首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationship between soil organisms and soil structure in new reclaimed soils derived from loess under agricultural and forestral use In the Rhenish Browncoal District est of Cologne he question occurs wether forestry or agriculture is the better form of primary use to force structure development in new reclaimed soils derived from loess. The investigations on 10–25 years old reclaimed soils under forestral and agricultural use indicate that humus content, microbiological activities as well as the number of soil meso- and macrofauna individuals like earthworms are increasing with growing age of the forest soils. These processes and the strucutre development are faster under forestral use. Here after about 20–30 years conditions are similiar to those of undisturbed forest soils in comparable substrates. So from the ecological point of view temporal priority should be given to forestral use.  相似文献   

2.
《CATENA》2001,43(3):177-189
Soil utilization has, for many years, strongly influenced the properties of soils in the undulating terrain of the Lublin Upland. Population increase and suitability of the soils (particularly Luvisols, Cambisols and Chernozems derived from loess and loess-like formations) for arable agriculture were the main reasons for deforestation. This led to erosion, which caused changes in soil morphology and the development of a mosaic soil cover. Accelerated erosion was strongest on slopes exceeding 18%. It resulted in selective loss of clay. The main changes in silty soils developed from loess and loess-like deposits occurred in the first few decades after cultivation started. They included a decrease in organic matter content from an average of 2.3% organic C in the forest soils to about 1% in the arable soils. No further changes in humus content were observed, but the proportion of fulvic acids increased at the expense of humic acids. The pHKCl rate decreased at the slope foot from about 5.8 to 5.0. Morphological changes in rendzinas were much lower than in the soils derived from loess. We do not expect big changes in these soils in the next 100 years if their use remains the same.  相似文献   

3.
Structured subsoil horizons are characterized by biopores and shrinkage cracks, which may serve as preferential flow paths. The surfaces of cracks and biopores may be coated by clay‐organic material. The spatially‐distributed organic matter (OM) composition at such structural surfaces was studied at the millimetre scale using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in the mid‐infrared range (MIR). Intact biopores such as earthworm burrows and root channels, and crack surfaces of nine subsoil horizons were analysed. The samples were from arable and forest Luvisols, one Regosol, one Stagnosol and Cambisols developed from loess, till, mudstone and limestone. For better comparison between soils, the DRIFT signal intensities were corrected for the particle‐size effects. The OM was characterized by the ratio between alkyl‐ (C–H) and carbonyl (C=O) functional groups (C–H/C=O), which represent an index of the potential wettability (PWI) of the OM. The PWI was larger for biopores than for crack surfaces and the soil matrix, indicating a smaller potential wettability of OM at biopore surfaces. The millimetre‐scale spatial variability of OM was especially large for the surfaces of root channels. Samples from till‐derived Luvisols had smaller PWI (with greater potential wettability than surfaces from loess‐derived Luvisols) than other soil types. The mean PWI of the arable Luvisol crack surfaces was less than that of the forest Luvisol samples. The results suggest that the spatial distribution of OM properties at intact structural surfaces may be important for describing sorption and mass transfer processes during preferential flow.  相似文献   

4.
Conversion of meadow and forest ecosystems to agricultural land generally leads to changes in soil structure. This comparative study presents the composition and stability of structural aggregates in humus horizons (0–30 cm) of noncarbonate silty‐clay Fluvisols in the Kolubara River Valley, W Serbia. Aggregates collected from under a native forest were compared to aggregates from meadows and arable fields which underwent crop rotation for > 100 y. The results show that size distribution and stability of structural aggregates in the humus horizons of arable soil are significantly impaired due to long‐term anthropogenization. In the humus horizons, the content of the agronomically most valuable aggregates (0.25–10 mm) decreased by a factor of ≈ 2, from 68%–74% to 37%–39%, while the percentage of cloddy aggregates (>10 mm) increased by a factor of ≈ 2, from 23%–31% to 48%–62%, compared to forest aggregates. The long‐term‐arable soil had significantly (p < 0.05) lower aggregate stability, determined by wet sieving, than meadow and forest soils. The lowest aggregate stability was found in aggregates > 3 mm. Their content is ≈ 2.5–3 times lower in arable soil (13%–16%) than in forest soil (32%–42%) at a depth of 0–20 cm. The largest mean weight diameters of dry aggregates (dMWD) with a range between 12.6 and 14.7 mm were found in arable soil, vs. 9.5–9.9 mm in meadow and 6.5–8.3 mm in forest. The arable soil had significantly lower mean weight diameters of wet‐stable aggregates (wMWD) and a lower structure coefficient (Ks) than forest and meadow soils. The dispersion ratio (DR) of arable soil was significantly higher than that of forest and meadow soils. Forest and meadow showed a significantly higher soil organic‐matter content (SOM) by 74% and 39%, respectively, compared with arable soil, while meadow uses decreased the SOM content by 57% compared with forest at a depth of 0–10 cm. In conclusion, the results showed that long‐term conventional tillage of soils from natural forest and meadow in the lowland ecosystems of W Serbia degraded soil aggregate–size distribution and stability and reduced SOM content, probably resulting in lower productivity and reduced crop yields.  相似文献   

