首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pastures store over 90% of their carbon and nitrogen below-ground as soil organic matter. In contrast, temperate conifer forests often store large amounts of organic matter above-ground in woody plant tissue and fibrous litter. Silvopastures, which combine managed pastures with forest trees, should accrete more carbon and nitrogen than pastures or timber plantations because they may produce more total annual biomass and have both forest and grassland nutrient cycling patterns active. This hypothesis was investigated by conducting carbon and nitrogen inventories on three replications of 11 year-old Douglas-fir (Pseudotsuga menziesii)/perennial ryegrass (Lolium perenne)/subclover (Trifolium subterraneum) agroforests, ryegrasss/subclover pastures, and Douglas-fir timber plantations near Corvallis, Oregon in August 2000. Over the 11 years since planting, agroforests accumulated approximately 740 kg ha–1 year –1 more C than forests and 520 kg ha–1 year–1 more C than pastures. Agroforests stored approximately 12% of C and 2% of N aboveground compared to 9% of C and 1% of N above ground in plantations and less than 1% of N and C aboveground in pastures. Total N content of agroforests and pastures, both of which included a nitrogen-fixing legume, were approximately 530 and 1200 kg ha–1 greater than plantations, respectively. These results support the proposition that agroforests, such as silvopastures, may be more efficient at accreting C than plantations or pasture monocultures. However, pastures may accrete more N than agroforests or plantations. This apparent separation of response in obviously interrelated agroecosystem processes, points out the difficulty in using forest plantation or pasture research results to predict outcomes for mixed systems such as agroforests. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Tree based land use systems make a valuable contribution to sequester carbon and improve productivity and nutrient cycling within the systems. This study was conducted to determine biomass production, C-sequestration and nitrogen allocation in Gmelina arborea planted as sole and agrisilviculture system on abandoned agricultural land. At 5 years, total stand biomass in agrisilviculture system was 14.1 Mg ha−1. Plantations had 35% higher biomass than agrisilviculture system. At 5 years, leaves, stem, branches and roots contributed 4.1, 65.2, 10.0 and 20.7%, respectively to total standing biomass (17.9 Mg ha−1). Over the 5 years of study, trees had 3.5 Mg ha−1 more C and 36 kg ha−1 more N in plantation than agrisilviculture system. Biomass and C storage followed differential allocation. Relatively more C was allocated in above ground components in plantations compared to agrisilviculture system. C:N ratios for tree components were higher in stem wood (135–142) followed by roots (134–139), branches (123–128) and leaves (20–21). In agrisilviculture system crops recommended are: soybean and cowpea in rainy season; wheat and mustard in winter season. After 5 years, soil organic C increased by 51.2 and 15.1% and N by 38.4 and 9.3% in plantation and agrisilviculture system, respectively. Total C storage in abandoned agricultural land before planting was 26.3 Mg ha−1, which increased to 33.7 and 45.8 Mg ha−1 after 5 years in plantation and agrisilviculture system, respectively. Net C storage (soil + tree) was 7.4 Mg ha−1 in agrisilviculture system compared to 19.5 Mg ha−1 in G. arborea monoculture stands. The studies suggest that competitive interactions played a significant role in agrisilviculture system. Plantations were more efficient in accreting C than agrisilviculture system on abandoned agricultural land.  相似文献   

3.
A study was conducted to assess carbon stocks in various forms and land-use types and reliably estimate the impact of land use on C stocks in the Nam Yao sub-watershed (19°05'10"N, 100°37'02"E), Thailand. The carbon stocks of aboveground, soil organic and fine root within primary forest, reforestation and agricultural land were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (357.62 ± 28.51 Mg·ha-1, simplified expression of Mg (carbon)·ha-1) was significantly greater (P< 0.05) than the reforestation (195.25 ±14.38 Mg·ha-1) and the agricultural land (103.10±18.24 Mg·ha-1). Soil organic carbon in the forests (196.24 ±22.81 Mg·ha-1) was also significantly greater (P< 0.05) than the reforestation (146.83± 7.22 Mg·ha-1) and the agricultural land (95.09 ± 14.18 Mg·ha-1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 40-cm layer and decreased with soil depth. The aboveground carbon(soil organic carbon: fine root carbon ratios (ABGC: SOC: FRC), was 5:8:1, 2:8:1, and 3:50:1 for the forest, reforestation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land. However, the C can be effectively recaptured through reforestation where high levels of C are stored in biomass as carbon sinks, facilitating carbon dioxide mitigation.  相似文献   

