首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Pterocarpus angolensis (Fabaceae) is a leguminous tree species of the miombo region of sub-Saharan Africa that is highly prized for its wood value. We use both experimental exposure to fire, as well as classification of field burned seeds, to predict germination rates in seeds from both husked and unhusked fruits. We find that seed germination and seed persistence in unhusked fruits are maximized by moderate exposure to fire. Germinating seeds had heavier fruit and seeds than those that did not. Finally, seeds without husks persisted in the soil yet continued to germinate even after 18 months in wet soil, indicating potentially long soil longevity. Using these results, we support an intermediate fire exposure model wherein repeated moderate exposure to fire enhances the capability of seeds to emerge from fruits. Seeds from unburned and unhusked fruits were never observed to germinate and had poorer soil longevity than those exposed to moderate fire. Similarly, extreme exposure to fire resulted in poor seed germination rates, often as a consequence of direct fire mortality of seeds. We suggest that early burning resulting in cool fires may augment germination and recruitment in wild populations.  相似文献   

2.
Restoring the natural fire regime to forested systems that have experienced fire exclusion throughout the past century can be a challenge due to the heavy fuel loading conditions. Fire is being re-introduced to mixed conifer forests in the Sierra Nevada through both early season and late season prescribed burns, even though most fires historically occurred in the late season. We assessed the impact of early and late season prescribed fires on soil biogeochemical and microbiological parameters that are important for ecosystem recovery. We found that the late season burns had more dramatic short-term effects on soil abiotic conditions (temperature, moisture and pH), mineral soil carbon levels, total inorganic nitrogen, and microbial activity than the early season burns, relative to unburned sites, suggesting a higher severity burn. However, the total soil nitrogen pools and fluxes and soil respiration rates were not differentially impacted by burn season. These burn season effects suggest that soil variables may be regulated more strongly by fire severity than by the season in which the prescribed fire is conducted.  相似文献   

3.
Long-term effects of salvage logging on coarse woody debris were evaluated on four stand-replacing wildfires ages 1, 11, 17, and 35 years on the Okanogan-Wenatchee National Forest in the eastern Cascades of Washington. Total biomass averaged roughly 60 Mg ha−1 across all sites, although the proportion of logs to snags increased over the chronosequence. Units that had been salvage logged had lower log biomass than unsalvaged units, except for the most recently burned site, where salvaged stands had higher log biomass. Mesic aspects had higher log biomass than dry aspects. Post-fire regeneration increased in density over time. In a complementary experiment, soils heating and surrogate-root mortality caused by burning of logs were measured to assess the potential site damage if fire was reintroduced in these forests. Experimentally burned logs produced lethal surface temperatures (60 °C) extending up to 10 cm laterally beyond the logs. Logs burned in late season produced higher surface temperatures than those burned in early season. Thermocouples buried at depth showed mean maximum temperatures exponentially declined with soil depth. Large logs, decayed logs, and those burned in late season caused higher soil temperatures than small logs, sound logs, and those burned in early season. Small diameter (1.25 cm), live Douglas-fir branch dowels, buried in soil and used as surrogates for small roots, indicated that cambial tissue was damaged to 10 cm depth and to 10 cm distance adjacent to burned logs. When lethal soil temperature zones were projected out to 10 cm from each log, lethal cover ranged up to 24.7% on unsalvaged portions of the oldest fire, almost twice the lethal cover on salvaged portions. Where prescribed fire is introduced to post-wildfire stands aged 20–30 years, effects of root heating from smoldering coarse woody debris will be minimized by burning in spring, at least on mesic sites. There may be some long-term advantages for managers if excessive coarse woody debris loads are reduced early in the post-wildfire period.  相似文献   

4.
Throughout the southeastern United States, Rhus and Rubus species are common associates of the southern pines on a wide array of upland site and stand conditions. Because of their ability to overrun disturbed sites, these species are categorized as competitors to pine during stand regeneration. Since prescribed burning is often used for site preparation in advance of pine regeneration, this study investigated the effect of fire on the germination of seeds from three pine competitors (Rubus argutus Link, Rhus copallina L. and Rhus glabra L.). During dormant-season burns, sumac seeds were located 45 cm above litter, within the F layer of a reconstructed forest floor, and at the interface of the forest floor and mineral soil. During growing-season burns, fresh blackberry fruits were placed at heights of 0, 15, 30, and 45 cm above the surface litter of a reconstructed forest floor. In subsequent germination tests, sumac seeds from within the F layer of burned litter had significantly higher germination rates for smooth sumac (31%) and shining sumac (42%) as compared to unburned control seeds (1–5%). In general, germination rates for sumac seeds placed in the air or on mineral soil during burning were no better than control seeds. Seeds from blackberry fruits that were located at heights of 15, 30, and 45 cm had germination rates that were comparable to unburned control seeds (18%), but seeds from fruits placed on the litter during burning had <1% germination. Results suggest that sumac seed germination may be enhanced by the heat from prescribed burning, whereas blackberry seeds showed more germination response to multiple germination cycles which indicated a potential for long-term storage in the soil seed bank.  相似文献   

