首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous research showed large amounts of nitrous oxide (N2O) emission (>200?kg?N?ha?1?year?1) from agricultural peat soil. In this study, we investigated the factors influencing relatively large N2O fluxes and the source of nitrogen (N) substrate for N2O in a tropical peatland in central Kalimantan, Indonesia. Using a static chamber method, N2O and carbon dioxide (CO2) fluxes were measured in three conventionally cultivated croplands (conventional), an unplanted and unfertilized bare treatment (bare) in each cropland, and unfertilized grassland over a three-year period. Based on the difference in N2O emission from two treatments, contribution of the N source for N2O was calculated. Nitrous oxide concentrations at five depths (5–80?cm) were also measured for calculating net N2O production in soil. Annual N fertilizer application rates in the croplands ranged from 472 to 1607?kg?N?ha?1?year?1. There were no significant differences in between N2O fluxes in the two treatments at each site. Annual N2O emission in conventional and bare treatments varied from 10.9 to 698 and 6.55 to 858?kg?N?ha?1?year?1, respectively. However, there was also no significant difference between annual N2O emissions in the two treatments at each site. This suggests most of the emitted N2O was derived from the decomposition of peat. There were significant positive correlations between N2O and CO2 fluxes in bare treatment in two croplands where N2O flux was higher than at another cropland. Nitrous oxide concentration distribution in soil measured in the conventional treatment showed that N2O was mainly produced in the surface soil down to 15?cm in the soil. The logarithmic value of the ratio of N2O flux and nitrate concentration was positively correlated with water filled pore space (WEPS). These results suggest that large N2O emission in agricultural tropical peatland was caused by denitrification with high decomposition of peat. In addition, N2O was mainly produced by denitrification at high range of WFPS in surface soil.  相似文献   

2.
Nitrous oxide (N2O) is a greenhouse gas produced during microbial transformation of soil N that has been implicated in global climate warming. Nitrous oxide efflux from N fertilized soils has been modeled using NO3 content with a limited success, but predicting N2O production in non-fertilized soils has proven to be much more complex. The present study investigates the contribution of soil amino acid (AA) mineralization to N2O flux from semi-arid soils. In laboratory incubations (−34 kPa moisture potential), soil mineralization of eleven AAs (100 μg AA-N g−1 soil) promoted a wide range in the production of N2O (156.0±79.3 ng N2O-N g−1 soil) during 12 d incubations. Comparison of the δ13C content (‰) of the individual AAs and the δ13C signature of the respired AA-CO2-C determined that, with the exception of TYR, all of the AAs were completely mineralized during incubations, allowing for the calculation of a N2O-N conversion rate from each AA. Next, soils from three different semi-arid vegetation ecosystems with a wide range in total N content were incubated and monitored for CO2 and N2O efflux. A model utilizing CO2 respired from the three soils as a measure of organic matter C mineralization, a preincubation soil AA composition of each soil, and the N2O-N conversion rate from the AA incubations effectively predicted the range of N2O production by all three soils. Nitrous oxide flux did not correspond to factors shown to influence anaerobic denitrification, including soil NO3 contents, soil moisture, oxygen consumption, and CO2 respiration, suggesting that nitrification and aerobic nitrifier denitrification could be contributing to N2O production in these soils. Results indicate that quantification of AA mineralization may be useful for predicting N2O production in soils.  相似文献   