4.
The effect of pruning all branches (complete pruning) or retaining one branch (partial pruning) on the dynamics of nitrogen cycling in aboveground biomass, nitrogen supplying power of an amended Eutric Cambisol, and fine root length, was studied in an Erythrina poeppigiana (Walp.) O.F. Cook—tomato (Lycopersicon esculentum Mill.) alley cropping practice in Turrialba, Costa Rica during 1999–2000. Over the 1 year pruning cycle, in which trees were completely or partially pruned four times, respective aboveground biomass production was 4.4 Mg or 7 Mg ha−1 (2-year-old trees) and 5.5 Mg or 9 Mg ha−1 (8-year-old trees); N cycled in aboveground biomass was 123 kg or 187 kg ha−1 (2-year-old trees) and 160 kg or 256 kg N ha−1 (8-year-old trees); mean fine root length was 489 or 821 m (2-year-old-trees), 184 or 364 m per tree (8-year-old-trees). Pruning intensity did not significantly affect net N mineralisation and net nitrification rates during the tomato-cropping season. For the tomato crop, pre-plant mean net N mineralisation rate of 2.5 mg N kg−1 soil day−1 was significantly lower than 16.7 or 11.6 mg N kg−1 soil day−1 at the end of vegetative development and flowering, respectively. Mean net nitrification rates of 3.5, and 4.3 mg N kg−1 soil day−1, at pre-plant and end of vegetative development, respectively, were significantly higher than 0.3 mg N kg−1 soil day−1 at end of flowering. In humid tropical low-input agroforestry practices that depend on organic inputs from trees for crop nutrition, retention of a branch on the pruned tree stump appears to be a good alternative to removal of all branches for reducing N losses through higher N cycling in aboveground biomass, and for conserving fine root length for higher N uptake, although it might enhance competition for associated crops.  相似文献   

5.
Subtropical evergreen broad-leaved forest is the most widely distributed land-cover type in eastern China. As the rate of land-use change accelerates worldwide, it is becoming increasingly important to quantify ecosystem biomass and carbon (C) and nitrogen (N) pools. Above and below-ground biomass and ecosystem pools of N and C in a subtropical secondary forest were investigated at Laoshan Mountain Natural Reserve, eastern China. Total biomass was 142.9 Mg ha−1 for a young stand (18 years) and 421.9 Mg ha−1 for a premature stand (ca. 60 years); of this, root biomass was from 26.9 (18.8% of the total) to 100.3 Mg ha−1 (23.8%). Total biomass C and N pools were, respectively, 71.4 Mg ha−1 and 641.6 kg ha−1 in the young stand, and 217.0 Mg ha−1 and 1387.4 kg ha−1 in the premature stand. The tree layer comprised 91.8 and 89.4% of the total biomass C and N pools in the young stand, and 98.0 and 95.6% in the premature stand. Total ecosystem C and N pools were, respectively, 101.4 and 4.6 Mg ha−1 for the young stand, and 260.2 and 6.6 Mg ha−1 for the premature stand. Soil C comprised 23.8–29.6% of total ecosystem C whereas soil N comprised 76.9–84.4% of the total. Our results suggest that a very high percentage of N in this subtropical forest ecosystem is stored in the mineral soil, whereas the proportion of organic C in the soil pool is more variable. The subtropical forest in eastern China seems to rapidly accumulate biomass during secondary succession, which makes it a potentially rapid accumulator of, and large sink for, atmospheric C.  相似文献   

