首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improved knowledge of the environmental factors that affect woody composition is urgently required for species conservation in riparian zones of urbanizing landscapes. We investigated the environmental factors influencing tree abundance and regeneration in diverse forest types growing in the riparian area of an urbanizing landscape along the Chao Phraya River. We established 252 0.1-ha circular plots in remnant forest patches along 372 km of the river. Cluster analysis was applied to classify the forest types. The relationships between environmental variables and tree abundance were assessed with ordination analysis, and generalized linear models were used to assess seedling/sapling abundance. The cluster analysis revealed five forest types, including floodplain forest with three sub-forest types, swamp forest, and mangrove forest. The ordination indicated that tree abundance in the floodplain forest was positively affected by distance to the ocean and the proportion of forested area. Swamp forest was positively influenced by the proportion of urbanized area and mean rainfall. Mangrove forest was negatively related to distance to the river. Seedling/sapling abundance of the dominant species in the floodplain forests was positively affected by lowland plain topography and negatively affected by the proportion of urbanized area, whereas swamp and mangrove forest species were positively influenced by the proportion of urbanized area and estuarine topography. Mature tree density influenced seedling/sapling abundance of all forest types. Tree abundance and regeneration of the riparian landscape was prevented by the urbanized area, floodplain, estuarine topography, and mature tree densities in remnant forests. These results suggest that remnant forest patches of conserved riparian forests along the urbanized landscape of the Chao Phraya River must be protected and the factors determining their colonization must be considered to enhance restoration practices.  相似文献   

2.
The tallgrass prairie of North America has undergone widespread habitat loss and fragmentation (<4% remains). The Flint Hills region of Kansas and Oklahoma is the largest tallgrass prairie remaining and therefore provides an opportunity to study the population genetic structure of grassland species in a relatively contiguous landscape and set a baseline for evaluating changes when the habitat is fragmented. We adopted a landscape genetics approach to identify how landscape structure affected dispersal, population genetic structure, and landscape connectivity of the Eastern Yellowbelly Racer (Coluber constrictor flaviventris) across a 13,500-km2 landscape in northeastern Kansas, USA. The racer population had high allelic diversity, high heterozygosity, and was maintaining migration-drift equilibrium. Autocorrelation between genetic and geographic distance revealed that racers exhibited restricted dispersal within 3 km, and isolation-by-distance. Significant isolation-by-distance occurred at broad regional scales (>100 km), but because of sufficient gene flow between locations, we were unable to define discrete subpopulations using Bayesian clustering analyses. Resistance distance, which considers the permeability of habitats, did not explain significant variation in genetic distance beyond Euclidean distance alone, suggesting that racers are not currently influenced by landscape composition. In northeastern Kansas, racers appear to be an abundant and continuously distributed snake that perceives the landscape as well connected with no cover type currently impeding snake dispersal or gene flow.  相似文献   

3.
Conservation strategies should be based on a solid understanding of processes underlying species response to landscape change. In forests fragmented by agriculture, elevated nest predation rates have been reported in many forest bird species, especially near edges. In intensively-managed forest landscapes, timber harvesting might also be associated with negative edge effects or broader “context” effects on some species when the matrix provides additional resources to their major nest predators. In this study, we hypothesized that proximity to a forest edge and proportion of cone-producing plantations will increase nest predation risk in fragments of relatively undisturbed forest. We focused on the Brown Creeper (Certhia americana), an indicator species of late-seral forests. We compared habitat configuration and composition at four spatial scales (0.14, 0.5, 1 and 2 km) around 54 nests and related daily nest survival rate to the distance to the nearest forest edge, mean patch size of late-seral forest (r = 141 m), proportion of non-forested lands (r = 141 m), density of maintained roads (r = 1 km), proportion of cone-producing spruce plantations (r = 2 km), and year. The best model included distance to the nearest edge and proportion of cone-producing plantations. Distance of nests to the nearest edge was the best individual predictor of daily nest survival. A larger sample of nests showed a significant threshold in distance to the nearest forest edge; nests located at least 100 m away were more likely to fledge young. These results suggest that even in managed forest landscapes, matrix effects can be important and some bird species may exhibit negative edge effects.  相似文献   

