首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In previous greenhouse experiments red mud, a residue of the alumina industry, was identified as effective amendment for in situ fixation of heavy metals. In the present study, we further evaluated the efficiency and potential drawbacks of red mud in an outdoor pot experiment. Application of 5 % (w/w) red mud (RM) should reveal possible drawbacks of red mud due to indigenous pollutants such as As, Cr, and V. Three soils from arable land in Lower Austria named Untertiefenbach (U) (Eutric Cambisol), Weyersdorf (W) (Dystric Cambisol), and Reisenberg (R) (Calcic Chernozem) were spiked with Cd, Zn, Cu, Ni, and V at two concentration levels in 1987, two soils originate from long‐term industrially polluted sites, located in Carinthia (Arnoldstein – Rendzic Leptosol; Zn, Cd, and Pb) and Tyrol (Brixlegg – Dystric Fluvisol; Cu, Zn). Zea mays was cultivated in pots for three months in outdoor conditions. Extraction with 1 M NH4NO3 was used to assess the influence of RM on the labile metals. Lability of Cd, Zn, Ni, and Pb was reduced upon RM treatment on a sandy soil up to 91 %, 94 %, 71 %, and 83 % of the control, respectively. Metal accumulation in shoots was reduced for Cd and Zn up to 54 % and for Ni up to 75 % (soil W), but not for Pb (soil A). Addition of RM (5 % w/w) increased the total As, Cr, and V concentrations in soils by 5, 20, and 50 mg kg–1, respectively. Whereas the lability of Cr was not affected, 1 M NH4NO3‐extractable As and V exceeded the trigger value for water quality according to Prüeß (1994). Lability of Cu increased upon RM application, especially on the Cu polluted industrial soil (B), while Cu toxicity appeared to be reduced as indicated by the higher corn biomass production. Red mud holds promise as soil amendment in terms of reduction Cd, Zn, and Ni bioavailability. However, at additions as high as 5 % (w/w) large As, Cr, and V concentrations of this material may limit its application.  相似文献   

2.
改良剂原位修复重金属污染土壤研究进展   总被引:6,自引:0,他引:6  
改良剂原位修复重金属污染土壤因其成本低廉、易于实施,已经得到广泛应用。然而,改良剂对土壤重金属的修复仍然存在着一定的局限性和潜在风险。无机和有机改良剂的修复效果不仅与重金属离子的种类有关,而且还受作物、土壤类型及环境因子的制约。本文就目前常用改良剂的修复效果,存在的问题,改良剂原位修复重金属污染土壤的作用机制以及国内外研究进展作简要综述,并对此方面研究的未来趋势提出展望。  相似文献   

3.
This experiment aimed to immobilize Cu in polluted agricultural soils via the application of agrochemicals to reduce its bioavailability to plants. A greenhouse pot experiment was established using a Cu contaminated vineyard topsoil collected from a farm in Greece. The soil was mixed with inorganic [i.e., zeolite (Z), Al‐oxide (AX), Mn‐oxide (MX), and phosphate rock (PR)] as well as organic amendments [i.e., activated charcoal (AC), commercial peat soil material (CP), and compost from olive oil processing wastes (COW)] with an application rate of 2.5% and cultivated by corn (Zea maize). After plant harvesting, Cu was measured separately in the aboveground biomass and roots, respectively, whereas the soil samples were analyzed for DTPA‐extractable and geochemical fractions of Cu (soluble + exchangeable fraction, sorbed and carbonate fraction, Fe‐/Mn‐oxides fraction, and organic fraction). The immobilizing agents, except MX, reduced the soluble plus exchangeable Cu in the treated soil. The lowest concentrations of the soluble plus exchangeable Cu occurred in the soil amended with AC followed by CP, AX, COW, PR, and Z, respectively. The amendments decreased the uptake of Cu by corn. Concentrations of Cu were between 11 and 38% lower in the above ground biomass and 19 and 48% lower in the roots than the control. The organic amendments were more effective than the inorganic additives. The AC was the most effective organic additive and AX was the most effective inorganic amendment.  相似文献   

4.
典型设施栽培土壤重金属含量变化及其风险评价   总被引:9,自引:1,他引:8  
采用野外调查采样和室内分析相结合的方法,对典型设施栽培地山东寿光的部分土壤重金属含量进行测定,并根据温室蔬菜产地环境质量评价标准,选取单项污染指数法和尼梅罗综合指数法对土壤的重金属污染状况进行了环境质量评价。结果表明,重金属Cu、C r、Pb在设施栽培土壤耕层(0—20 cm)的含量达最大值,显著高于露地土壤;而设施栽培土壤中Zn和Cd的含量分别在20—40 cm和40—60 cm的土层达到最大值,其中Zn含量在0—20 cm和60—80 cm的土层显著高于露地土壤,Cd含量在0—20 cm,40—60 cm,60—80 cm和80—100 cm的土层显著高于露地土壤。从不同使用年限设施栽培土壤中重金属含量变化看出,重金属在设施栽培24~年的土壤中含量最高。对研究区设施栽培土壤重金属含量进行风险评估及分级发现,山东寿光设施土壤耕层主要受到重金属Cd的污染。  相似文献   