5.
The study of soils of different ages in different physiographic regions of the Crimean Peninsula made it possible to reveal the main regularities of pedogenesis in the Late Holocene (in the past 2800 years). With respect to the average rate of the development of soil humus horizons, the main types of soils in the studied region were arranged into the following sequence: southern chernozems and dark chestnut soils > mountainous forest brown soils > gravelly cinnamonic soils. In the newly formed soils, the accumulation of humus developed at a higher rate than the increase in the thickness of humus horizons. A sharp decrease in the rates of development of soil humus profiles and humus accumulation took place in the soils with the age of 1100-1200 years. The possibility for assessing the impact of climate changes on the pedogenetic process on the basis of instrumental meteorological data was shown. The potential centennial fluctuations of the climate in the Holocene determined the possibility of pulsating shifts of soil-geographic subzones within the steppe part of the Crimea with considerable changes in the rates of the development of soil humus horizons in comparison with those in the Late Holocene.  相似文献   

6.
Temporal changes of eroded soils in the southern Cis-Ural region (Republic of Bashkortostan) depending on their agricultural use during the period from 1975 to 2011 were studied. In the northern foreststeppe zone, the development of erosion processes was retarded upon the use of soil-saving management practices and grain-fallow-grass crop rotations. In slightly eroded light gray forest soils (Eutric Retisols (Cutanic)), the thickness of humus-accumulative horizons and the content of humus increased; the conversion of cropland into permanent fallow was found to be the most efficient measure to control soil erosion. In podzolized chernozems (Luvic Greyzemic Chernic Phaeozems) and typical chernozems (Haplic Chernozems) of the Cis-Ural steppe, the content of humus in the plow layer under grain-row crop rotation and classical soil management decreased, especially in moderately eroded soils. The development of water and wind erosion on slopes depended on the slope shape: the texture of soils at different degrees of erosion on slopes with free runoff became coarser by one gradation after 35 years; in the presence of linear obstacles in the lower part of slopes, the content of fine fractions in moderately and strongly eroded soils increased.  相似文献   

7.
Pedogenesis of chernozems in the upper river terrace of the Danubian river near Ulm (South West Germany) The “chernozem-like” soils in the upper river terrace of the Danubian river near Ulm (FRG) were examinated. Field analyses as well as soil physical and chemical, clay mineralogical and pollen analyses were carried out. The parent material of the soils was identified as loess, on the basis of its texture, clay mineral composition, structure, carbonate content, the presence of loess molluscs, and the location on an upper river terrace with loess findings in the surrounding. Characteristic pedogenetic processes, such as deliming, silicate weathering, formation of oxides and hydroxides, neoformation of clay minerals and clay translocation prove a non-groundwater-influenced development of the soils within at least the last 8000 years. Therefore an accumulation of organic matter under anaerobic conditions during the peat formation in the lower river terrace nearby was not possible. According to this finding, it can be deducted that the humus accumulation may be due to influences of continental climate and forest steppe during the preboreal period, whereby the humus horizons were formed at deeper horizons through bioturbation. After the groundwater level was raised in boreal age, the steppe stage of the soils had ended and the fluctuating levels of groundwater, rich in carbonates, stabilized humic substances. Thus strong degradation of the soils to date was prevented. Therefore the soils under study could be classified as gleyic Chernozems or luvic Phaeozems.  相似文献   