5.
For efficient forest fire management, special precautions are required in dry and strong-wind seasons vulnerable to severe forest fires. To extract the seasonal characteristics of forest fires in South Korea, the statistics over the past 16 years, 1991 through 2005, were investigated. The daily records of the number of fire occurrences, the total area burned and the average burned area per occurrence were examined to identify the seasonal patterns of forest fires using cluster analysis and principal component analysis; the risk of daily fires was also assessed using the ordered logit model. As a result, the fire patterns were classified into five clusters and a general danger index for forest fires was derived from the first principal component, showing relatively large-scaled fire regimes in spring, and frequent small-scaled fire regimes in autumn and winter. In connection with the ordered logit model, the probability for the five ranks of forest fire risk was calculated and the threshold for high-risk fires was detected. As an implementation of the results above, the proper forest fire precautionary period in South Korea was estimated, and consequently October 21 through May 17 was recognized as a dry season at a high risk of forest fires. This period began 10 days earlier in autumn and extended into midwinter (late December and January) as opposed to the existing precautionary period, indicating the need of more cautious forest fire management earlier in autumn and continuing through midwinter.  相似文献   

6.
To improve the restoration of tropical rain forests, we tested the germination of seeds of Omphalea oleifera collected from soil (S) and from trees (T) in the 2001 dry season (Spring), at the beginning of a dry season (2005a, winter) and in the rainy season (2005b, winter). All seeds had high water content (WC, 31–33%), and the lipid content varied from 14 to 46%. Seedlings from seeds collected in 2001 were subjected to moderate water stress as a preconditioning treatment for severe stress. T-seeds collected in the dry season had high WC, rapid and high germination percentage; S and T-seeds collected in winter (2005) had also high WC but were dormant. GA3 (250 ppm) broke this dormancy. S-seeds collected in the dry season or at the beginning of it had relatively low WC and low and delayed germination. Some 2001 S-seeds produced albino seedlings. The critical water content for maintaining ecological longevity in these seeds was ∼15%. Seeds collected in 2005b that were dehydrated for 20 days in a moist and fresh atmosphere lost their viability, showing recalcitrant behavior. T-seeds with the lowest lipid content (2005a) after dehydration maintained low germination (15 ± 18%). In all samples the seed size varied widely and was not predictive of seed WC. Embryos taken from dehydrated seeds had two to four times higher WC than the seeds, but germination did not take place. Laboratory and field germination of dormant seeds showed that viability may be maintained for at least 2–3 months on a moist substrate (soil or agar). Moderate water stress at the seedling stage reduced the efficiency of biomass production. Response to this water stress was expressed more in physiological traits than in morphological characters, consequently biomass allocation was maintained and plants retained most of their morphological characteristics (root:shoot ratio, leaf area ratio, specific leaf area, leaf weight ratio). Moderate water stress did not increase the tolerance of seedlings to severe stress, causing leaf shedding and plant death. For restoration purposes we recommend that T-seeds be germinated immediately avoiding dehydration. The use of S-seeds could result in unhealthy seedlings. Seed recalcitrance and the response to moderate water stress restrict germination and establishment to small gaps, where this species naturally grows. We suggest that before introducing O. oleifera in restoration programs, a plant cover should be built to reduce soil water deficit. It is necessary to improve methods to increase potential seed longevity in storage.  相似文献   

7.
Tropical savannas cover approximately 20% of the earth’s land area, and therefore represent an important carbon store. Under scenarios of future climate change it is thus important to understand the demographic processes determining tree cover, namely tree recruitment, growth and mortality. This study measured tree recruitment and mortality in 123 (0.08 h) plots in Kakadu, Nitmiluk and Litchfield National Parks, in the Australian monsoonal tropics, over two consecutive 5-year intervals. Plots were located in two important habitats, both dominated by eucalyptus—lowland savanna and savanna growing on sandstone plateaux. All trees with diameter at breast height (DBH) ≥5 cm were tagged and identified. Recruitment was calculated as the proportion of tagged trees present at the end of an interval that were not present at the beginning. There were a total of 6666 and 6571 tree-intervals for mortality and recruitment, respectively. We used Akaike Information Criterion (AIC)-based model selection and multi-model inference to relate tree mortality and recruitment to fire frequency, mean annual rainfall (MAR), stand basal area, tree density and eco-taxonomic group. Recruitment decreased with tree density in both savanna types, and in lowland savanna, with the frequency of fires. In sandstone savanna, recruitment increased with MAR. Effects of fire on recruitment were better explained by season than severity of fire, while fire severity had a stronger influence on mortality. Mortality decreased with tree size up to about 25 cm DBH, but increased sharply when DBH exceeded 50 cm. Mortality increased with stand basal area, and increased with the frequency of late dry season fires in lowland savanna only. There was little evidence that mortality was affected by the frequency of early dry season fires or MAR. Both recruitment and mortality rates were higher for Acacia and Proteaceae species than for pantropical or Myrtaceae (including Eucalyptus) species. We identified several negative feedbacks, mediated by changes in tree density and stand basal area that help confer long-term stability to savanna tree cover. Nonetheless, changes such as a long-term increase in MAR or an increase in frequency or severity of fires are likely to result in changes in tree density, stand basal area and therefore carbon storage potential of savannas.  相似文献   