5.
Immobilization of Cd in contaminated soil is a technique to improve soil quality. Zeolites are potentially useful additives to bind heavy metals. This study examines the influence of decreasing the grain size of raw zeolitic tuff to the nano‐range on Cd sorption‐desorption isotherms in a sandy soil. The aim was to evaluate the feasibility of using nanoparticulate zeolitic tuff as a sequestering agent for Cd in soil. Sorption and desorption of Cd on zeolitic nanotuff was investigated in batch experiments. The sandy soil was amended with zeolitic nanotuff, synthetic Al oxide nanoparticles, or raw zeolitic tuff. After a 48 h sorption step, three desorption steps were induced using the sequential dilution method. The measured sorption‐desorption data were adequately described by the Freundlich equation. A nonlinear two‐stage one‐rate model matched well with measured Cd sorption‐desorption isotherms of zeolitic nanotuff, raw zeolitic tuff, Al oxide nanoparticle, and control soil. The batch experiments demonstrated the strong influence of pH on Cd sorption. Zeta‐potential measurements of zeolitic nanotuff indicated that electrostatic interaction was important for sorption. Soil amended with zeolitic nanotuff showed the lowest hysteresis index based on the differences obtained from sorption‐desorption isotherms regarding the amount of Cd sorbed. The index decreased with increasing metal concentration. For soil amended with nanoparticulate zeolitic tuff, the estimated Freundlich coefficient was 4 orders of magnitude higher than in the control soil and 2 orders of magnitude higher than the soil amended with raw zeolitic tuff. In addition, this sorbent decreased the amount of Cd released after three desorption steps by up to 12 and 7 times compared to the control soil and the soil amended with raw zeolitic tuff, respectively. The effect on Cd sorption of grinding the raw zeolitic tuff to the nanorange was considerably more pronounced than the effect of raw zeolitic tuff.  相似文献   

6.
ABSTRACT

The thermal-activated serpentine prepared by heating natural serpentine at different temperatures was used to immobilize cadmium (Cd) in simulated contaminated soils. The results showed that the increasing soil pH induced by adding serpentine was primarily responsible for reducing the content of TCLP-Cd (toxicity characteristic leaching procedure-Cd) in soil. Furthermore, adding thermal-activated serpentine could promote the transformation from exchangeable form of Cd in soil to low bioavailable Cd (Fe-Mn oxides, carbonate, and residual form) by surface adsorption and surface precipitation, and then reduced the bioavailability of Cd in soil. Under the same treatment condition, adding S700 (serpentine activated at 700°C) exhibited better performance to immobilization of Cd, and it could reduce exchangeable Cd by 23.76~36.49%, and increase carbonate, Fe-Mn oxide, and residual form of Cd by 6.03~8.03%, 6.05~8.35%, and 11.17~19.58%, respectively. These results indicated that thermal-activated serpentine would be the great potential for immobilization of Cd in soil.  相似文献   

7.
为了探讨磷酸盐和石灰对重金属污染土壤的稳定效果,采用铅冶炼污染石灰性土壤(镉、铜、铅和锌全量分别为4.12、81.0、455和115 mg·kg-1)、设置磷酸盐和3个不同石灰用量及磷酸盐和石灰同时施用及间隔15 d施用的处理,培养后测定土壤性质。结果表明,两种添加剂间隔15 d施用且石灰用量为250和500 mg·kg-1时,土壤pH和磷有效性均高于同时施用处理。两种添加剂间隔15 d施用时,土壤镉有效性显著低于二者同时施用时(P<0.05,低6.63%~11.82%)、土壤锌有效性显著高于同时加入的处理(P<0.05,高17.64%~28.39%)。两种添加剂的不同施用方式对土壤铅和铜的有效性影响较小。石灰用量为1000 mg·kg-1且两种添加剂间隔15 d施用时,土壤镉和铅有效性最低。以上说明,对于石灰性镉污染土壤,磷酸盐和石灰的施用方式对土壤镉的稳定效果存在重要影响。  相似文献   