6.
The Southeastern United States has a robust broiler industry that generates substantial quantities of poultry litter as waste. It has historically been applied to pastures close to poultry production facilities, but pollution of watersheds with litter-derived phosphorus and to a lesser extent nitrogen have led to voluntary and in some areas regulatory restrictions on application rates to pastures. Loblolly pine (Pinus taeda L.) forests are often located in close proximity to broiler production facilities, and these forests often benefit from improved nutrition. Accordingly, loblolly pine forests may serve as alternative land for litter application. However, information on the influence of repeated litter applications on loblolly pine forest N and P dynamics is lacking. Results from three individual ongoing studies were summarized to understand the effects of repeated litter applications, litter application rates, and land use types (loblolly pine forest and pasture) on N and P dynamics in soil and soil water. Each individual study was established at one of three locations in the Western Gulf Coastal Plain region. Annual applications of poultry litter increased soil test P accumulation of surface soils in all three studies, and the magnitude of increase was positively and linearly correlated with application rates and frequencies. In one study that was established at a site with relatively high soil test P concentrations prior to poultry litter application, five annual litter applications of 5 Mg ha−1 and 20 Mg ha−1 also increased soil test P accumulation in subsurface soils to a depth of up to 45 cm. Soil test P accumulations were greater in surface soils of loblolly pine stands than in pastures when both land use types received similar rates of litter application. In one study which monitored N dynamics, lower soil organic N, potential net N mineralization, potential net nitrification, and soil water N was found in loblolly pine stands than pastures after two annual litter applications. However, increases in potential net N mineralization, net nitrification, and soil water N with litter application were more pronounced in loblolly pine than in pasture soils. Loblolly pine plantations can be a viable land use alternative to pastures for poultry litter application, but litter application rate and frequency as well as differences in nutrient cycling dynamics between pine plantations and pastures are important considerations for environmentally sound nutrient management decisions.  相似文献   

7.
The conversion of forests to agroecosystems or agroforests comes with many changes in biological and chemical processes. Agroforestry, a tree based agroecosystem, has shown promise with respect to enhanced system nutrient accumulation after land conversion as compared to sole cropping systems. Previous research on tropical agroforestry systems has revealed increases in soil organic matter and total organic nitrogen in the short term. However, research is lacking on long-term system level sustainability of nutrient cycles and storage, specifically in traditional multi-strata agroforestry systems, as data on both the scope and duration of nutrient instability are inconclusive and often conflicting. This study, conducted in Ghana, West Africa, focused on carbon and nitrogen dynamics in a twenty-five year chronosequence of cacao (Theobroma cacao Linn.) plantations. Three treatments were selected as on-farm research sites: 2, 15 and 25-year-old plantations. Soil carbon (C, to a depth of 15 cm) varied between treatments (2 years: 22.6 Mg C ha−1; 15 years: 17.6 Mg C ha−1; 25 years: 18.2 Mg C ha−1) with a significant difference between the 2- and 15- and the 2- and 25-year-old treatments (p < 0.05). Total soil nitrogen in the top 15 cm varied between 1.09 and 1.25 Mg N ha−1 but no significant differences were noted between treatments. Soil nitrification rates and litter fall increased significantly with treatment age. However, photosynthetically active radiation (PAR) and soil temperature showed a significant decrease with age. No difference was found between decay rates of litter at each treatment age. By 25 years, system carbon sequestration rates were 3 Mg C ha−1 y−1, although results suggest that even by 15 years, system-level attributes were progressing towards those of a natural system.  相似文献   

8.
The effect of six plantation species in comparison to natural forest (NF) on soil organic carbon (SOC) and total nitrogen (TN) stocks, depth-wise distribution, biomass carbon (C), and N was investigated on plantations and cultivated lands on an Andic paleudalf soil in Southern Ethiopia. The SOC, N, and bulk density were determined from samples taken in 4 replicates from 10-, 20-, 40-, 60-, and 100-cm depth under each site. Similarly, the biomass C and N of the plantation species and understory vegetation were also determined. The SOC and N were concentrated in the 0- to 10-cm depth and decreased progressively to the 1-m depth. Next to the NF, Juniperous procera accrued higher SOC and N in all depths than the corresponding plantations. No evidence of significant difference on SOC and N distribution among plantations was observed below the 10-cm depth with minor exceptions. The plantations accrue from 133.62 to 213.73 Mg ha–1 or 59.1 to 94.5% SOC, 230.4 to 497.3 Mg ha–1 or 6.9 to 14.9% TBC and 420.37 to 672.80 Mg ha–1 or 12.5 to 20% total C-pool of that under the NF. The N stock under Juniperous procera was the highest, while the lowest was under Eucalyptus globulus and Cupressus lusitanica. We suggest that SOC and N sequestration can be enhanced through mixed cropping and because the performance of the native species Juniperous procera is encouraging, it should be planted to restock its habitat.  相似文献   

