the stand level for comparison with eddy covariance estimates of ecosystem water flux (Fw). Photosynthetically active radiation and D together explained 82% of the daytime hourly variation in plot-level transpiration, and low soil water content generally resulted in increased stomatal sensitivity to increasing D. There were also species-specific responses to drought. Quercus rubra L. showed low water use during both dry and wet conditions, and during periods of high D. Among the study species, Acer rubrum L. showed the greatest degree of stomatal closure in response to low soil water availability. Moderate increases in stomatal sensitivity to D during dry periods were observed in Populus grandidentata Michx. and Betula papyrifera Marsh. Sap flow scaled to the plot level and Fw demonstrated similar temporal patterns of water loss suggesting that the mechanisms controlling sap flow of an individual tree also control ecosystem evapotranspiration. However, the absolute magnitude of scaled sap flow estimates was consistently lower than Fw. We conclude that species-specific responses to PAR, D and soil water content are key elements to understanding current and future water fluxes in this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号