首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of loamy sandy postagrogenic soils in the course of their natural overgrowing were studied in the southeastern part of Kostroma oblast. Micromorphological indications of tillage were preserved in these soils at least 35–40 years after the cessation of their agricultural use. In the course of the soil overgrowing with forest vegetation, the bulk density of the upper part of the former plow horizon decreased, the pH and the ash content of the litter horizon somewhat lowered with a simultaneous increase in the acidity of the upper mineral horizon, especially at the beginning of the formation of the tree stand. In 5–7 years after the cessation of tillage, the former plow horizon was differentiated with respect to the organic carbon content. The total pool of organic carbon in the upper 30 cm increased. In the course of the further development, in the postagrogenic soil under the 90to 100-year-old forest, the organic carbon pool in this layer became lower. The soil of the young fallow (5–7 years) was characterized by the higher values of the microbial biomass in the upper mineral horizon in comparison with that in the plowed soil. In general, the microbial biomass in the studied postagrogenic ecosystems (the soils of the fields abandoned in 2005 and 2000 and the soil under the secondary 40-year-old forest) was lower than that in the soil of the subclimax 90to 100-year-old forest. The enzymatic activity of the soils tends to increase during the succession. The restoration of the invertase and, partly, catalase activities to the values typical of the soils under mature forests takes place in about 40 years.  相似文献   

2.
Changes in carbon stocks and physical properties of gray forest soils during their postagrogenic evolution have been studied in the succession chronosequence comprising an arable, lands abandoned 6, 15, and 30 years ago; and a secondary deciduous forest (Experimental Field Station of the Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Pushchino, Moscow region). It is found that carbon stocks in the upper 60-cm soil layer gain with increasing period of abandonment, from 6.17 kg C/m2 on the arable land to 8.81 kg C/m2 in the forest soil, which represents the final stage of postagrogenic succession. The most intensive carbon accumulation occurs in the upper layer of the former plow (0- to 10-cm) horizon. It is shown that the self-restoration of gray forest soils is accompanied by a reliable decrease of bulk density in the upper 10-cm layer from 1.31 ± 0.01 g/cm3 on the arable to 0.97 ± 0.02 g/cm3 in the forest. In the former plow horizon of the arable–abandoned land–forest succession series, the portion of macroaggregates increases from 73.6 to 88.5%; the mean weighted diameter of aggregates, by 1.6 times; and the coefficient of aggregation, by 3.8 times. Thus, the removal of lands from agricultural use results in a gradual restoration of their natural structure, improvement of soil agronomical properties, and carbon sequestration in the upper part of the soil profile.  相似文献   

3.
Changes in soil microbial processes and phytocenotic parameters were studied in clearings made for power transmission lines in the subtaiga and southern taiga of Central Siberia. In these clearings, secondary meadow communities play the main environmental role. The substitution of meadow vegetation for forest vegetation, the increase in the phytomass by 40–120%, and the transformation of the hydrothermic regime in the clearings led to the intensification of the humus-accumulative process, growth of the humus content, reduction in acidity and oligotrophy of the upper horizons in the gray soils of the meadow communities, and more active microbial mineralization of organic matter. In the humus horizon of the soils under meadows, the microbial biomass (Cmicr) increased by 20–90%, and the intensity of basal respiration became higher by 60–90%. The values of the microbial metabolic quotient were also higher in these soils than in the soils under the native forests. In the 0- to 50-cm layer of the gray soils under the meadows, the total Cmicr reserves were 35–45% greater and amounted to 230–320 g/m3; the total microbial production of CO2 was 1.5–2 times higher than that in the soil of the adjacent forest and reached 770–840 mg CO2-C/m3 h. The predominance of mineralization processes in the soils under meadows in the clearings reflected changes in edaphic and trophic conditions of the soils and testified to an active inclusion of the herb falloff into the biological cycle.  相似文献   

4.
The organic carbon content in developed soddy-podzolic soils increased during the overgrowing of abandoned plowland with meadow and forest vegetation. The highest carbon content was recorded at the stage of 40–50-year-old forest, which was related to the largest input of organic matter into the soil and the intense litter decomposition during this period. A decrease in the soil carbon content was observed during the development of forest vegetation on the long-term hayfields in place of the former croplands, because the humus content in the lower part of the old-arable horizon decreased significantly. The spatial variability in the distribution of organic carbon in the soils increased with the development of forest biogeocenoses.  相似文献   

5.
The proportion between the fungal and bacterial biomass, the potential activity of denitrification, and the intensity of N2O production were determined in the soils (chernozem and soddy-podzolic) of secondary biocenoses formed upon the abandoning of agricultural lands. The substitution of meadow and forest vegetation for agrocenoses has led to an increase in the percentage of the fungal biomass in the upper soil horizons. The rate of the net N2O production after the soil moistening positively correlated with the content of nitrates. In the soddy-podzolic soil (pH 3.7–5.6), the rate of nitrous oxide production was higher than that in the chernozem (pH 6.1–6.8). The rate of N2O production was inversely proportional to the bacterial biomass in the soils.  相似文献   