9.
In the last century, many calcareous soils in Castilla León (northwestern Spain) have been transformed from natural Quercus ilex forest to cropped land. Reforestation with Pinus halepensis has been taking place during the past 40 years. In order to obtain a better understanding of how these disturbances affect ecosystem functioning, we studied the quantity and quality of soil organic matter (SOM) in natural forest ecosystems, cropland and Pinus plantations. Density fractionation combined with ultrasonic dispersion enables separation and study of SOM fractions: free organic matter (OM), OM occluded into aggregates and OM stabilized in organo-mineral complexes, considered on the basis of the type of physical protection provided. We separated SOM density fractions and determined the concentrations of C and N, C/N ratios and the natural isotopic abundance (δ13C and δ15N values). Transformation of Quercus forest to cropland resulted in major losses of SOC and N, as expected. However, subsequent reforestation with Pinus resulted in good recovery of the original SOC and soil N pools. This indicates the potential for enhanced C storage in agricultural soils by their reversion to a forested state. Study of the density fractions and their 13C and 15N signatures enabled better understanding of the high stability of OM in calcareous soils, and analysis of δ13C variations throughout the profile also enabled identification of past C3/C4 vegetation change. Despite the different OC contents of soils under different land use, OM stabilization mechanisms were not significantly different. In calcareous soils, accumulation of SOC and N is mainly due to organo-mineral associations, resulting in physicochemical stabilization against further decomposition.  相似文献   

10.
Small Appalachian hill farms may benefit economically by expanding grazing lands into some of their under-utilized forested acreages. Our objective was to study the forage production potential of forest to silvopasture conversion. We thinned a white oak dominated mature second growth forested area establishing two orchardgrass-perennial ryegrass-white clover silvopasture replications for comparison with two nearby open pasture replications. After thinning trees, silvopastures were limed, fertilized and seeded. Sheep were fed hay and corn scattered across the area to facilitate removal of residual understory vegetation, disruption of litter layer and incorporation of applied materials into surface soil. Each area was divided into multiple paddocks and rotationally grazed by sheep. Two 1 m2 herbage mass samples were taken from each paddock prior to animal grazing. There was no significant difference in soil moisture between silvopastures and open pastures however, there was adequate rainfall to prevent drought all 3 years. The two silvopastures received 42 and 51% of total daily incident PAR compared to the open field. Total dry forage mass yield from open pasture over the 3 years averaged 11,200 kg ha−1 y−1 and from silvopasture 6,640 kg ha−1 y−1. Silvopastures, however, had a higher PAR use efficiency (PARUE) than open pasture. Hill farms could increase grazing acreages without sacrificing all benefits from trees on the landscape by converting some areas to silvopasture.  相似文献   

11.
No information is available about carbon (C) sequestration potentials in ecosystems on Andisols of the Chilean Patagonia. This study was undertaken to measure the size of C stocks in three predominant ecosystems: Pinus ponderosa-based silvopastoral systems (SPS), pine plantations (PPP) and natural pasture (PST), and examine how clover affect tree growth and stocks of soil C. The C contents of trees and pasture were determined by destructive sampling and dry combustion. Soil samples were taken at 0?C5, 5?C20, 20?C40?cm depths in order to determine soil C and N. For PPP and SPS total aboveground tree C was 38.4 and 53.1?kg tree?1 and belowground was 21.3 and 23.4?kg tree?1, respectively. Annual diameter increment at breast height was 1 and 2?cm in PPP and SPS, respectively, and was significantly higher in SPS. Trees in SPS, due to lower density and the presence of leguminous pasture, demonstrated enhanced growth and C sequestration. Soil organic C (SOC) stocks at 0?C40?cm depth were 193.76, 177.10 and 149.25?Mg?ha?1 in SPS, PST and PPP, respectively. The conversion of PPP to SPS and PST to PPP resulted in an increase of 44.51?Mg?ha?1 and a decrease of 27.85?Mg?ha?1 in SOC, respectively. Favorable microclimatic conditions in relation to air temperature and soil moisture were observed in SPS as well as a synergy between trees and pasture.  相似文献   