8.
连续四年施用规模化猪场猪粪温室土壤重金属积累研究   总被引:21,自引:1,他引:21  
分别采集连续施用0~4年猪粪的蔬菜温室土壤和蔬菜果实样品,测定土壤和果实中Cu、Zn、Pb、Mn、Cr、Cd、Ni和As全量以及土壤中Cu、Zn、Pb、Mn、Cd和As有效态含量,对测定数据进行了Fisher小样本非参数随机化显著水平检验,研究连续4年施用规模化猪场猪粪的温室土壤重金属积累、重金属有效态含量变化及对蔬菜可食部分的影响。结果表明,连续4年施用猪粪,主要导致土壤中Cu和Zn的积累,As有一定积累,Pb、Cd、Ni和Cr短期积累效应不明显,Mn积累不明显,长期大量施用猪粪,Pb、Cd、Ni和Cr有积累的风险;土壤pH值降低;Cu、Zn有效态与全量呈显著正相关(p<0.05),与pH值呈极显著负相关(p<0.01);Pb、Cd和Mn有效态与pH值呈显著负相关(p<0.05);Cu、Zn、Pb、Cd和Mn有效态含量增加;有效态As与全As含量和pH值相关性不明显,但连年施用猪粪As有效态含量增加;连续4年施用规模化猪场猪粪的温室生产的部分番茄和黄瓜As含量超标。若连续以150 m3/(hm2·a)的猪粪施用量于该研究区蔬菜温室,土壤中全Cu和全Zn含量分别经过10年和15年可能超过国家农田土壤二级标准。该研究可为降低温室土壤重金属污染风险提供依据。  相似文献   

9.
Organic amendments with contrasting biochemical properties were investigated by conducting an incubation experiment in soils irrigated with different levels of saline water. Soil samples were taken from a long-term experimental field plots irrigated with normal water and saline water having electrical conductivity (EC) 6 and 12 dS m?1, respectively. Finely ground biochar, rice straw (RS), farm yard manure (FYM) and glucose were added at two rates (1% and 2.5% carbon basis) and incubated for 8 weeks at 25°C. Cumulative respiration (CR), microbial biomass carbon and available nutrients (nitrogen and phosphorus) were negatively correlated with EC, irrespective of the source and amount of added carbon (C). Compared with non-saline soil, at EC 12, relative decrease in CR was lowest with glucose (21.0%) followed by RS (32.0%), FYM (46.0%) and biochar (55.0%). Dissolved organic carbon was positively correlated with salinity and its concentration was higher in treatments with higher rate of C addition (2.5% C). This study showed decomposability of organic amendments and their rate of addition determines microbial activity in saline soils. Further, lower nitrogen (N) release from amendments under saline conditions limits microbial ability to utilize available C for satisfying their energy needs.  相似文献   

10.
The objectives of this study were to determine the changes in microbial biomass carbon, litter decomposition, microbial abundance and the soil's physical and chemical properties after poultry manure and inorganic fertilizer application in soil‐eroded areas. Four plots measuring 10 m × 10 m, located on approximately the same slope, were established in the study area. Plot 1 (P1) was an eroded plot without any treatment; Plot 2 (P2) was treated with poultry manure (N:P:K ratio of 1:0.8:0·39); Plot 3 (P3) was treated with inorganic mineral fertilizer (NPK 10:10:10); and Plot 4 (P4) was an undisturbed area (no erosion occurred). The one‐time amendments used in this study significantly increased the soil's water‐holding capacity, pH, and the total carbon and nitrogen content, but soil moisture content was not influenced by any amendment. The biomass carbon was increased 3·2‐ and 2·9‐times by the poultry manure and the NPK fertilizer amendments respectively, but the values did not reach the same level as the undisturbed area. The Gram‐positive and Gram‐negative bacteria, fungi, actinomycetes, cellulase‐producers and amylase‐producers responded positively to the additives, which was shown by an abrupt increase in their abundance. Microbial biomass carbon and abundance were shown to be closely correlated with the soil's carbon and nitrogen content. None of the amendments, on the other hand, affected the rate of litter decomposition. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