8.
In Eastern Spain, almond trees have been cultivated in terraced orchards for centuries, forming an integral part of the Mediterranean forest scene. In the last decades, orchards have been abandoned due to changes in society. This study investigates effects of changes in land use from forest to agricultural land and the posterior land abandonment on soil microbial community, and the influence of soil physico-chemical properties on the microbial community composition (assessed as abundances of phospholipids fatty acids, PLFA). For this purpose, three land uses (forest, agricultural and abandoned agricultural) at four locations in SE Spain were selected. Multivariate analysis showed a substantial level of differentiation in microbial community structure according to land use. The microbial communities of forest soils were highly associated with soil organic matter content. However, we have not found any physical or chemical soil property capable of explaining the differences between agricultural and abandoned agricultural soils. Thus, it was suggested that the cessation of the perturbation caused by agriculture and shifts in vegetation may have led to changes in the microbial community structure. PLFAs indicative of fungi and ratio of fungal to bacterial PLFAs were higher in abandoned agricultural soils, whereas the relative abundance of bacteria was higher in agricultural soils. Actinomycetes were generally lower in abandoned agricultural soils, while the proportions of vesicular–arbuscular mycorrhyzal fungi were, as a general trend, higher in agricultural and abandoned agricultural soils than in forests. Total microbial biomass and richness increased as agricultural < abandoned agricultural < forest soils.  相似文献   

9.
The dynamics of carbon in ecosystems of abandoned agricultural lands were studied in the southern taiga zone. The soil acidity increased in the course of natural reforestation (the transition from meadow ecosystems to forest ecosystems) of the plots. The humus content in the upper soil layer decreased; changes in the humus content were less pronounced in sandy soils. The emission of carbon dioxide from the soils depended on the stage of vegetation succession during the restoration of forest vegetation.  相似文献   

10.
This study aims to elucidate the significance of compost and soil characteristics for the biological activity of compost‐amended soils. Two agricultural soils (Ap horizon, loamy arable Orthic Luvisol and Ah horizon, sandy meadow Dystric Cambisol) and a humus‐free sandy mineral substrate were amended with two biowaste composts of different maturity in a controlled microcosm system for 18 months at 5 °C and 14 °C, respectively. Compost application increased the organic matter mineralization, the Cmic : Corg ratio, and the metabolic quotients significantly in all treatments. The total amount of Corg mineralized ranged from < 1 % (control plots) to 20 % (compost amended Dystric Cambisol). Incubation at 14 °C resulted in 2.7‐ to 4‐fold higher cumulative Corg mineralization compared to 5 °C. The Cmic : Corg ratios of the compost‐amended plots declined rapidly during the first 6 months and reached a similar range as the control plots at the end of the experiment. This effect may identify the compost‐derived microbial biomass as an easily degradable C source. Decreasing mineralization rates and metabolic quotients indicated a shift from a compost‐derived to a soil‐adapted microbial community. The Corg mineralization of the compost amended soils was mainly regulated by the compost maturity and the soil texture (higher activity in the sandy textured soils). The pattern of biological activity in the compost‐amended mineral substrate did not differ markedly from that of the compost‐amended agricultural soils, showing that the turnover of compost‐derived organic matter dominated the overall decay process in each soil. However, a priming effect occurring for the Dystric Cambisol indicated, that the effect of compost application may be soil specific.  相似文献   

11.
The origin, structure, composition, and properties of soil humus horizons in functional zones of St. Petersburg have been studied. The radiocarbon age of organic matter in the humus horizons varies from 500 to 2700 years, which attests to the natural origin of humus. The structure of microbiomes in the humus horizons of soils under different plant communities has its specific features. The taxonomic structure of microbial communities at the phylum level reflects both genetic features of natural soils and the impact of anthropogenic factors, including alkalization typical of the studied urban soils. Tomographic studies have shown that the transporting system of humus horizons is less developed in the anthropogenically transformed soils in comparison with the natural soils. It can be supposed that the intensity of water and gas exchange in the anthropogenic soils is much lower than that in the natural soils. The fractional and group composition of humus in the urban soils is specified by the long-term pedogenesis, on one hand, and by the impact of metabolic products of the city and the factors of soil formation in the megalopolis, on the other hand. Bulk density of the humus horizon in the urban soils is higher than that in the natural soils; the portion of overcompacted humus horizons in the urban soils reaches 44%. Humus horizons of the lawns along highways are most contaminated with heavy metals: Pb, Zn, and Cu. There are no definite regularities in the distribution of major nutrients (NPK) in the humus horizons of anthropogenic soils.  相似文献   