12.
Plant growth, morphology and nutritive value under shade can differ between temperate grasses. Therefore, the aim of this study was to quantify the dry matter (DM) production, sward morphology, crude protein (CP%), organic matter digestibility (OMD) and macro-nutrient concentrations (P, K, Mg, Ca and S) in a grazed cocksfoot (Dactylis glomerata L.) pasture under 10-year-old Pinus radiata D. Don forest. Four levels of light intensity were compared: full sunlight (100% photosynthetic photon flux density-PPFD), open + wooden slats (∼43% PPFD), trees (∼58% PPFD) and tree + slats (∼24% PPFD). The mean total DM production was 8.2 t DM ha−1 yr−1 in the open and 3.8 t DM ha−1 yr−1 in the trees + slats treatment. The changes in cocksfoot leaf area index (LAI) were related to variations in morphological aspects of the sward such as canopy height and tiller population. CP% increased as PPFD declined with mean values of 18.6% in open and 22.5% in the trees + slats treatment. In contrast, the intensity of fluctuating shade had little effect on OMD with a mean value of 79 ± 3.2%. The mean annual macro-nutrient concentrations in leaves increased as the PPFD level declined mainly between the open and the trees + slats treatments. It therefore appears that heavily shaded dominant temperate pastures in silvopastoral systems limit animal production per hectare through lower DM production rates and per animal through reduced pre-grazing pasture mass of lower bulk density from the etiolated pasture.  相似文献   

13.
We compared soil organic carbon (SOC) stocks and stability under two widely distributed tree species in the Mediterranean region: Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.) at their ecotone. We hypothesised that soils under Scots pine store more SOC and that tree species composition controls the amount and biochemical composition of organic matter inputs, but does not influence physico-chemical stabilization of SOC. At three locations in Central Spain, we assessed SOC stocks in the forest floor and down to 50 cm in the mineral in pure and mixed stands of Pyrenean oak and Scots pine, as well as litterfall inputs over approximately 3 years at two sites. The relative SOC stability in the topsoil (0-10 cm) was determined through size-fractionation (53 μm) into mineral-associated and particulate organic matter and through KMnO4-reactive C and soil C:N ratio.Scots pine soils stored 95-140 Mg ha−1 of C (forest floor plus 50 cm mineral soil), roughly the double than Pyrenean oak soils (40-80 Mg ha−1 of C), with stocks closely correlated to litterfall rates. Differences were most pronounced in the forest floor and uppermost 10 cm of the mineral soil, but remained evident in the deeper layers. Biochemical indicators of soil organic matter suggested that biochemical recalcitrance of soil organic matter was higher under pine than under oak, contributing as well to a greater SOC storage under pine. Differences in SOC stocks between tree species were mainly due to the particulate organic matter (not associated to mineral particles). Forest conversion from Pyrenean oak to Scots pine may contribute to enhance soil C sequestration, but only in form of mineral-unprotected soil organic matter.  相似文献   

14.
Soil nutrient depletion as a result of continuous cultivation of soils without adequate addition of external inputs is a major challenge in the highlands of Kenya. An experiment was set up in Meru South District, Kenya in 2000 to investigate the effects of different soil-incorporated organic (manure, Tithonia diversifolia, Calliandra calothyrsus, Leucaena leucocephala) and mineral fertilizer inputs on maize yield, and soil chemical properties over seven seasons. On average, tithonia treatments (with or without half recommended rate of mineral fertilizer) gave the highest grain yield (5.5 and 5.4 Mg ha−1 respectively) while the control treatment gave the lowest yield (1.5 Mg ha−1). After 2 years of trial implementation, total soil carbon and nitrogen contents were improved with the application of organic residues, and manure in particular improved soil calcium content. Results of the economic analysis indicated that on average across the seven seasons, tithonia with half recommended rate of mineral fertilizer treatment recorded the highest net benefit (USD 787 ha−1) while the control recorded the lowest (USD 272 ha−1). However, returns to labor or benefit-cost ratios were in most cases not significantly improved when organic materials were used.  相似文献   

