首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preliminary trials established that, whilst detomidine is ineffective if given by stomach tube and is of variable efficacy in food, it can give effective sedation when administered by the sublingual route. A comparison was made in four ponies of the behavioural effects, and the effects on heart rate of detomidine at three dose rates (20, 40 and 80 μg/kg) given either by intramuscular injection or sublingually by squirting the drug under the tongue. Sedation was assessed by measuring the lowering of the ponies' heads and by scoring their responses to a variety of imposed stimuli. Ponies became sedated following detomidine administration at all doses and by all routes. The lowering of the head induced by detomidine was significantly influenced by the dose of drug and by the route of administration. For either route, higher doses produced the greatest effect. There was a significant correlation between the effects produced by the two routes of administration, the lowering of the head following sublingual administration being approximately threequarters of that after the same dose given intramuscularly. Onset of sedation was achieved more rapidly following intramuscular dosing than after sublingual administration. Falls in heart rate were similar after all drug administrations, but bradycardia was never profound. Subsequent clinical experience has proved that, providing adequate time (45 minutes) is allowed for maximal effects, sublingual administration of detomidine (40 μg/kg) can give a useful degree of sedation in horses which are difficult to inject.  相似文献   

2.
Objective To assess the hormonal, metabolic and physiological effects of laparascopic surgery performed under a sedative analgesic combination of detomidine and buprenorphine in standing horses. Study design Prospective study. Animals Eight healthy adult Dutch Warmblood horses and five healthy adult ponies undergoing laparoscopy were studied. Five healthy adult horses not undergoing laparoscopy were used as a control group. Methods The sedative effect of an initial detomidine and buprenorphine injection was maintained using a continuous infusion of detomidine alone. The heart and respiratory rate, arterial blood pH and arterial oxygen and carbon dioxide tensions were monitored, while blood samples were taken for the measurement of glucose, lactate, cortisol, insulin and nonesterified fatty acids (NEFA). The same variables were monitored in a control group of horses which were sedated, but which did not undergo surgery. At the end of the sedation period the effects of detomidine were antagonized using atipamezole. Results The protocol provided suitable conditions for standing laparoscopy in horses. Laparoscopy induced obvious metabolic and endocrine responses which, with the exception of NEFA values, were not significantly different from changes found in the control group. While atipamezole did not produce detectable adverse effects, it is possible that anatagonism may not be essential. Conclusions The technique described reliably produces adequate sedation and analgesia for laparoscopic procedures. The level of sedation/analgesia was controlled by decreasing or increasing the infusion rate. Antagonism of the effects of detomidine may not be necessary in all cases.  相似文献   

3.
The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine. KEY WORDS: cardiovascular effect, detomidine, equine, medetomidine, xylazine.  相似文献   