3.
Abstract

Nitrous oxide (N2O) emissions were measured and nitrogen (N) budgets were estimated for 2?years in the fertilizer, manure, control and bare plots established in a reed canary grass (Phalaris arundinacea L.) grassland in Southern Hokkaido, Japan. In the manure plot, beef cattle manure with bark was applied at a rate of 43–44?Mg fresh matter (236–310?kg?N)?ha?1?year?1, and a supplement of chemical fertilizer was also added to equalize the application rate of mineral N to that in the fertilizer plots (164–184?kg?N?ha?1?year?1). Grass was harvested twice per year. The total mineral N supply was estimated as the sum of the N deposition, chemical fertilizer application and gross mineralization of manure (GMm), soil (GMs), and root-litter (GMl). GMm, GMs and GMl were estimated by dividing the carbon dioxide production derived from the decomposition of soil organic matter, root-litter and manure by each C?:?N ratio (11.1 for soil, 15.5 for root-litter and 23.5 for manure). The N uptake in aboveground biomass for each growing season was equivalent to or greater than the external mineral N supply, which is composed of N deposition, chemical fertilizer application and GMm. However, there was a positive correlation between the N uptake in aboveground biomass and the total mineral N supply. It was assumed that 58% of the total mineral N supply was taken up by the grass. The N supply rates from soil and root-litter were estimated to be 331–384?kg?N?ha?1?year?1 and 94–165?kg?N?ha?1?year?1, respectively. These results indicated that the GMs and GMl also were significant inputs in the grassland N budget. The cumulative N2O flux for each season showed a significant positive correlation with mineral N surplus, which was calculated as the difference between the total mineral N supply and N uptake in aboveground biomass. The emission factor of N2O to mineral N surplus was estimated to be 1.2%. Furthermore, multiple regression analysis suggested that the N2O emission factor increased with an increase in precipitation. Consequently, soil and root-litter as well as chemical fertilizer and manure were found to be major sources of mineral N supply in the grassland, and an optimum balance between mineral N supply and N uptake is required for reducing N2O emission.  相似文献   

4.
Abstract

To investigate the effects of renovation (ploughing and resowing) on nitrous oxide (N2O) emissions from grassland soil, we measured N2O fluxes from renovated and unrenovated (control) grassland plots. On 22 August in both 2005 and 2006 we harvested the sward, ploughed the surface soil and then mixed roots and stubble into the surface soil with a rotovator. Next, we compacted the soil surface with a land roller, spread fertilizer at 40 kg N ha?1 on the soil surface and sowed orchardgrass (Dactylis glomerata L., Natsumidori). In the control plot, we just harvested the sward and spread fertilizer. We determined N2O fluxes for 2 months after the renovation using a vented closed chamber. During the first 2 weeks, the renovated plot produced much more N2O than the control plot, suggesting that N was quickly mineralized from the incorporated roots and stubble. Even after 2 weeks, however, large N2O emissions from the renovated plot were recorded after rainfall, when the soil surface was warmed by sunshine and the soil temperature rose 2.7–3.0°C more than that of the control plot. In 2005, during the 67-day period from 19 August to 26 October, the renovated and control plots emitted 5.3 ± 1.4 and 2.8 ± 0.7 kg N2O-N ha?1, with maximum fluxes of 3,659 and 1,322 µg N2O-N m?2 h?1, respectively. In 2006, during the 65-day period from 21 August to 26 October, the renovated and control plots emitted 2.1 ± 0.6 and 0.96 ± 0.42 kg N2O-N ha?1, with maximum fluxes of 706 and 175 µg N2O-N m?2 h?1, respectively. The cumulative N2O emissions from plots in 2005 were greater than those in 2006, presumably because rainfall just after renovation was greater in 2005 than in 2006. These results suggest that incorporated roots and stubble may enlarge the anaerobic microsites in the soil in its decomposing process and increase the N2O production derived from the residues and the fertilizer. In addition, rainfall and soil moisture and temperature conditions during and after renovation may control the cumulative N2O emission.  相似文献   

5.
We studied the effect of repeated application (once every 2 d) of a fertilizer solution with different ratios of NH4 + - and NO3 ?-N on N2O emission from soil. After the excess fertilizer solution was drained from soil, the water content of soil was adjusted to 50% of the maximum water-holding capacity by suction at 6 × 103 Pa. Repeated application of NH4 +- rich fertilizer solution stimulated nitrification in soil more than NO3 ?-rich fertilizer. Although the evolution of N2O through nitrifier denitrification tended to increase with the repeated addition of a fertilizer solution rich in NH4 + rather than in NO3 ?, the contribution of nitrifier denitrification remained at levels of 20 to 36% of the total emission regardless of the inorganic N composition. The total emission of N2O also tended to increase with the application of NH4 +- rather than NO3 ?-rich fertilizer. It was suggested that the coupled process of nitrification and denitrification at micro-aerobic sites became important when fertilizer rich in NH4 + was applied to soil under relatively aerobic conditions.  相似文献   