12.
Characteristics and genesis of humus substances of typical forest and arable soils of Schleswig-Holstein The humus substances of Luvisols and Podzols (forest, conventional and ecological farming system) were investigated wet chemically with “Streu- und Humus-Stoffgruppenanalyse” just as macro- and micromorphologically. Low nutrient contents and reduced bioturbation retard the decomposition of litter in the forest soils. Humus accumulation and transfer of humic substances are larger in the Podzol than in the Luvisol. Under arable land use the amount of humus decreased more under conventional farming. Organic fertilization stimulates the bioturbation and decomposition of litter.  相似文献   

13.
Formation of poorly crystallized weathering products in strongly to extremely acid forest soils Poorly crystallized weathering products, formed as a consequence of wide-spread extrem acidification and silicate weathering in forest soils, were examined using X-ray diffraction (XRD) and fluorescence (XRF), scanning electron microscopy (SEM, EDXRA) and chemical analyses. The investigations were carried out on five extremely acid forest soils (different Luvisols, a Gleyic Luvisol and a Luvic Podzol) derived from different parent materials (loess, sand loess, glacial sands/loam) in Northrhine Westfalia and Schleswig-Holstein. The results reveal an intense destruction of clay minerals and other silicates in the extremely acid topsoils leading to an accumulation of poorly crystallized to amorphous compounds. These weathering products occur predominantly as silicic coatings on the surface of soil aggregates or as small spherical precipitates on mineral surfaces. Besides Si they contain small amounts of Al and Fe.  相似文献   

14.
以不同土地利用方式下(疏林荒草地、荒草地、林地和耕地)第四纪古红土和埋藏第四纪古红土剖面为研究对象,测定古红土各发生层全土及各粒级团聚体的有机碳含量,比较不同土地利用方式下第四纪古红土剖面及团聚体的有机碳分布特征。结果表明:(1)埋藏古红土有机碳含量较低,随深度分布均一,各粒级团聚体内有机碳含量随团聚体粒径减小而降低;(2)埋藏古红土出露地表后,由于受到人为活动影响,表层全土有机碳及各粒级团聚体有机碳含量均增加,呈现林地 > 耕地 > 疏林荒草地 > 荒草地 > 埋藏古红土的特征,其中,林地显著高于其他土地利用方式,说明林地是古红土分布区的一种较合理的土地利用方式;(3)耕地0 ~ 10 cm土层粒径 > 1 mm和 < 0.25 mm团聚体的有机碳含量均随团聚体粒径减小而逐渐增加,1 ~ 0.25 mm团聚体有机碳含量随团聚体粒径减小逐渐降低。其余土地利用方式下古红土均呈现 > 0.25 mm团聚体的有机碳含量随着团聚体粒径减小而逐渐降低,< 0.25 mm团聚体的有机碳含量随团聚体粒径减小而逐渐增加。  相似文献   

15.
Agrogenic degradation of soils in Krasnoyarsk forest-steppe was investigated. Paleocryogenic microtopography of microlows and microhighs in this area predetermined the formation of paragenetic soil series and variegated soil cover. Specific paleogeographic conditions, thin humus horizons and soil profiles, and long-term agricultural use of the land resulted in the formation of soils unstable to degradation processes and subjected to active wind and water erosion. Intensive mechanical soil disturbances during tillage and long-term incorporation of the underlying Late Pleistocene (Sartan) calcareous silty and clay loams into the upper soil horizons during tillage adversely affected the soil properties. We determined the contents of total and labile humus and easily decomposable organic matter and evaluated the degree of soil exhaustion. It was concluded that in the case of ignorance of the norms of land use and soil conservation practices, intense soil degradation would continue leading to complete destruction of the soil cover within large areas.  相似文献   

16.
Periodical forest fires are typical natural events under the environmental and climatic conditions of central and southern Yakutia and Transbaikal region of Russia. Strong surface fires activate exogenous geomorphological processes. As a result, soils with polycyclic profiles are developed in the trans-accumulative landscape positions. These soils are specified by the presence of two–three buried humus horizons with abundant charcoal under the modern humus horizon. This indicates that these soils have been subjected to two–three cycles of zonal pedogenesis during their development. The buried pyrogenic humus horizons accumulate are enriched in humus; nitrogen; total and oxalate-extractable iron; exchangeable bases (Са+2 and Mg+2); and the fractions of coarse silt, physical clay (<0.01 mm), and clay (<0.001 mm) particles in comparison with the neighboring mineral horizons of the soil profile. The humus of buried pyrogenic horizons is characterized by the increased content of humic acids, particularly, those bound with mobile sesquioxides (HA-1) and calcium (HA-2) and by certain changes in the type of humus.  相似文献   