4.
We assessed the possible influences of dominant tree density (Butia yatay palm trees) and fire on the expansion of a riparian tree population (Myrcianthes cisplatensis) over El Palmar National Park, a protected savanna in Argentina. Our approach is based on Skellam’s model of population expansion, which predicts that populations with density-independent reproduction and random dispersal will exhibit Gaussian-shaped expansion fronts. Using Poisson regression, we fitted Gaussian curves to Myrcianthes density data collected at varying distances from a riparian forest, within four environmental conditions resulting from combinations of palm density (dense and sparse) and fire history (burned and unburned). Based on the estimated parameters, we derived statistics appropriate to compare attained expansion velocity, mean squared effective dispersal distance, and density-independent population growth among environmental conditions. We also analyzed the effects of palm density, fire history, and distance from the riparian forest on local maximum size of Myrcianthes individuals. Gaussian curves fitted the data reasonably well and slightly better than two alternative front models. Palm density and fire history interacted to control Myrcianthes spread, making unburned dense palm savannas the preferential avenue for Myrcianthes population expansion across the landscape. Limitation of Myrcianthes expansion by fire appeared to result from low survival of small individuals to fire, whereas facilitation of Myrcianthes expansion by palm trees may have resulted from increased population growth. Our results stress the interactive role of fire regime and local biotic influences in determining propagule pressure and tree establishment at the forefront, and the overall vulnerability of savannas to colonization by forest species.  相似文献   

5.
The spatial distribution of non-native, invasive plants on the landscape is strongly influenced by human action. People introduce non-native species to new landscapes and regions (propagule pressure) as well as increase ecosystem invasibility through disturbance of native ecosystems. However, the relative importance of different landscape drivers of invasion may vary with landscape context (i.e., the types and amounts of surrounding land cover and land use). If so, data collected in one context may not be appropriate for predicting invasion risk across a broader landscape. To test whether independent occurrence datasets suggest similar landscape drivers of invasion, we compared landscape models based on data compiled by the Invasive Plant Atlas of New England (IPANE), which are contributed opportunistically by trained citizen scientists, to models based on Forest Stewardship plans (FSPs), which are located in privately owned and relatively undisturbed forests. We evaluated 16 landscape variables related to propagule pressure and/or disturbance for significant predictors of invasive plant presence based on presence/absence and count regression models. Presence and richness of invasive plants within FSPs was most influenced by proportion of open land and proximity to residential areas, which are both sources of propagules in forest interiors. In contrast, IPANE invasive plant presence and richness for the same area was influenced by distance to roads and streams. These results suggest that landscape drivers of invasion vary considerably depending on landscape context, and the choice of occurrence dataset will strongly influence model results.  相似文献   

6.
Studies investigating animal response to habitat in marine systems have mainly focused on habitat preference and complexity. This study is one of the first to investigate the affect of benthic habitat corridors and their characteristics on dispersal and colonization by estuarine macrofuana. In this study, mark-recapture field experiments using artificial seagrass units (ASUs) assessed the effects of seagrass corridors, interpatch distance (5 m vs. 10 m), and the ratio of corridor width to patch width (0.5 m:1 m vs. 0.25 m:1 m) on dispersal of two benthic organisms: the highly mobile grass shrimp, Palaemonetes sp., and the less mobile bay scallop, Argopecten irradians, in two estuarine systems in southeastern North Carolina (NC). The presence of a seagrass corridor, interpatch distance, and corridor width to patch width ratios did not significantly affect shrimp or scallop dispersal to receiver patches. Bay scallop dispersal to receiver patches was significantly higher at one site (Drum Shoals) with relatively high flow, compared to a second site (Middle Marsh) with lower flow. We then examined colonization of estuarine macrofauna to seagrass patches with and without corridors to determine which, if any, taxonomic groups respond positively to corridors at scales of 10 m and over 1 month. Colonization of estuarine macrofauna to seagrass patches was enhanced in the presence of corridors at a relatively large interpatch distance (10 m), which was statistically significant for relatively slow moving polychaete worms. Thus, although benthic habitat corridors may facilitate dispersal of relatively slow moving estuarine animals between otherwise isolated seagrass patches, several common seagrass fauna such as grass shrimp and bay scallops apparently use water currents to rapidly disperse across the seagrass/sand landscape.  相似文献   