6.
We studied the effect of repeated application (once every 2 d) of a fertilizer solution with different ratios of NH4+ - and NO3-N on N2O emission from soil. After the excess fertilizer solution was drained from soil, the water content of soil was adjusted to 50% of the maximum water-holding capacity by suction at 6 × 103 Pa. Repeated application of NH4+- rich fertilizer solution stimulated nitrification in soil more than NO3-rich fertilizer. Although the evolution of N2O through nitrifier denitrification tended to increase with the repeated addition of a fertilizer solution rich in NH4+ rather than in NO3, the contribution of nitrifier denitrification remained at levels of 20 to 36% of the total emission regardless of the inorganic N composition. The total emission of N2O also tended to increase with the application of NH4+- rather than NO3-rich fertilizer. It was suggested that the coupled process of nitrification and denitrification at micro-aerobic sites became important when fertilizer rich in NH4+ was applied to soil under relatively aerobic conditions.  相似文献   

7.
Nitrous oxide emission was measured in laboratory incubations of an alluvial soil (58% clay, pH 7.4). The soil was amended with 40 mg N kg−1 as NaNO3 or NH4Cl, or with NaCl as a control. Each fertilization treatment was adjusted to three different water contents: constant 60% WHC (water-holding capacity), constant 120% WHC, and water content alternating between 60 and 120% WHC. During an 8-day incubation period N2O emission rates and inorganic nitrogen concentrations in soil (NH4+, NO2, NO3) were determined at regular intervals. In the control and after nitrate application small N2O emission rates occurred with only minor variations over time, and no differences between the water treatments. In contrast, with ammonium application N2O emission rates were much higher during the first two days of incubation, with peaks in the constant 60% WHC and 120% WHC at day 1 and in the changing-water treatment at day 2, when the first wet period (120% WHC) was completed. This N2O peak in the changing-water treatment was 4 to 9 times higher than with constant WHC and occurred when both, NH4+ and NO2 concentrations declined sharply. Thus, this N2O emission flush can be attributed to nitrifier denitrification. After the second rewetting of the NH4+-amended soil no further N2O emission peak was observed, being in accordance with small NH4+ and NO2 concentrations in soil at that time. The unexpectedly small N2O fluxes in the constant 120% WHC treatment after nitrate application were probably caused by the reduction of N2O to N2 under the prevailing conditions. It can be concluded that continuous wetting or flooding of a soil is an effective measure to reduce N2O emissions immediately after the application of NH4+ fertilizers.  相似文献   

8.
Abstract

To develop an advanced method for estimating nitrous oxide (N2O) emission from an agricultural watershed, we used a closed-chamber technique to measure seasonal N2O and nitric oxide (NO) fluxes in cornfields, grassland, pastures and forests at the Shizunai Experimental Livestock Farm (467 ha) in southern Hokkaido, Japan. From 2000 to 2004, N2O and NO fluxes ranged from –137 to 8,920 µg N m?2 h?1 and from –12.1 to 185 µg N m?2 h?1, respectively. Most N2O/NO ratios calculated on the basis of these N2O and NO fluxes ranged between 1 and 100, and the log-normal N2O/NO ratio was positively correlated with the log-normal N2O fluxes (r 2 = 0.346, P < 0.01). These high N2O fluxes, therefore, resulted from increased denitrification activity. Annual N2O emission rates ranged from –1.0 to 81 kg N ha?1 year?1 (average = 6.6 kg N ha?1). As these emission values varied greatly and included extremely high values, we divided them into two groups: normal values (i.e. values lower than the overall average) and high values (i.e. values higher than average). The normal data were significantly positively correlated with N input (r 2 = 0.61, P < 0.01) and the “higher” data from ungrazed fields were significantly positively correlated with N surplus (r 2 = 0.96, P < 0.05). The calculated probability that a high N2O flux would occur was weakly and positively correlated with precipitation from May to August. This probability can be used to represent annual variation in N2O emission rates and to reduce the uncertainty in N2O estimation.  相似文献   