4.
The objective of this study was to investigate the development of maternal-filial social attachments between ewes and alien lambs using the technique of "restraint fostering." Forty-eight to 72 h after parturition, 22 Targhee -type ewes were separated from their natural lambs, placed in restraining devices ( stanchions ) and each exposed to a single alien lamb. After a period of 1 or 4 d of restraint, the ewes were subjected to five 10-min lamb acceptance tests over a 48-h period. The observer recorded butts and butt attempts by the ewe and successful and unsuccessful suckle attempts by the lamb. The ewe-lamb pairs were then housed in pens with other groups of ewes and lambs and observed intermittently for acceptance behaviors. Six of the 14 ewes restrained for 4 d and none of the eight ewes restrained for 24 h met the criterion for successful adoption within 48 h. After being housed in group pens, adoptions were achieved by three ewes in the 1-d group and an additional four ewes in the group restrained for 4 d. Ewes restrained for 24 h were significantly more aggressive toward fostered young than ewes restrained for 4 d. In addition, the proportion of successful suckling attempts was significantly lower for lambs fostered on ewes in the 1-d group. Both groups showed a decline in butts and butt attempts over successive acceptance tests, but while the proportion of successful suckling attempts declined for lambs housed with 1-d ewes, they increased over time for lambs fostered on ewes restrained for 4 d.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The objective of this study was to compare effects of butorphanol (BUT) or buprenorphine (BUP), in combination with detomidine and diazepam, on the sedation quality, surgical conditions, and postoperative pain control after cheek tooth extraction in horses, randomly allocated to 2 treatment groups (BUT: n = 20; BUP: n = 20). A bolus of detomidine (15 μg/kg, IV) was followed by either BUP (7.5 μg/kg, IV) or BUT (0.05 mg/kg, IV). After 20 min, diazepam (0.01 mg/kg, IV) was administered and sedation was maintained with a detomidine IV infusion (20 μg/kg/h), with rate adjusted based on scores to 5 variables. All horses received a nerve block (maxillary or mandibular), and gingival infiltration with mepivacaine. Sedation quality was assessed by the surgeon from 1 (excellent) to 10 (surgery not feasible). A pain scoring system (EQUUS-FAP) was used to assess postoperative pain. Serum cortisol concentrations and locomotor activity (pedometers) were measured.Horses in BUP and BUT required a median detomidine infusion rate of 30.2 μg/kg/h (20 to 74.4 μg/kg/h) and 32.2 μg/kg/h (20 to 48.1 μg/kg/h), respectively (P = 0.22). Horses in the BUP group had better sedation quality (P < 0.05) during surgery and higher step counts (P < 0.001) postoperatively. Buprenorphine combined with detomidine provided a more reliable sedation than butorphanol. However, the EQUUS-FAP pain scale became unreliable because of BUP-induced excitement behavior.  相似文献   

6.
In this study, heart and respiratory rates, cloacal temperature, and quality of sedation were evaluated before (0 min) and after (10, 20, and 30 min) i.m. administration of xylazine (10 mg/kg; n = 7), medetomidine (75 li; n = 6), detcmidine (0.3 mg/kg; n = 6), or diazepam (6 mg/kg; n = 7) in rock partridges (Alectoris graeca). All partridges recovered from sedation without any disturbance. Xylazine and diazepam administration did not induce significant changes in heart rate, which did decrease significantly after medetomidine and detomidine administration (P < 0.001). Mean respiratory rate was decreased dramatically at 20 and 30 min after xylazine (P < 0.001) and medetomidine (P < 0.005) administration, and at all stages of sedation after detomidine injection (P < 0.001), whereas there was not any significant change after diazepam injection. In all groups, cloacal temperature measured at 10, 20, and 30 min tended to decrease compared with baseline values. Sedative effects of the drugs started within 2.1+/-0.2 min for detomidine, 2.6 +/- 0.4 min for diazepam, 3.1 -+/-.4 min for xylazine, and 4.8+/-0.8 min for medetomidine application. There was an extreme variability in time to recovery for each drug: 205 +/-22.2 min for xylazine, 95 -12.2 min for medetomidine, 260+/-17.6 min for detomidine, and 149 + 8.3 min for diazepam. In conclusion, xylazine, medetomidine, detomidine, and diazepam produced sedation, which could permit some clinical procedures such as handling and radiographic examination of partridges to occur. Of the four drugs, xylazine produced stronger and more efficient sedation compared to the others, which could permit only minor procedures to be performed. However, depending on the drug used, monitoring of heart and respiratory rates and cloacal temperature might be required.  相似文献   

7.
AIMS: The aims of this study were (a) to evaluate the effect of xylazine and tolazoline, with and without lignocaine, on the cortisol response of calves following amputation dehorning and (b) to assess the effect of a non-steroidal anti-inflammatory drug (ketoprofen) and local anaesthesia on the cortisol response of calves to amputation dehorning.

METHODS: Plasma cortisol concentrations were measured in 100 dehorned or non-dehorned 3-month-old calves over an 8-h period following five different sedative/analgesic or control treatments. Sedative/analgesic treatments were: control (no anaesthesia); local anaesthesia and ketoprofen; local anaesthesia and xylazine; local anaesthesia, xylazine and tolazoline; and xylazine only. Within each sedative/analgesic treatment group, half the calves (n=10 per group) were amputation dehorned and half were not dehorned.