17.
The soils under two meadows overgrown by a small-leaved forest that are no longer used for agricultural purposes were studied. The changes in the plant cover resulted in an increase in the soil acidity, a decrease in the humus content, and a transformation of its composition; the content of fulvic acids increased. The most essential modifications to the soils were related to alterations in the density of the birch forest. The degree and rate of these changes depended on the local environmental conditions, such as the soil texture, the depth of the moraine layer, and the dynamics of vegetation. The dynamics of acidity were displayed to a greater degree in the sandy soils, while the dynamics of the humus content and its reserves were evidenced in the heavy-textured soils.  相似文献   

18.
Priming effects initiated by the addition of 14С glucose have been compared for humus horizons of soils existing under continuous input of fresh organic substrates and for buried soil horizons, in which entering of organic matter has been essentially limited. The effect of microrelief on the manifestation of priming effect in the humus horizons of gray forest soil on microhigh and in microlow has been estimated. Humus horizon in soils on microhigh, not activated by glucose, produced two times more СО2 in comparison with soils of microlow. However, the introduction of glucose canceled the effect of microrelief on СО2 emission. The intensity of absolute priming effect correlated with the Сorg pool, initial microbial biomass, and enzyme activity, decreasing from humus horizons to the buried ones, and did not depend on microrelief. The effect of microrelief was observed, when assessing the priming effect relative to control (soil not activated by glucose): the value of relative priming effect was 1.5 times greater in А horizon of gray forest soil in microlow in comparison with that on microhigh being the result of increasing activity of enzymes.  相似文献   

19.
Complexes of gray forest soils of different podzolization degrees with the participation of gray forest podzolized soils with the second humus horizon play a noticeable role in the soil cover patterns of Vladimir Opolie. The agronomic homogeneity and agronomic compatibility of gray forest soils in automorphic positions (“plakor” sites) were assessed on the test field of the Vladimir Agricultural Research Institute. The term “soil homogeneity” implies in our study the closeness of crop yield estimates (scores) for the soil polygons; the term “soil compatibility” implies the possibility to apply the same technologies in the same dates for different soil polygons within a field. To assess the agronomic homogeneity and compatibility of soils, the statistical analysis of the yields of test crop (oats) was performed, and the spatial distribution of the particular parameters of soil hydrothermic regime was studied. The analysis of crop yields showed their high variability: the gray forest soils on microhighs showed the minimal potential fertility, and the maximal fertility was typical of the soils with the second humus horizon in microlows. Soils also differed significantly in their hydrothermic regime, as the gray forest soils with the second humus horizon were heated and cooled slower than the background gray forest soils; their temperature had a stronger lag effect and displayed a narrower amplitude in seasonal fluctuations; and these soils were wetter during the first weeks (40 days) of the growing season. Being colder and wetter, the soils with the second humus horizons reached their physical ripeness later than the gray forest soils. Thus, the soil cover of the test plot in the automorphic position is heterogeneous; from the agronomic standpoint, its components are incompatible.  相似文献   

20.
The fractional composition of dissolved organic matter and the chemical nature of humic and fulvic acids were studied in lysimetric waters from forest soils of different altitudinal zones in the Sikhote Alin Range. The elemental composition, infrared absorption spectra, concentrations of acid functional groups, and pK spectra of humic and fulvic acids were determined. Fulvic acids predominated in the upper soil horizons, and fraction of nonspecific dissolved organic substances predominated in the lower mineral horizons. The portion of humic acids in the humus horizons markedly decreased from the low-mountain soils to the high-mountain soils; the nitrogen content of humic and fulvic acids decreased in the same direction. Three classes of carboxyl and phenolic groups were determined in pK-spectra of humic and fulvic acids. The soils of high-mountain zones had stronger acidic properties of humic and fulvic acids in comparison with the soils of low-mountain zones. The determined characteristics of the composition of dissolved organic matter and the trends of their changes contribute to our knowledge of pedogenetic processes in the altitudinal sequence of forest landscapes of the Sikhote Alin Range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号