9.
10.
11.
Grazing animals highly influence the nutrient cycle by a direct return of 80% of the consumed N in form of dung and urine. In the autumn‐winter period, N uptake by the sward is low and rates of seepage water in sandy soils are high, hence high mineral‐N contents in soil and in seepage water as well as large losses of N2O are expected after cattle grazing in autumn. The objective of this study was the quanitfication of N loss deriving from urine and dung leaching and by N2O emission. Therefore the deposition of urine and dung patches was simulated in maximum rates excreted by cows by application of 15N‐labeled cow urine and dung (equivalent to 1030 kg N ha–1 and 1052 kg N ha–1, respectively) on a sandy pasture soil in N Germany. Leachate was collected in weekly intervals from free‐draining lysimeters, and 15N‐NO , 15N‐NH , and 15N‐DON (dissolved organic N) were monitored over 171 d. Furthermore, the 15N‐N2O emission rates and the dynamics of inorganic 15N in the upper soil layer were monitored in a field trial, adjacent to the lysimeters. After 10 d following the urine application, the urea was completely hydrolyzed, shown by a 100% recovery of urine‐N in the soil NH . The following decrease of 15N‐NH in the soil was higher than the increase of 15N‐NO , and some N loss was explained by leaching. Amounts of 51% and 2.5% of the applied 15N were found in leachate as inorganic N, 2.4% and 0.7% as DON derived from urine and dung, respectively. Release of N2O from urine and dung patches applied to the pasture was low, with losses of 0.05% and 0.33% of the applied 15N, respectively. Overall loss of dung‐derived N was very low, but as the bulk dung N remained in the soil, N loss after mineralization of the dung needs to be investigated.  相似文献   

12.
Nitrous oxide emissions from grazed grassland   总被引:8,自引:0,他引:8  
Abstract. Grazing animals on managed pastures and rangelands have been identified recently as significant contributors to the global N2O budget. This paper summarizes relevant literature data on N2O emissions from dung, urine and grazed grassland, and provides an estimate of the contribution of grazing animals to the global N2O budget.
The effects of grazing animals on N2O emission are brought about by the concentration of herbage N in urine and dung patches, and by the compaction of the soil due to treading and trampling. The limited amount of experimental data indicates that 0.1 to 0.7% of the N in dung and 0.1 to 3.8% of the N in urine is emitted to the atmosphere as N2O. There are no pertinent data about the effects of compaction by treading cattle on N2O emission yet. Integral effects of grazing animals have been obtained by comparing grazed pastures with mown-only grassland. Grazing derived emissions, expressed as per cent of the amount of N excreted by grazing animals in dung and urine, range from 0.2 to 9.9%, with an overall mean of 2%. Using this emission factor and data statistics from FAO for numbers of animals, the global contribution of grazing animals was estimated at 1.55 Tg N2O-N per year. This is slightly more than 10% of the global budget.  相似文献   

13.
On the main Japanese island of Honshu, bark or sawdust is often added to cattle excreta as part of the composting process. Dairy farmers sometimes need to dispose of manure that is excess to their requirements by spreading it on their grasslands. We assessed the effect of application of bark- or sawdust-containing manure at different rates on annual nitrous oxide (N2O) and methane (CH4) emissions from a grassland soil. Nitrous oxide and CH4 fluxes from an orchardgrass (Dactylis glomerata L.) grassland that received this manure at 0, 50, 100, 200, or 300?Mg?ha?1?yr?1 were measured over a two-year period by using closed chambers. Two-way analysis of variance (ANOVA) was employed to examine the effect of annual manure application rates and years on annual N2O and CH4 emissions. Annual N2O emissions ranged from 0.47 to 3.03?kg?N?ha?1?yr?1 and increased with increasing manure application rate. Nitrous oxide emissions during the 140-day period following manure application increased with increasing manure application rate, with the total nitrogen concentration in the manure, and with cumulative precipitation during the 140-day period. However, manure application rate did not affect the N2O emission factors of the manure. The overall average N2O emission factor was 0.068%. Annual CH4 emissions ranged from ?1.12 to 0.01?kg?C?ha?1?yr?1. The annual manure application rate did not affect annual CH4 emissions.  相似文献   