RESULTS: The change in plasma cortisol concentrations in calves dehorned after being given ketoprofen and local anaesthesia did not differ significantly from that of non-dehorned control calves for at least 8 h. In contrast, the cortisol response of dehorned calves not given analgesic drugs peaked 30 min after dehorning and lasted >4 h. Xylazine injected before dehorning significantly reduced but did not eliminate the peak of the cortisol response. When both xylazine and local anaesthesia were administered before dehorning the peak in the cortisol response was virtually eliminated. In the dehorned calves that received xylazine with or without local anaesthesia, cortisol concentration increased significantly 3 h after dehorning and did not return to baseline until at least 5 h later. When tolazoline was administered shortly after xylazine, it caused a marked cortisol response, higher than the response to any other treatment.

CONCLUSIONS: Combining ketoprofen and local anaesthesia minimised the cortisol response, and by inference the pain- induced distress, following amputation dehorning in calves. Xylazine reduced the initial cortisol response to dehorning but not as much as when local anaesthesia was also given. The increase in cortisol concentration from 3–8 h after dehorning in calves given xylazine alone or in combination with local anaesthesia suggests that calves experienced pain-induced distress during this time and that xylazine had no long-term analgesic effect. Tolazoline, used to reverse the sedative effects of xylazine, caused a marked cortisol response in calves via a mechanism which remains unclear.  相似文献   

8.
This study was designed to assess the effects of 5 anesthetic drug combinations in ponies: (1) ketamine 2.75 mg/kg, xylazine 1.0 mg/kg (KX), (2) Telazol 1.65 mg/kg, xylazine 1.0 mg/kg (TX), (3) Telazol 2 mg/kg, detomidine 20 micrograms/kg (TD-20), (4) Telazol 2 mg/kg, detomidine 40 micrograms/kg (TD-40), (5) Telazol 3 mg/kg, detomidine 60 micrograms/kg (TD-60). All drugs were given iv with xylazine or detomidine preceding ketamine or Telazol by 5 min. Heart rate was decreased significantly from 5 min to arousal after TD-20 but only at 60 and 90 min after TD-40 and TD-60 respectively. Respiratory rate was decreased significantly for all ponies. Induction time did not differ between treatments. Duration of analgesia was 10 min for KX, 22.2 min for TX, 27.5 min for TD-20, 32.5 min for TD-40, and 70 min for TD-60. Arousal time was significantly longer with detomidine and Telazol. Smoothness of recovery was judged best in ponies receiving KX and TD-40. All ponies stood unassisted 30 min after signs of arousal.  相似文献   

9.
Kaukinen, H., Aspegrén, J., Hyyppä, S., Tamm, L., Salonen, J. S. Bioavailability of detomidine administered sublingually to horses as an oromucosal gel. J. vet. Pharmacol. Therap. 34 , 76–81. The objective of the study was to determine the absorption, bioavailability and sedative effect of detomidine administered to horses as an oromucosal gel compared to intravenous and intramuscular administration of detomidine injectable solution. The study was open and randomized, with three sequences crossover design. Nine healthy horses were given 40 μg/kg detomidine intravenously, intramuscularly or administered under the tongue with a 7‐day wash‐out period between treatments. Blood samples were collected before and after drug administration for the measurement of detomidine concentrations in serum. The effects of the route of administration on heart rate and rhythm were evaluated and the depth of sedation assessed. Mean (±SD) bioavailability of detomidine was 22% (±5.3%) after sublingual administration and 38.2% (±7.9%) after intramuscular administration. The sedative effects correlated with detomidine concentrations regardless of the route of administration. We conclude that less detomidine is absorbed when given sublingually than when given intramuscularly, because part of it does not reach the circulation. Sublingual administration of detomidine oromucosal gel at 40 μg/kg produces safe sedation in horses. Slow absorption leads to fewer and less pronounced adverse effects than the more rapid absorption after intramuscular injection.  相似文献   