6.
The postagrogenic transformation of the plow horizon of soddy-podzolic soils under a mown meadow and an artificially planted dense spruce stand has been studied in relation to the microclimatic specificity, water budgets, and soil temperature regimes in the compared cenoses. Over 20 years, a considerable part of precipitation reaching the soil surface under the meadow cenosis has been discharged with the surface runoff and subsurface lateral water flows. The soil warming in summer has been considerable, and the soil freezing in winter has been relatively weak. As a result, a gray humus horizon with well-shaped fine granular and coprolitic structure has been formed within the body of the former plow layer. Under the spruce stand, a larger part of atmospheric moisture has been infiltrated into the soil. The microclimatic conditions under the spruce stand have been more humid and colder. As a result, a thinner humus horizon with a considerable admixture of weakly decomposed plant debris has been formed in the upper part of the former plow layer. Below, a newly formed horizon with a specific thin platy (schlieren) structure ha been developed. The morphology of this horizon resembles the morphology of the eluvial horizon in virgin soddy-podzolic soils.  相似文献   

7.
The evolution of automorphic cultivated soils of the Fayette series (the order of Alfisols)—close analogues of gray forest soils in the European part of Russia—was studied by the method of agrosoil chronosequences in the lower reaches of the Iowa River. It was found that the old-arable soils are characterized by an increase in the thickness of humus horizons and better aggregation; they are subjected to active biogenic turbation by rodents; some alkalization of the soil reaction and an increase in the sum of exchangeable bases also take place. These features are developed against the background of active eluvial-illuvial differentiation and gleyzation of the soil profiles under conditions of a relatively wet climate typical of the ecotone between the zones of prairies and broadleaved forests in the northeast Central Plains of the United States.  相似文献   

8.
The dynamics of carbon in ecosystems of abandoned agricultural lands were studied in the southern taiga zone. The soil acidity increased in the course of natural reforestation (the transition from meadow ecosystems to forest ecosystems) of the plots. The humus content in the upper soil layer decreased; changes in the humus content were less pronounced in sandy soils. The emission of carbon dioxide from the soils depended on the stage of vegetation succession during the restoration of forest vegetation.  相似文献   

9.
The effect of two methods for the preparation of soil samples for sorption experiments—hard (dehydration at 105°C) and mild (drying over P2O5 at 20°C in vacuum) drying—on the values of the vaporphase sorption of p-xylene was studied depending on the content of organic matter in the soil. It was shown with dark gray forest and chernozemic soils as examples that the hard drying of soil samples taken from the upper layer of the humus profile with a high content (>4%) of organic carbon decreased their sorption capacity in the range of 0–5% by 7–81%. Therefore, the method is unsuitable for these soils. It was also found that the mild method of soil preparation had obvious analytical advantages.  相似文献   

10.
Soil pollution with Cr, Cu, Ni, and Pb oxides and with oil products in the Adygea Republic leads to the deterioration of the soil biological properties. According to the degree of deterioration of the biological properties, the soils of Adygea may be arranged into the following sequence: brown forest soils > mountainous meadow (subalpine) soils > gray forest soils > soddy calcareous soils = leached vertic chernozems. With respect to the negative effect of heavy metal oxides on the biological properties of the soils, they form the following sequence: CrO3 > CuO = PbO ≥ NiO.  相似文献   

11.
Adverse changes in the physical and chemical properties of arable gray forest and soddy meadow soils (forest-steppe zone, Lake Baikal region) polluted with fluorides emitted by an aluminum smelter in Irkutsk are shown. The field experiments of the long-term (1997–2005) monitoring and laboratory incubation experiments revealed that the CO2 emission from the gray forest soil was higher than from the soddy meadow soil. Its intensity depended on the soil properties and buffering capacity of the soils to fluorides, as well as on the content of water-soluble fluorides and the hydrothermal factors.  相似文献   