14.
Concentrations of nitrous oxide (N2O) and oxygen were monitored over a 2-yr period in an imperfectly drained grassland soil receiving applications of N as cattle slurry or Ca(NO3)2. In both years N2O concentrations in the different treatments were in the order nitrate > slurry > control. Gaseous diffusion coefficients were determined in soil cores by a krypton-85 tracer method and used to calculate approximate N2O fluxes from the soil. Only 1–5 kg N ha?1 was lost as N2O after a single application of > 1200 kg N ha ?1 as slurry compared with 3–11 kg N ha ?1 lost after 100 kg was added as NO3?. Total gaseous losses (N2O+N2) could be expected to be higher in both cases.  相似文献   

15.
Arsenic (As), lead (Pb), copper (Cu) and zinc (Zn) can be found in large concentrations in mine spills of central and northern Mexico. Interest in these heavy metals has increased recently as they contaminate drinking water and aquifers in large parts of the world and severely affect human health, but little is known about how they affect biological functioning of soil. Soils were sampled in seven locations along a gradient of heavy metal contamination with distance from a mine in San Luis Potosí (Mexico), active since about 1800 AD. C mineralization and N2O production were monitored in an aerobic incubation experiment. Concentrations of As in the top 0-10 cm soil layer ranged from 8 to 22,992 mg kg−1, from 31 to 1845 mg kg−1 for Pb, from 27 to 1620 mg kg−1 for Cu and from 81 to 4218 mg kg−1 for Zn. There was a significant negative correlation between production rates of CO2 and concentrations of As, Pb, Cu and Zn, and there was a significant positive correlation with pH, water holding capacity (WHC), total N and soil organic C. There was a significant negative correlation (P<0.05) between production rate of nitrous oxide (N2O) attributed to nitrification by the inhibition method in soil incubated at 50% WHC and total concentrations of Pb and Zn, and there was a significant positive correlation (P<0.05) with pH and total N content. There was a significant negative correlation (P<0.05) between the production rate of N2O attributed to denitrification by the inhibition method in soil incubated at 100% WHC and total concentrations of Pb, Cu and Zn, and a significant positive correlation (P<0.01) with pH; there was a significant positive correlation (P<0.05) between the production of N2O attributed to other processes by the inhibition method and WHC, inorganic C and clay content. A negative value for production rate of N2O attributed to nitrifier denitrification by the inhibition method was obtained at 100% WHC. The large concentrations of heavy metals in soil inhibited microbial activity and the production rate of N2O attributed to nitrification by the inhibition method when soil was incubated at 50% WHC and denitrification when soil was incubated at 100% WHC. The inhibitor/suppression technique used appeared to be flawed, as negative values for nitrifier denitrification were obtained and as the production rate of N2O through denitrification increased when soil was incubated with C2H2.  相似文献   

16.
In this study emissions of N2O from arable soils are summarized using data from long‐term N2O monitoring experiments. The field experiments were conducted at six sites in Germany between 1992 and 1997. The annual N‐application rate ranged from 0 to 350 kg N ha—1. Mineral and organic N‐fertilizer applications were temporarily split adapted to the growth stage of each crop. N‐fertilizer input and N‐yield by the crops were used to calculate the In/Out‐balance. The closed chamber technique was applied to monitor the N2O fluxes from soil into the atmosphere. If possible, plants were included in the covers. Annual N2O emission values were based on flux rate measurements of an entire year. The annual N2O losses ranged from 0.53 to 16.78 kg N2O‐N ha—1 with higher N2O emissions from organically fertilized plots as compared to minerally fertilized plots. Approximately 50% of the total annual emissions occurred during winter. No significant relationship between annual N2O emissions and the respective N‐fertilization rate was found. This was attributed to site‐ and crop‐specific effects on N2O emission. The calculation of the N2O emission per unit N‐yield from winter cereal plots indicates that the site effect on N2O emission is more important than the effect of N‐fertilization. From unfertilized soils at the sites Braunschweig and Timmerlah a N‐yield of 60.0 kg N ha—1 a—1 and N2O emissions of 2 kg N ha—1 a—1 were measured. This high background emission was assigned to the amount and turnover of soil organic matter. For a crop rotation at the sites Braunschweig and Timmerlah the N In/Out‐balance over a period of four years was identified as a suitable predictor of N2O emissions. This parameter characterizes the efficiency of N‐fertilization for crop production and allows for N‐mineralization from the soil.  相似文献   