10.
30 warmblood horses were examined before and after sedation with 20 micrograms/kg BW detomidine, to determine changes of cardiac function parameters, using B-mode, M-mode and Doppler echocardiography. 15 horses showed a heart murmur, but no clinical signs of cardiac heart failure, 15 horses had neither a heart murmur nor other signs of cardiac disease. After sedation with detomidine we could recognise a significant increase of end-diastolic left atrium diameter, an increase of end-systolic left ventricular diameter and aortic root diameter. The end-systolic thickness of papillary muscle and interventricular septum showed a decrease. Fractional shortening and amplitude of left ventricular wall motion was decreased after sedation. The mitral valve echogram revealed a presystolic valve closure and an inflection in the Ac slope (B-notch) in xy horses before sedation. Both increased after sedation with detomidine. Doppler echocardiography showed a decrease of blood flow velocity and velocity time integral (VTI) in the left and right ventricular outflow tract after sedation. Regurgitant flow signals were intensified following sedation in xy horses, especially at the mitral valve.  相似文献   

11.
OBJECTIVES: To determine whether epidural administration of detomidine hydrochloride to cattle induced analgesia of the perineum and to compare analgesic and systemic effects of epidural versus i.m. administration of detomidine at a dose of 40 microg/kg in cattle. ANIMALS: 18 healthy adult cows. PROCEDURE: 6 cows were given detomidine by epidural administration, 6 were given detomidine i.m., and 6 (control group) were not given detomidine. Analgesia was assessed by determining responses to needle pinpricks in the perineum and flank and by applying electrical stimuli to the perineum and flank and determining the voltage that induced an avoidance response. Degree of sedation and ataxia were scored, and mean arterial pressure, heart rate, respiratory rate, and frequency of ruminal contractions were measured. RESULTS: Epidural and i.m. administration of detomidine induced comparable degrees of analgesia of the perineum and flank, accompanied by moderate sedation and ataxia, hypertension, cardiorespiratory depression, and rumen hypomotility. CONCLUSIONS AND CLINICAL RELEVANCE: Epidural and i.m. administration of detomidine at a dose of 40 microg/kg induced similar analgesic and systemic effects in cattle. Epidural administration of detomidine did not appear to be advantageous over i.m. administration.  相似文献   

12.
Intramuscular (i.m.) and intravenous (i.v.) administration of detomidine at doses of 10, 20 and 40 micrograms/kg body mass was evaluated for its sedative and analgesic properties in 15 goats (Capra hircus). The drug produced dose- and route-dependent sedation. The 10 micrograms/kg dose was effective only when administered i.v. There was no observable analgesia at this dose. Higher doses produced effective sedation and moderate analgesia of the body with either route of administration. Severe ataxia and sternal recumbency were seen in all the animals after the dose of 40 micrograms/kg. Other effects of detomidine in these goats included mild to moderate salivation, depressed respiratory rate, decreased rectal temperature, bradycardia and hyperglycaemia. Plasma concentrations of total protein, sodium, potassium and chloride were not affected.  相似文献   

13.
Background: Signs of tachypnea after sedation of febrile horses with α2‐agonists have been noted previously but have not been further investigated. Objectives: To examine the effects of xylazine and detomidine on respiratory rate and rectal temperature in febrile horses and to investigate if either drug would be less likely than the other to cause changes in these variables. Animals: Nine febrile horses and 9 healthy horses were included in the study. Methods: Horses were randomly assigned to sedation with xylazine 0.5 mg/kg or detomidine 0.01 mg/kg. Heart rate and respiratory rate were recorded before sedation and at 1, 3, and 5 minutes after injection. Hourly measurements of rectal temperature were performed starting before sedation. Results: All febrile horses experienced an episode of tachypnea and antipyresis after sedation. Rectal temperature in the febrile group was significantly lower at 1, 2, and 3 hours after sedation. In several measurements, the decrease was >1°C. Respiratory rate in the febrile group was significantly increased after sedation. All febrile horses were breathing >40 breaths/min and 3 horses >100 breaths/min 5 minutes after sedation. No differences were noted between the 2 treatments. No significant changes in respiratory rate or temperature were noted in the reference group. Conclusions and Clinical Importance: Febrile horses can become tachypneic after sedation with detomidine or xylazine. The antipyretic properties of α2‐agonists need consideration when evaluating patients that have been sedated several hours before examination.  相似文献   