12.
In the chronological sequence of postagrogenic soils, the restoration of the original differentiation of the soil profile and its horizons proceeded with different rates depending on the fallow age and the horizon depth. The layer sampling (at 5-cm intervals) showed that the plow horizon began to differentiate into a system of subhorizons in all the fallow soils. The zonal pedogenesis showed clear signs of manifestation already in the 15-year-old fallow. The upper part of the former plow horizon in the 15- and 60-year-old fallows under herbaceous plants was transformed into a soddy horizon, while a postagrogenic soil 90 years old already developed under a zonal type of vegetation and approached the control soil in its morphological features. The content and reserve of carbon in the soils showed a stable tendency of increasing (especially in the upper part of the plow horizon) during the entire postagrogenic period under study. The water permeability of the soils gradually increased and approached that of the virgin soil. However, the compacted subsurface horizon (the plow pan) disappeared only after 90 years. The assessment of the physicochemical properties of the soils and the structural and functional parameters of the humic acids indicated the expansion of the layer differentiation primarily within the homogeneous plow horizon. From the elemental analysis and 13C NMR spectroscopy data, the degree of aromaticity in the molecular structure of the humic acids gradually decreased, and the aliphatic part developed with the age of the fallow.  相似文献   

13.
The long-term (55–85 years) influence of pine forests on old-plowed gray forest soils (in the middle Angara River basin) has been reflected in the character of the biological cycle and intensity of the biological processes. The population of actinomycetes decreased, and that of fungi increased, within the whole profiles of these soils. The soil profiles became more differentiated according to eluvial-illuvial types. The thickness of the humus (former plowed) horizons decreased. The thicker differently decomposed litter with the abundant fungal mycelium was formed. The most conservative were relic morphological characteristics: plow sole, humus tongues, and the illuvial-metamorphic horizon.  相似文献   

14.
A significant change in the properties of mountainous meadow soils of the Ai-Petri Plateau has taken place under the impact of artificial plantations of pine, birch, and larch created in the Crimean highlands in the middle of the 20th century. In comparison with the soils under meadow vegetation, the soils under forest vegetation are characterized by an increased content of large aggregates, a decrease in the humus content, and an increase in the soil acidity and in the iron content of the organomineral compounds. The most dramatic changes in the structural state of the soils are observed under the plantations of pine. The changes in the acidity and the iron content are most pronounced under larch stands. The decrease in the humus content is observed under all tree species. Thus, in the soil layer of 0–10 cm under pine, birch, and larch stands, the content of Corg is 1.2, 1.3, and 1.4 times lower, respectively, than that in the soil under meadow vegetation.  相似文献   

15.
Cultivation and overgrazing are widely recognized as the primary causes of desertification of sandy grassland in the semi-arid region of northern China. Very little is known about the effect of cultivation and overgrazing on soil physical, chemical and biological properties in this region. The objective of this study was to quantitatively evaluate the magnitude of changes in soil properties due to 3 years of cultivation (3CGS) and 5 years of ungrazed exclosure (5RGS) in a degraded grassland ecosystem of the semi-arid Horqin sandy steppe. Short-term cultivation resulted in a 18–38% reduction in concentration of soil organic C, and total N and P in the 0–15 cm plow layer. Cultivation had a significant influence on N and P availability and soil biological properties, with lower basal soil respiration (BSR) and enzyme activities than the grassland soils. This was mostly due to strong wind erosion when sandy grassland was cultivated. Data indicated a considerable difference in soil particle size distribution between the cultivated and grassland soils, and fine fraction (<0.1 mm) in the cultivated soil was lower than that in the grassland soils. Moreover, grassland vegetation recovery in the 5RGS resulted in significant improvement in soil properties measured at the 0–7.5 cm depth. From the perspective of soil resource management and environmental conservation, a viable option for these sandy grasslands would be to stop conversion of grassland to cropland and adopt proper fencing practices to limit overgrazing.  相似文献   

16.
Soil samples were taken from the profiles of a gray forest soil (under a forest) and southern chernozems of different textures under meadow vegetation. The microbial biomass (MB) was determined by the method of substrate-induced respiration; the basal respiration (BR) and the population density of microorganisms on nutrient media of different composition were also determined in the samples. The microbial metabolic quotient (qCO2 = BR/MB) and the portion of microbial carbon (C mic) in C org were calculated. The MB and BR values were shown to decrease down the soil profiles. About 57% of the total MB in the entire soil profile was concentrated in the layer of 0–24 cm of the gray forest soil. The MB in the C horizon of chernozems was approximately two times lower than the MB in the A horizon of these soils. The correlation was found between the MB and the C org (r = 0.99) and between the MB and the clay content (r = 0.89) in the profile of the gray forest soil. The C mic/C org ratio in the gray forest soil and in the chernozems comprised 2.3–6.6 and 1.2–9.6%, respectively. The qCO2 value increased with the depth. The microbial community in the lower layers of the gray forest soil was dominated (88–96%) by oligotrophic microorganisms (grown on soil agar); in the upper 5 cm, these microorganisms comprised only 50% of the total amount of microorganisms grown on three media.  相似文献   