7.
Closed (recirculating) growing systems provide a greater potential for the dispersal of water-borne plant pathogens and disease expression compared to open (run-to-waste) systems. Here we studied the effects of three soilless growing systems (open, closed, and closed with slow sand filtration) on the dispersion of Phytophthora cactorum propagules and the severity of the crown rot disease in strawberry (Fragaria × ananassa Duch.). The plant-growth medium used was coir fiber. The three growing systems showed the same density of P. cactorum propagules in the water drained from the growing media. However, propagules of this pathogen were not detected by the baits in the filtered solution recovered from slow sand filtration. In all systems Phytophthora propagules dispersed from the inoculated plant to adjacent uninoculated plants. At the end of the first crop no differences in the severity of crown rot were found between the different systems of crop culture. However, at the end of the second crop cycle, crown rot in the closed soilless system without slow sand filtration was more severe than in the other two systems. These results demonstrated that the commercial potential of slow sand filtration to prevent propagule dispersal and hence suppress crown rot in strawberry crops grown in a closed culture system.  相似文献   

8.
Landscape heterogeneity can influence animal dispersal by causing a directional bias in dispersal rate, as certain landscape configurations might promote, impede, or prevent movement and gene flow. In forested landscapes, logging operations often contribute to heterogeneity that can reduce functional connectivity for some species. American martens (Martes americana) are one such species, as they are considered specialists of late-seral coniferous forests. We assessed marten gene flow to test the hypothesis that habitat management has maintained landscape connectivity for martens in the managed forests of Ontario, Canada. We genotyped 653 martens at 12 microsatellite loci, sampled from 29 sites across Ontario. We expected that if forest management has an effect on marten gene flow, we would see a correlation between effective resistance, estimated by circuit theory, and genetic distance, estimated by population graphs. Although we found a positive relationship between effective resistance and genetic distance (Mantel r = 0.249, P < 0.001), marten gene flow was better described by isolation by Euclidean distance (Mantel r = 0.410, P < 0.001). Our results suggest that managed forests in Ontario are well connected for marten and neither impede nor promote marten gene flow at the provincial scale.  相似文献   

9.
With return times between 20 and 100 years, ice storms are a primary disturbance type for temperate forests of eastern North America. Many studies have been conducted at the forest patch and plot scales to examine relations between damage and variables describing site, composition and structure. This paper presents results from a landscape scale study of fragmentation relations with damage in eastern Ontario forests. Data previously collected for two independent and spatially non-overlapping patch level damage studies were used. A Generalized Linear Model (GLM) was used to analyse relations between damage and fragmentation metrics representing patch isolation, edge density, and the relative size and distribution of patches in the landscape. The metrics were applied using spatial extents of 1 × 1 km and 4 × 4 km, following analyses of the variability of numbers of patches and of the lacunarity of forest patterns over a range of extents. The results showed that patch isolation, as measured by the mean Euclidean distance between patches (ENN) was significantly related to damage.  相似文献   

10.
Habitat restoration is typically focused on reestablishing suitable conditions at a local scale, but landscape constraints may be important for keystone species with limited dispersal. We tested for time lags and examined the relative importance of local and landscape constraints on the response of the banner-tailed kangaroo rat (Dipodomys spectabilis) to restoration of Chihuahuan Desert grasslands in New Mexico, USA. Dipodomys spectabilis is a keystone species that creates habitat heterogeneity and modifies the structure of plant and animal communities. We selected 21 sites and compared density of D. spectabilis between areas treated with herbicide to control shrubs (treated areas) and paired untreated areas. We evaluated whether density of D. spectabilis depended on treatment age, local habitat quality (vegetation and soil structure), and landscape factors (treatment area and spatial connectivity). Density was greater at treated areas than at untreated areas due to a direct effect of reduced shrub cover. However, the response of D. spectabilis to restoration was lagged by a decade or more. Structural equation modeling indicated the time lag reflected a dispersal constraint as opposed to a temporal change in habitat quality. This inference was corroborated by a positive relationship between density at treated areas and connectivity to source populations. Our results indicate that density of D. spectabilis depended strongly on the spatial configuration of treated areas, which supports a landscape mosaic approach to restoration. If keystone species commonly exhibit limited dispersal ability, landscape constraints may be broadly important for shaping ecosystem structure and function after habitat restoration.  相似文献   