15.
In Cameroon, cocoa trees are mostly grown in forests and without fertilization. Our aim was to learn more about the temporal dynamics of soils in cocoa agroforests by comparing young (1–4 years old) and old (over 25 years old) cocoa agroforests. Short fallow and secondary forest were used as treeless and forest references. The numbers and diversities of soil vesicular arbuscular mycorrhizal (VAM) fungi on 60 cocoa producing farms in the Central province of Cameroon were assessed based on the classical morphotyping of spore morphology. We also observed the soil organic matter, nitrogen and major soil nutrients. VAM spore density was significantly lower in the young cocoa agroforests (16 spores g−1 dry soil) than in the old cocoa agroforests (36 spores g−1 dry soil). Levels in the nearby secondary forest (46 spores g−1 dry soil) were not significantly different from old cocoa. The spore density was significantly highest in the short fallow (98 spores g−1 dry soil). The Shannon–Weaver index also showed significantly lower biodiversity in young cocoa (0.39) than in old cocoa agroforests (0.48), secondary forest (0.49) and short fallow (0.47). These observations were supported by significant differences in the C:N ratio, Ca, Mg, and cation exchange capacity between young and old cocoa agroforests. We concluded that unfertilized cocoa agroforests could be sustainable, despite a decrease in some soil characteristics at a young stage, due to traditional land-conversion practices based on selective clearing and burning of secondary forest.  相似文献   

16.
Nitrogen (N) deposition exceeds the critical loads for this element in most parts of Switzerland apart from the Alps. At 17 sites (8 broadleaved stands, 8 coniferous stands, and 1 mixed stand) of the Swiss Long-term Forest Ecosystem Research network, we are investigating whether N deposition is associated with the N status of the forest ecosystems. N deposition, assessed from throughfall measurements, was related to the following indicators: (1) nitrate leaching below the rooting zone (measured on a subset of 9 sites); (2) the N nutrition of the forest stand based on foliar analyses (16 sites); and (3) crown defoliation, a non specific indicator of tree vitality (all 17 sites). Nitrate leaching ranging from about 2 to 16 kg N ha−1 a−1 was observed at sites subjected to moderate to high total N deposition (>10 kg ha−1 a−1). The C/N ratio of the soil organic layer, or, when it was not present, of the upper 5 cm of the mineral soil, together with the pool of organic carbon in the soil, played a critical role, as previous studies have also found. In addition, the humus type may need to be considered as well. For instance, little nitrate leaching (<2 kg N ha−1 a−1) was recorded at the Novaggio site, which is subjected to high total N deposition (>30 kg ha−1 a−1) but characterized by a C/N ratio of 24, large organic C stocks, and a moder humus type. Foliar N concentrations correlated with N deposition in both broadleaved and coniferous stands. In half of the coniferous stands, foliar N concentrations were in the deficiency range. Crown defoliation tended to be negatively correlated with N concentrations in the needles. In the majority of the broadleaved stands, foliar N concentrations were in the optimum nutritional range or, on one beech plot with high total N deposition (>25 kg ha−1 a−1), above the optimum values. There was no correlation between the crown defoliation of broadleaved trees and foliar concentrations.  相似文献   