17.
The structure of humic acids (HAs) in zonal soil types—soddy-podzolic soils (two samples), gray forest soil (one sample), and chernozems (two samples)—was quantitatively studied by 13C NMR spectros-copy. In the series considered, the content of unsubstituted carbon in the aromatic fragments of HAs increased, and the fraction of unsubstituted aliphatic structures decreased. HAs of soddy-podzolic soils were found to be enriched with carbohydrate fragments compared to HAs of chernozems and gray forest soil. The carbon skeleton of HAs from typical rich chernozem contained significantly more aliphatic and carbohydrate fragments compared to typical chernozem, which probably reflected the lower degree of HA transformation in rich chernozem.  相似文献   

18.
The aim of this study was to evaluate the long-term influence of contrasting rural land use types on the level, plot-scale variation and horizontal spatial structure of decomposition activities and the bacterial community in soil. Experimental data were collected in the southern boreal zone from topsoil layers of adjacent spruce forest, unmanaged meadow (former field) and organically cultivated field that all shared the same soil origin. The forest soil was sampled separately for the organic and mineral layers. A geostatistical design comprising 50 sampling points per plot area of 10 × 10 m2 was used. The measured microbiological characteristics included eight different hydrolytic soil enzyme activities involved in C, P and S cycles, bacterial 16S rDNA length heterogeneity profiles (LH-PCR) and total DNA yield as a relative estimate of microbial biomass.Effects of land use were pronounced on both the bacterial community structure and soil enzyme activities. Soil organic matter (SOM) content predicted well the major differences in soil enzyme activities and microbial biomass. Highest enzyme activities were generally found in the forest organic soil whereas the underlying mineral soil showed significantly lower activities with a pattern similar to those of the other mineral soils, especially the cultivated field. Bacterial LH-PCR fingerprints were distinct but at the same time remarkably similar between field and meadow soils whereas the forest organic layer differed clearly from the mineral soils. Within-plot variation of soil microbiological characteristics was best explained by the variation of SOM. Relative standard deviations of soil microbiological characteristics typically decreased in the order: forest organic layer ≈ forest mineral layer > meadow > field. However, bacterial fingerprints showed lowest variation within the meadow. Most of the microbiological variables studied showed no or only weak spatial structure at the scale sampled.  相似文献   

19.
大兴安岭典型针阔混交林区土壤持水效应   总被引:3,自引:1,他引:2  
受地貌条件的影响,大兴安岭低山丘陵地区土壤的水、热性质出现分异,发育的土壤类型以及植被都表现出典型的高寒森林湿地中域景观特征。沿局部分水岭向河谷低漫滩发育4种土壤类型,依次为塔头苔草草甸土—灰色森林土—白浆土—暗棕壤。大兴安岭地区森林湿地存在明显的冻融过程,冻融作用的影响下森林湿地表层的水分数量和状态都发生明显的变化。在冻融过程中,位于地势较高的森林植被湿地仅表层储存大量水分,而位于低位的塔头苔草湿地整体土体的水分数量和状态都发生明显的变化。白浆土的水分特征曲线非常平缓,表明土壤水分变化微弱。大兴安岭地区山岭和山麓发育的土壤土层较薄,使得除了枯落物(O)层外其他土层土壤持水性能都弱,一旦该地区枯枝落叶层受到破坏,整个山岭表层的土壤将发生严重的水土流失。  相似文献   

20.
Soil samples from the upper 10-cm-thick layer of the humus horizon (without forest litter) were taken in Podol’sk and Serpukhov districts (1130 and 1080 km2, respectively) of Moscow oblast. At each sampling site, ecosystem (forest, plowland, or fallow), soil (soddy-podzolic, soddy-gley, bog-podzolic, meadow alluvial, gray forest, and anthropogenically transformed soils of lawns and industrial zones), predominant vegetation, and topography (floodplain and low, medium, and upper parts of watersheds) were determined. The carbon content of the microbial biomass (Cmic) was determined by the method of substrate-induced respiration; we also determined the rate of basal (microbial) respiration (BR) and the organic carbon content, pH, and particle-size distribution. Overall, 237 samples from Serpukhov district and 45 samples from Podol’sk district were analyzed. The BR/Cmic ratios (respiration quotient qCO2) and Cmic/Corg ratios were calculated. The Cmic content in the soils ranged from 43 to 1394 μg C/kg; the BR varied from 0.06 to 25 μg CO2-C/g per h, qCO2, from 0.34 to 6.52 μg CO2-C/mg Cmic per h; and the Cmic/Corg ratio, from 0.19 to 10.65%. It was found that the most significant factors affecting the variability of the Cmic and BR are the parameters of ecosystem (50% and 80%, respectively) and soil (30% and 9%, respectively). The most significant variability of these indices was found in forest soils; it was mainly controlled by the soil texture (33 and 23%) and the Corg content (19 and 24%). The Cmic parameter made it possible to differentiate the soils of the territory for the purposes of their evaluation, monitoring, and biological assessment more clearly than the BR value and the soil chemical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号