11.
The spatial extent at which landscape structure best predicts population response, called the scale of effect, varies across species. An ability to predict the scale of effect of a landscape using species traits would make landscape study design more efficient and would enable landscape managers to plan at the appropriate scale. We used an individual based simulation model to predict how species traits influence the scale of effect. Specifically, we tested the effects of dispersal distance, reproductive rate, and informed movement behavior on the radius at which percent habitat cover best predicts population abundance in a focal area. Scale of effect for species with random movement behavior was compared to scale of effect for species with three (cumulative) levels of information use during dispersal: habitat based settlement, conspecific density based settlement, and gap-avoidance during movement. Consistent with a common belief among researchers, dispersal distance had a strong, positive influence on scale of effect. A general guideline for empiricists is to expect the radius of a landscape to be 4?C9 times the median dispersal distance or 0.3?C0.5 times the maximum dispersal distance of a species. Informed dispersal led to greater increases in population size than did increased reproductive rate. Similarly, informed dispersal led to more strongly decreased scales of effect than did reproductive rate. Most notably, gap-avoidance resulted in scales that were 0.2?C0.5 times those of non-avoidant species. This is the first study to generate testable hypotheses concerning the mechanisms underlying the scale at which populations respond to the landscape.  相似文献   

12.
Matrix habitats are known to influence the movement patterns of a variety of species but it is less well known whether these effects have strong implications for spatial population dynamics, including the spread of biological introductions. Using a spatially explicit simulation model parameterized with empirical data, we examine how grass and shrub matrix habitats, each offering different resistance to dispersal, influence the spread and impact of a biocontrol agent, Aphthona lacertosa, on the invasive weed, leafy spurge. Model predictions indicate that differential responses to matrix habitat have little effect on the agent’s spread over the study landscape and this is supported by statistical models fit to observed A. lacertosa incidence on the same landscape. Subsequent experimentation with the simulation model suggested that A. lacertosa colonization rates were largely unaffected by increases in amount of the more restrictive shrub matrix. However, simulations of an hypothetical species with greater overall dispersal ability but reduced dispersal rate through shrub matrix showed that colonization rates were noticeably reduced when the percentage of shrub matrix on the landscape approached 50%. Combined these results suggest that some tailoring of release strategies may be required to accommodate the unique dispersal capabilities of different biocontrol agents on particular release landscapes, but for A. lacertosa there appears to be little effect of matrix habitat structure on rates of spread.  相似文献   

13.
Much of the current effort to restore southwestern ponderosa pine forests to historical conditions is predicated upon assumptions regarding the catastrophic effects of large fires that are now defining a new fire regime. To determine how spatial characteristics influence the process of ponderosa pine regeneration under this new regime, we mapped the spatial patterns of severity at areas that burned in 1960 (Saddle Mountain, AZ) and (La Mesa, NM) 1977 using pre- and post-fire aerial photography, and quantified characteristics of pine regeneration at sample plots in areas where all trees were killed by the fire event. We used generalized linear models to determine the relationship of ponderosa pine stem density to three spatial burn pattern metrics: (1) distance to nearest edge of lower severity; (2) neighborhood severity, measured at varying spatial scales, and (3) scaled seed dispersal kernel surfaces. Pine regeneration corresponded most closely with particular scales of measurement in both seed dispersal kernel and neighborhood severity. Spatial patterns of burning remained important to understanding regeneration even after consideration of subsequent disturbance and other environmental variables, with the exception of a few cases in which simpler models were equally well-supported by the data. Analysis of tree ages revealed slow progress in early post-fire years. Our observations suggest that populations spread in a moving front, as well as by remotely dispersed individuals. Based on our results, recent large fires cannot be summarily dismissed as catastrophic. We conclude that management should focus on the value and natural recovery of post-fire landscapes. Further, process centered restoration efforts could utilize our findings in formulating reference dynamics under a changing fire regime.  相似文献   

14.
Context

Forest management and disturbances cause habitat fragmentation for saproxylic species living on old-growth attributes. The degree of habitat spatiotemporal continuity required by these species is a key question for designing biodiversity-friendly forestry, and it strongly depends on species’ dispersal. The “stability–dispersal” model predicts that species using stable habitats should have lower dispersal abilities than species associated with ephemeral habitat and thus respond to habitat availability at smaller scales.

Objectives

We aimed at testing the stability–dispersal model by comparing the spatial scales at which saproxylic beetle guilds using substrates with contrasted stability (from stable to ephemeral: cavicolous, fungicolous, saproxylophagous and xylophagous guilds) are affected by landscape structure (i.e. habitat amount and aggregation).

Methods

We sampled saproxylic beetles using a spatially nested design (plots within landscape windows). We quantified habitat availability (tree cavities, polypores and deadwood) in 1-ha plots, 26-ha buffers around plots and 506-ha windows, and analyzed their effect on the abundance and diversity of associated guilds.

Results

The habitat amount within plots and buffers positively affected the abundance of the cavicolous and the fungicolous guilds whereas saproxylophagous and xylophagous did not respond at these scales. The habitat aggregation within windows only positively affected the saproxylophagous species richness within plots and also on the similarity in species composition among plots.