14.
OBJECTIVE: To test whether injecting lignocaine into the scrotal neck 5 to 10 s before or into both testes immediately after ring castration and docking wound significantly reduce the plasma cortisol response to castration and docking. DESIGN: A physiological study with controls. PROCEDURE: Lambs were given one of six treatments: control handling, injection of lignocaine into scrotal neck, injection of lignocaine into both testes, ring castration and docking, ring castration and docking after lignocaine was injected into the scrotal neck, and ring castration and docking before lignocaine was injected into both testes. Blood samples were taken before and regularly after treatment and analysed for plasma cortisol concentrations. RESULTS: The plasma cortisol concentrations of lambs castrated and docked after lignocaine had been injected into the scrotal neck were significantly lower between 20 and 60 min after treatment than in lambs castrated and docked without local anaesthesia. Injecting lignocaine into the testes after ring application did not significantly reduce the cortisol response to ring castration and docking. CONCLUSIONS: Lignocaine injected into the scrotal neck 5 to 10 s before ring castration will reduce the cortisol response and by inference the pain associated with ring castration.  相似文献   

15.
The reversal of detomidine-induced sedation with iv atipamezole was studied in 6 horses. All horses were injected iv with 10 μg and 20 μg/kg bwt detomidine and 15 min later this was followed by 6-, 8- and 10-fold doses of iv atipamezole. Atipamezole caused a quick arousal in all horses with minor side effects. Bradycardia, rhythm disturbances and head ptosis caused by detomidine were not abolished completely at the end of the 15 min observation period, even with the highest atipamezole doses. All horses remained slightly sedated but without ataxia. There were no significant differences in head height, heart rate and sedation score between the different doses of atipamezole for either dose of detomidine. According to the degree of sedation, doses of 100 μg to 160 μg/kg bwt atipamezole are adequate to antagonise detomidine-induced sedation in the horse.  相似文献   

16.
AIMS: The aims of this study were (a) to evaluate the effect of xylazine and tolazoline, with and without lignocaine, on the cortisol response of calves following amputation dehorning and (b) to assess the effect of a non-steroidal anti-inflammatory drug (ketoprofen) and local anaesthesia on the cortisol response of calves to amputation dehorning. METHODS: Plasma cortisol concentrations were measured in 100 dehorned or non-dehorned 3-month-old calves over an 8-h period following five different sedative/analgesic or control treatments. Sedative/analgesic treatments were: control (no anaesthesia); local anaesthesia and ketoprofen; local anaesthesia and xylazine; local anaesthesia, xylazine and tolazoline; and xylazine only. Within each sedative/analgesic treatment group, half the calves (n=10 per group) were amputation dehorned and half were not dehorned. RESULTS: The change in plasma cortisol concentrations in calves dehorned after being given ketoprofen and local anaesthesia did not differ significantly from that of non-dehorned control calves for at least 8 h. In contrast, the cortisol response of dehorned calves not given analgesic drugs peaked 30 min after dehorning and lasted >4 h. Xylazine injected before dehorning significantly reduced but did not eliminate the peak of the cortisol response. When both xylazine and local anaesthesia were administered before dehorning the peak in the cortisol response was virtually eliminated. In the dehorned calves that received xylazine with or without local anaesthesia, cortisol concentration increased significantly 3 h after dehorning and did not return to baseline until at least 5 h later. When tolazoline was administered shortly after xylazine, it caused a marked cortisol response, higher than the response to any other treatment. CONCLUSIONS: Combining ketoprofen and local anaesthesia minimised the cortisol response, and by inference the pain-induced distress, following amputation dehorning in calves. Xylazine reduced the initial cortisol response to dehorning but not as much as when local anaesthesia was also given. The increase in cortisol concentration from 3-8 h after dehorning in calves given xylazine alone or in combination with local anaesthesia suggests that calves experienced pain-induced distress during this time and that xylazine had no long-term analgesic effect. Tolazoline, used to reverse the sedative effects of xylazine, caused a marked cortisol response in calves via a mechanism which remains unclear.  相似文献   