17.
Yields under alley cropping might be improved if the most limiting nutrients not adequately supplied or cycled by the leaves could be added as an inorganic fertilizer supplement. Three historic leaf management strategies had been in effect for 3 years ina Leucaena leucocephala alley cropping trial on the Lilongwe Plain of central Malawi : 1) leaves returned; 2) leaves removed; and 3) leaves removed, with 100 kg inorganic N ha−1 added. An initial soil analysis showed P status to be suboptimal under all strategies. A confounded 34 factorial experiment was conducted with the following treatments: leaf management strategy (as above), N fertilizer rate (0, 30, and 60 kg N ha−1), P fertilizer rate (0, 18, and 35 kg P ha−1), and maize population (14,800, 29,600, and 44,400 plants ha−1). Both N and P were yield limiting, and interacted positively to improve yields. The addition of 30 kg N and 18 kg P ha−1 improved yields similarly under all leaf management strategies by an average of 2440 kg ha−1. Increasing the rates to 60 kg N and 35 kg P ha−1 improved yields an additional 1990 kg ha−1 in the ‘leaves returned’ and leaves removed + N’ strategies, but did not improve yields under the ‘leaves removed’ strategy. Lower yields were related to lack of P response at the highest P rate in this treatment, which may have induced Zn deficiency. Plots receiving leaves had higher organic C, total N, pH, exchangeable Ca, Mg, K, and S, and lower C/N ratios in the 0–15 cm soil layer than did plots where leaves had been removed. Leaf removal with N addition was similar to leaf removal alone for all soil factors measured except for organic C and total N, which were higher where N had been added. The results show that N and P were the primary yield-limiting nutrients. Historic N application maintained the soil's ability to respond to N and P on par with leaf additions.  相似文献   

18.
Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus open-grown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above- and belowground biomass estimates were respectively, 140 Mg ha−1 and 32 Mg ha−1 in the coffee–Albizia association, and 29.7 Mg ha−1 and 18.7 Mg ha−1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha−1 in the shaded coffee system and only 22.9 Mg ha−1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil. An erratum to this article can be found at  相似文献   

19.
Tree-based land-use systems could sequester carbon in soil and vegetation and improve nutrient cycling within the systems. The present investigation was aimed at analyzing the role of tree and grass species on biomass productivity, carbon sequestration and nitrogen cycling in silvopastoral systems in a highly sodic soil. The silvopastoral systems (located at Saraswati Reserved Forest, Kurukshetra, 29°4prime; to 30°15prime; N and 75°15prime; to 77°16prime; E) consisted of about six-year-old-tree species of Acacia nilotica, Dalbergia sissoo and Prosopis juliflora in the mainplots of a split-plot experiment with two species of grasses, Desmostachya bipinnata and Sporobolus marginatus, in the subplots. The total carbon storage in the trees + grass systems was 1.18 to 18.55 Mg C ha−1 and carbon input in net primary production varied between 0.98 to 6.50 Mg C ha−1 yr−1. Carbon flux in net primary productivity increased significantly due to integration of Prosopis and Dalbergia with grasses. Compared to 'grass-only' systems, soil organic matter, biological productivity and carbon storage were greater in the silvopastoral systems. Of the total nitrogen uptake by the plants, 4 to 21 per cent was retained in the perennial tree components. Nitrogen cycling in the soil-plant system was found to be efficient. Thus, It is suggested that the silvopastoral systems, integrating trees and grasses hold promise as a strategy for improving highly sodic soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
In recent years, in the European Union, sewage sludge production has been increased as a result of EU policy (European directive 91/271/EEC). Organic matter and nutrient sewage sludge contents, principally nitrogen, indicate it can be used as fertilizer. The objective of the experiment was to compare the effect of no fertilization, three doses of sewage sludge, with or without liming, and the fertilization usually used in the region applied over a period of 3 years on pasture production and tree growth in a silvopastoral system. The experiment was conducted in the northwest of Spain. The soil was very acid (soil pH = 4.5) and had very low nutrient levels, especially P, that is related to site index. It was sown with a grass mixture (25 kg ha−1 of Lolium perenne L. 10 kg ha−1 of Dactylis glomerata L. and 4 kg ha−1 of Trifolium repens L.) in Autumn 1997 under a plantation of 5-year-old Pinus radiata D. Don at a density of 1,667 trees ha−1. Liming and sewage sludge fertilization increased soil pH and reduced saturated aluminium percentage in the interchange complex (Al/IC) in the soil, coming up the effect before with liming. Medium and high sewage sludge doses increased pasture production in the two first years. In a silvopastoral system, positive tree growth response to different fertilization treatments depended on tree age, initial soil fertility, soil pH, the relationship of competition with pasture production and previous liming application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号