8.
A semi-greenhouse study was conducted to understand the effects of soil burial depth on seed germination and seedling development. The seeds of wild apricot (Prunus armeniaca) were buried at the soil depths of 0-cm, 4-cm, 8-cm, and 12-cm, respectively, to simulate the seed hoarding behavior of rodents in the field. The results revealed that the rates of seed germination and established seedlings from buried seeds were both the highest in 4-cm burial depth group, and then decreased with increasing soil depth. The number of rotten seeds increased in deeper burial depth. It is unfavourable for seed germination at 0-cm burial depth (i.e., seeds were laid on soil surface). There was insignificant effect of burial depth on growth of established seedlings. The results from this study indicated that proper burial depth in soil would be helpful for the seed germination and seedling growth. The seedlings derived from buried seeds at shallower depth (4 cm) in this research have advantage in their early development.  相似文献   

9.
We examined the following hypotheses: (i) seeds of dry forest trees have high pre- and post-germination mortality by desiccation due to the time between seed dispersal and germination and to irregular rains at the onset of the rainy season; (ii) seedlings from seeds dispersed in the dry season which survive the dry spells are larger at the end of the first rainy season than those dispersed in the rainy season because the former have more time to grow. We evaluated the possible trade-off between few large seedlings (resulting from natural dispersal) × many small seedlings (resulting from delayed dispersal) on seedling survival during the dry season. We sowed eight tree species in a greenhouse in September, simulating the natural dispersal timing (before the rains), and in November, when rains are more constant. Because shading can counteract the effects of desiccation, we applied three levels of shade (10%, 40% and 72% of PPFD). From September 2005 to December 2006, we provided the daily precipitation of a median year from a major patch of dry forest in Central Brazil. At the end of the rainy season, a subset of seedlings was collected for growth measurements (dry mass) and the remainder was left to follow the dry season survivorship. The lower germination expected for seeds dispersed in the dry season and in full sun was not confirmed for species that had some dormancy. The delayed dispersal was advantageous for the initial establishment of fast germinating species, but it was irrelevant or even disadvantageous for others. Also, the greenhouse weather was certainly milder than the natural environment, reducing the potential for mortality by desiccation. The growth of the four species of higher dormancy were not affected by timing of seed dispersal, while three out of four fast germinating species had higher root biomass when dispersed in the dry season. The growth during the rainy season did not affect seedling survival during the dry season. Keeping seeds to sow when rain is constant might be a good strategy to increase the establishment of fast-germinating tree species.  相似文献   

10.
Longleaf pine (Pinus palustris Mill.) forests of the Gulf Coastal Plain historically burned every 2–4 years with low intensity fires, which maintained open stands with herbaceous dominated understories. During the early and mid 20th century however, reduced fire frequency allowed fuel to accumulate and hardwoods to increase in the midstory and overstory layers, while woody shrubs gained understory dominance. In 2001, a research study was installed in southern Alabama to develop management options that could be used to reduce fuel loads and restore the ecosystem. As part of a nationwide fire and fire surrogates study, treatments included a control (no fire or other disturbance), prescribed burning only, thinning of selected trees, thinning plus prescribed burning, and herbicide plus prescribed burning. After two cycles of prescribed burning, applied biennially during the growing season, there were positive changes in ecosystem composition. Although thinning treatments produced revenue, while reducing midstory hardwoods and encouraging growth of a grassy understory, burning was needed to discourage regrowth of the hardwood midstory and woody understory. Herbicide application followed by burning gave the quickest changes in understory composition, but repeated applications of fire eventually produced the same results at the end of this 8-year study. Burning was found to be a critical component of any restoration treatment for longleaf communities of this region with positive changes in overstory, midstory and understory layers after just three or four burns applied every 2 or 3 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号