17.
To examine the effect of diet on luteinizing hormone (LH) secretion, basal and luteinizing hormone releasing hormone (LHRH)-induced LH release was compared in intact or castrated-estradiol-17 beta implanted Finn-Dorset lambs. Ten to 12 wk old ram (n = 20) and ewe lambs (n = 20) were maintained under a 8L:16D photoperiod and fed for high (HG, 163 to 168 g/d) or low (LG, 76 to 103 g/d) rates of gain. Eight to 10 wk later, baseline LH concentrations were determined in blood samples collected at 20 min intervals for 7 h. The following day, lambs were given an iv injection of 5 micrograms of estradiol-17 beta followed within 4 h by LHRH (.5 or 2.5 micrograms). Baseline concentrations of LH for HG ewes were threefold greater than for LG ewes (4.2 vs 1.4 ng/ml), respectively. Time to peak response was inversely related to dietary energy level (P less than .025). Basal LH levels were similar across diets in rams. Total LH release following LHRH was dose-dependent (P less than .005). Effects of gonadal feedback were tested in a second group (n = 24) of castrated lambs. Changes in LH secretion were not different between diets within 3 to 4 wk after castration. A subcutaneous silastic implant (22 mm) of estradiol-17 beta inhibited (P less than .01) LH concentrations across diets in both ewes and rams. No differences in estradiol feedback on LH secretion (at the dose of steroid tested) were detected between HG and LG lambs. Within 8 d, however, basal LH concentrations were 60% lower (P less than .01) in HG vs LG ewes. Furthermore, peak LHRH-induced LH release was greater (P less than .025) in LG vs HG lambs of both sexes. Estradiol inhibited basal LH secretion in ewes and rams but facilitated LH release in lambs with a reduced rate of gain.  相似文献   

18.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

19.
Six nonpregnant ewes were induced to lactate by an exogenous hormone treatment lasting 6 weeks. At the end of the treatment one alien lamb was adopted by each ewe. Each ewe was initially indifferent to the alien lamb and required only mild restraint to allow the lambs to suck successfully. Maternal interest subsequently increased and strong ewe-lamb bonding was evident by 80 minutes (n=l), 10 hours (n=4) or 24 hours (n=l) in different cases. The lambs required supplementary milk for 4–6 days while milk production by the ewes increased to adequate levels. Thereafter they were reared entirely by the ewes. Another four nonpregnant ewes were induced to lactate by a similar hormone treatment and were then hand-milked thrice daily for 2-3 weeks. One alien lamb was then introduced to each ewe. All four ewes were aggressive towards the lambs which were removed after 10–30 minutes. The ewes were then injected subcu- taneously with 5 mg of oestradiol-17β and were placed in fostering stocks. After a further 3–5 hours the lambs were re-introduced. Strong ewe-lamb bonding occurred during the subsequent 10 hours in all cases. All 10 lambs were reared successfully by these ewes until at least 3 months of age, when observations stopped. It was concluded firstly that nonpregnant ewes induced to lactate artificially will adopt and rear orphan lambs successfully, provided that additional milk is given to meet shortfalls during the first 4–6 days; and secondly that a 5 mg injection of oestradiol-17β may facilitate fostering of lambs by ewes in established lactation whether the lactation is induced artificially or not.  相似文献   

20.
This study was conducted to determine the effect of crutching, simulated shearing and conventional shearing in mid-pregnancy on maternal plasma cortisol levels and lamb live weight and body dimensions at birth. Twin-bearing Romney ewes (n = 96) were subjected to one of four treatments (control, crutched, sham shorn and shorn) on day 80 of pregnancy. Ewes were maintained as a single flock throughout pregnancy under commercial farming conditions. Within 12 h of birth the lambs were weighed and their body dimensions recorded. Lambs born to ewes shorn in mid-pregnancy were heavier (P < 0.05) at birth than lambs born to control or sham-shorn ewes by 300 and 400 g (7 and 10%) respectively. The birth weight of lambs born to crutched and control ewes did not differ. Shearing and crutching produced a greater integrated cortisol response than sham-shearing (P < 0.05). The failure of crutching to increase lamb birth weight suggests that the acute stress caused by shearing does not result in increased lamb birth weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号