Conclusions

Beetle guilds specialized on more stable habitat were affected by landscape structure at smaller spatial scales, which corroborated the stability–dispersal model. In managed forests, the spatial grain of conservation efforts should therefore be adapted to the target habitat lifetime.

  相似文献   

15.
Disturbed habitats are often swiftly colonized by alien plant species. Human inhabited areas may act as sources from which such aliens disperse, while road verges have been suggested as corridors facilitating their dispersal. We therefore hypothesized that (i) houses and urban areas are propagule sources from which aliens disperse, and that (ii) road verges act as corridors for their dispersal. We sampled presence and cover of aliens in 20 plots (6 × 25 m) per road at 5-km intervals for four roads, nested within three localities around cities (n = 240). Plots consisted of three adjacent nested transects. Houses (n = 3,349) were mapped within a 5-km radius from plots using topographical maps. Environmental processes as predictors of alien composition differed across spatial levels. At the broadest scale road-surface type, soil type, and competition from indigenous plants were the strongest predictors of alien composition. Within localities disturbance-related variables such as distance from dwellings and urban areas were associated with alien composition, but their effect differed between localities. Within roads, density and proximity of houses was related to higher alien species richness. Plot distance from urban areas, however, was not a significant predictor of alien richness or cover at any of the spatial levels, refuting the corridor hypothesis. Verges hosted but did not facilitate the spread of alien species. The scale dependence and multiplicity of mechanisms explaining alien plant communities found here highlight the importance of considering regional climatic gradients, landscape context and road-verge properties themselves when managing verges. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Large-scale patterns of land use and fragmentation have been associatedwith the decline of many imperiled wildlife populations. Lesserprairie-chickens(Tympanuchus pallidicinctus) are restricted to thesouthernGreat Plains of North America, and their population and range have declined by> 90% over the past 100 years. Our objective was to examine scale-dependentrelationships between landscape structure and change and long-term populationtrends for lesser prairie-chicken populations in the southern Great Plains. Weused a geographic information system (GIS) to quantify landscape composition,pattern and change at multiple scales (extents) for fragmented agriculturallandscapes surrounding 10 lesser prairie-chicken leks. Trend analysis oflong-term population data was used to classify each population and landscape(declined, sustained). We analyzed metrics of landscape structure and changeusing a repeated measures analysis of variance to determine significant effects( = 0.10) between declining and sustained landscapes across multiplescales. Four metrics of landscape structure and change (landscape change index,percent cropland, increases in tree-dominated cover types, and changes in edgedensity) contained significant interactions between population status andscale,indicating different scaling effects on landscapes with declining and stablepopulations. Any single spatial scale that was evaluated would not have givencomplete results of the influences of landscape structure and change on lesserprairie-chicken populations. The smallest spatial scales (452, 905, and 1,810ha) predicted that changes in edge density and largest patch sizewere the only important variables, while large-scale analysis (7,238ha) suggested that the amount of cropland, increase in trees(mostly Juniperus virginiana), and general landscapechanges were most important. Changes in landscape structure over the pastseveral decades had stronger relationships with dynamics of lesserprairie-chicken populations than current landscape structure. Observed changessuggest that these local populations may be appropriately viewed from ametapopulation perspective and future conservation efforts should evaluateeffects of fragmentation on dispersal, colonization, and extinction patterns.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

17.

Context

Anthropogenic activities readily result in the fragmentation of habitats such that species persistence increasingly depends on their ability to disperse. However, landscape features that enhance or limit individual dispersal are often poorly understood. Landscape genetics has recently provided innovative solutions to evaluate landscape resistance to dispersal.

Objectives

We studied the dispersal of the common meadow brown butterfly, Maniola jurtina, in agricultural landscapes, using a replicated study design and rigorous statistical analyses. Based on existing behavioral and life history research, we hypothesized that the meadow brown would preferentially disperse through its preferred grassy habitats (meadows and road verges) and avoid dispersing through woodlands and the agricultural matrix.

Methods

Samples were collected in 18 study landscapes of 5 × 5 km in three contrasting agricultural French regions. Using circuit theory, least cost path and transect-based methods, we analyzed the effect of the landscape on gene flow separately for each sex.

Results

Analysis of 1681 samples with 6 microsatellites loci revealed that landscape features weakly influence meadow brown butterfly gene flow. Gene flow in both sexes appeared to be weakly limited by forests and arable lands, whereas grasslands and grassy linear elements (road verges) were more likely to enhance gene flow.