17.
Nitrous oxide emissions under different soil and land management conditions   总被引:4,自引:0,他引:4  
Nitrous oxide (N2O) emissions of three different soils – a rendzina on cryoturbed soil, a hydromorphic leached brown soil and a superficial soil on a calcareous plateau – were measured using the chamber method. Each site included four types of land management: bare soil, seeded unfertilized soil, a suboptimally fertilized rapeseed crop and an overfertilized rapeseed crop. Fluxes varied from –1g to 100g N2O-nitrogen ha–1 day–1. The highest rates of N2O emissions were measured during spring on the hydromorphic leached brown soil which had been fertilized with nitrogen (N); the total emissions during a 5-month period exceeded 3500gNha–1. Significant fluxes were also observed during the summer. Very marked effects of soil type and management were observed. Two factors – the soil hydraulic behaviour and the ability of the microbial population to reduce N2O – appear to be essential in determining emissions of N2O by soils. In fact, the hydromorphic leached brown soil showed the highest emissions, despite having the lowest denitrification potential because of its water-filled pore space and low N2O reductase activity. Soil management also appears to affect both soil nitrate content and N2O emissions. Received: 4 April 1997  相似文献   

18.
The rate of nitrous oxide emission from a laboratory sequence batch reactor (SBR) wastewater treatment system using synthetic wastewater was measured under controlled conditions. The SBR was operated in the mode of 4 h for aeration, 3.5 h for stirring without aeration, 0.5 h for settling and drainage, and 4 h of idle. The sludge was acclimated by running the system to achieve a stable running state as chemical oxygen demand, NO2^-, NO3^-, NH4^+, pH, and N2O. indicated by rhythmic changes of total N, dissolved oxygen, Under the present experimental conditions measured nitrous oxide emitted from the off-gas in the aerobic and anaerobic phases, respectively, accounted for 8.6%-16.1% and 0-0.05% of N removed, indicating that the aerobic phase was the main source of N2O emission from the system. N2O dissolved in discharged water was considerable in term of concentration. Thus, measures to be developed for the purpose of reducing N2O emission from the system should be effective in the aeration phase.  相似文献   

19.
Nitrous oxide emission from herbicide-treated soybean   总被引:5,自引:0,他引:5  
 The emission of N2O from soybean plants treated with the herbicides dichlorophenoxyacetic acid (2,4-D) and bromoxynil was studied. The N2O flux from 2,4-D- and bromoxynil-treated soybean was 14.1 ng N2O-N g–1 fresh weight h–1 and 19.7 ng N2O-N g–1 fresh weight h–1, respectively, i.e. approximately twice that of the controls. The NO2 -N concentration in 2,4-D- and in bromoxynil-treated soybean was about 8 μg N g–1 fresh weight, i.e. fivefold the concentration found in control plants. The NO3 content in herbicide-treated soybean did not differ significantly from that of the control plants. Consequently, the accumulation of NO2 -N during the assimilation of NO3 -N was thought to cause the observed N2O release. Probably, N2O is a by-product produced during either the reaction of NO2 -N with plant metabolites or NO2 -N decomposition. Final conclusions must await further experiments. Received: 5 November 1999  相似文献   

20.
秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响   总被引:23,自引:3,他引:23  
运用乙炔抑制技术研究了不同施氮水平下秸秆还田对灌溉玉米田土壤反硝化反应和氧化亚氮(N2O)排放的影响。结果表明,土壤反硝化速率及N2O的排放受氮肥施用、秸秆处理方式及其交互作用的显著影响。与秸秆燃烧相比,不施氮或低施氮水平时,秸秆还田可刺激培养初期反硝化反应速率及N2O排放,增加培养期间N2O平均排放通量;高施氮水平时,秸秆还田可降低反硝化反应速率及反硝化过程中的N2O排放。秸秆还田可降低反硝化中N2O/N2的比例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号