Conclusion

Our results are consistent with the hypothesis of greater dispersal through landscape elements that are most similar to suitable habitat. Our spatially replicated landscape genetics study allowed us to detect subtle landscape effects on butterfly gene flow, and these findings were reinforced by consistent results across analytical methods.
  相似文献   

18.
We employed a sliding-window approach at multiple scales (window sizes and dispersal distances) to calculate seven standard graph-theoretical metrics within a subset of a large, freshwater wetland network. In contrast to most graph analyses, which quantify connectivity at a single (global) scale or at a patch-level scale, a multi-scaled, sliding-window approach provides an assessment that bridges these two approaches to examine patch clusters. As a case study we focused on a subset of a habitat patch network in a ~20,000 km2 area encompassing 2,782 playa wetlands in the panhandle of Texas. Playas are seasonal wetlands of the southern Great Plains of North America that form a network of regional habitat resources for wildlife. The large size of this network meant that global metrics failed to capture localized properties, so we used contour mapping to visualize continuous surfaces as functions of playa density, linkage density, and other topological traits at different window sizes and dispersal distances. This technique revealed spatial patterns in the components (i.e., the network properties of regions of the landscape at a given dispersal scale), with the spatial scale of habitat clustering varying with the size of the sliding window and dispersal distance. Using a tool familiar to landscape ecology (sliding-window methodology) in a novel way (to examine ecological networks at multiple scales), our approach provides a way to represent ecologically determined local-scale graph properties and illustrates how a multi-scaled approach is useful in examining habitat connectivity to investigate graph properties.  相似文献   

19.
Inter-patch connectivity can be strongly influenced by topography and matrix heterogeneity, particularly when dealing with species with high cognitive abilities. To estimate dispersal in such systems, simulation models need to incorporate a behavioral component of matrix effects to result in more realistic connectivity measures. Inter-patch dispersal is important for the persistence of capercaillie (Tetrao urogallus) in central Europe, where this endangered grouse species lives in patchy populations embedded in a mountainous landscape. We simulated capercaillie movements with an individual-based, spatially explicit dispersal model (IBM) and compared the resulting connectivity measure with distance and an expert estimation. We used a landscape comprising discrete habitat patches, temporary habitat, non-habitat forests, and non-habitat open land. First, we assumed that dispersing individuals have perfect knowledge of habitat cells within the perceptual range (null model). Then, we included constraints to perception and accessibility, i.e., mountain chains, open area and valleys (three sub-models). In a full model, all sub-models were included at once. Correlations between the different connectivity measures were high (Spearman’s ρ > 0.7) and connectivity based on the full IBM was closer to expert estimation than distance. For selected cases, simple distance differed strongly from the full IBM measure and the expert estimation. Connectivity based on the IBM was strongly sensitive to the size of perceptual range with higher sensitivity for the null model compared to the full model that included context dependent perceptual ranges. Our heuristic approach is adequate for simulating movements of species with high cognitive abilities in strongly structured landscapes that influence perception and permeability.  相似文献   

20.
We quantified fluctuations in the status of individual patches (wetlands) in supporting connectivity within a network of playas, temporary wetlands of the southern Great Plains of North America that are loci for regional biodiversity. We used remote sensing imagery to delineate the location of surface waters in >8,000 playa basins in a ~31,900 km2 portion of Texas and quantified connectivity in this region from 2007 to 2011. We ranked playas as stepping-stones, cutpoints, and hubs at different levels of environmental conditions (regionally wet, dry, and average periods of precipitation) for dispersal distances ranging from 0.5 to 34 km, representing a range of species’ vagilities, to provide baseline dynamics within an area likely to experience disrupted connectivity due to anthropogenic activities. An individual playa’s status as a stepping-stone, cutpoint, or hub was highly variable over time (only a single playa was a top 20 stepping-stone, cutpoint, or hub in >50 % of all of the dates examined). Coalescence of the inundated playa network usually occurred at ≥10 km dispersal distance and depended on wetland density, indicating that critical thresholds in connectivity arose from synergistic effects of dispersal ability (spatial scale) and wet playa occurrence (a function of precipitation). Organisms with dispersal capabilities limited to <10 km routinely experienced effective isolation during our study. Connectivity is thus a dynamic emergent landscape property, so management to maintain connectivity for wildlife within ephemeral habitats like inundated playas will need to move beyond a patch-based focus to a network focus by including connectivity as a dynamic landscape property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号