The effect of bacterial inoculation of Rhizobium fredii HN01 on the immobilization and speciation of Cu, Zn, and Cd was studied in Red and Cinnamon soil which are typical Chinese soils. The soil was mixed with bacterial suspension for one week followed by an immobilization of each heavy metal for another week. The total binding and fractionation of heavy metals in soils were analyzed. As compared with the control, the retention of total Cu, Zn, and Cd in Red soil increased by 28, 16, and 28%, respectively, in the presence of rhizobia. The amount of exchangeable, NH4OAc-extractable, Mn oxides-bound and organic matter-bound Cu increased by 23–123%. There were significant decrease of exchangeable Cu and marked increases of NH4OAc-extractable and Mn oxide-bound Cu in Cinnamon soil with the presence of rhizobial cells, although no changes for the total retention of Cu were observed. The amount of exchangeable Zn in Red soil-rhizobia composite was 20% greater than that of the no-rhizobia soil. Addition of rhizobia also increased exchangeable Cd and specifically-adsorbed Cd by 25 and 93%, respectively, in Red soil. No considerable differences were found for the total immobilization of Zn and Cd as well as their distribution in various solid fractions of Cinnamon soil in the absence and presence of rhizobial cells. In terms of soil components, it is assumed that bacterial biomass had a relatively less impact on the species of heavy metals bound with Fe oxides. Results suggested that the retention and speciation of heavy metals in soil are governed largely by the interactions of bacteria with various inorganic and organic soil constituents. The data are useful in understanding the impact of microorganisms on the behavior, mobility and transformation of heavy metals in soil environments.  相似文献   

12.
The influence of inorganic soil amendments on the effectiveness of indigenous arbuscular mycorrhizal (AM) fungi was investigated in pot experiments. Intact or ground perlite, Kanumatsuchi (volcanic ash soil), vermiculite, or rice-hull charcoal was mixed with uncultivated soil in which Glomus sp. was dominant, and marigold (Tagetes patula L.) was sown to the soil mixtures. AM colonization of the host roots increased by the incorporation of ground materials but not by that of intact materials. The growth promotive effect of the indigenous fungi on the host was enhanced by both the intact and ground materials. The inorganic materials improved the soil physical properties: the intact materials increased the gaseous phase of the media and the ground materials increased the aqueous phase. It was suggested that the inorganic soil amendments might not only provide a less-competitive habitat for the fungi but also improve the physical environment.  相似文献   

13.
有机、无机添加剂改良反酸田水稻生长效果研究   总被引:1,自引:0,他引:1  
采用盆栽试验研究不同有机、无机添加剂对反酸田水稻生长的影响。结果表明:钙镁磷肥+NK处理、石灰+NPK处理、自研改良剂+NPK处理的水稻产量极显著高于其它改良处理,且较NPK处理的产量分别提高了32.2倍、22.2倍、19.5倍;株高、最长根长、根系干重及植株干重均显著高于其它各处理,与NPK处理比较,株高分别增加60.4%、62.5%、56.3%,根系干重分别增加891.7%、626.4%、502.8%,植株干重分别增加1 148.0%、699.3%、573.6%。有机、无机添加剂能在一定程度上改善水稻土壤pH值,尤其是添加石灰、自研改良剂和钙镁磷肥处理的pH值均高于4.5,显著高于其他各处理。综上可知,钙镁磷肥、石灰与自研改良剂均能有效提高土壤pH值,显著改善水稻生长并提高稻谷产量,是改良反酸田行之有效的添加物。而腐植酸、精制有机肥、碱性有机肥、碱渣、粉煤灰及磷矿粉能在一定程度上改善水稻生物学特性,但并未显著降低土壤酸度。  相似文献   

14.
重金属污染农田安全利用:进展与展望   总被引:2,自引:1,他引:2  
我国耕地土壤污染面积广,污染情况复杂,农产品重金属超标问题已经关系到国计民生。常用的物理化学修复方法成本高,不适用于大面积的中低污染农田。植物提取修复方法成本低,环境友好,但修复时间长,推广困难。总的来讲,基于重金属移除的诸技术在解决农田重金属污染方面还没有太大优势。相较而言,农田安全利用在不移除或缓慢移除土壤重金属的条件下,以生产安全农产品为目标,具有更加坚实的现实意义和推广价值。种植低吸收农作物是安全利用的重要措施,基因工程手段在低吸收农作物品种筛选中具有巨大的潜力,但其可能带来的生态环境风险使得这些通过基因工程得到的低吸收作物的田间种植面临着巨大挑战。土壤添加剂可以改变土壤重金属形态,降低重金属的生物有效性,但会对土壤质量产生影响。微生物尤其是土著微生物的利用越发受到关注,改变微生物的生存环境与基因工程手段能够强化微生物的钝化效果。施肥、水分管理、间作等农艺措施也能改变土壤重金属的形态,抑制作物对重金属的吸收。未来以加强推广为目的,多种技术手段的联合应用是重金属污染农田安全利用的重要发展方向,其中以生物技术为核心的利用模式具有十分重要的意义。  相似文献   

15.
我国北方典型日光温室蔬菜生产系统土壤重金属积累趋势   总被引:3,自引:0,他引:3  
本文以山东省寿光市日光温室蔬菜生产系统为例,研究了As、Cd、Cu、Hg、Pb和Zn等重金属元素在土壤中的积累趋势。结果表明:有机肥中Cu、Zn元素含量较高,而无机肥中Cd、Zn元素含量较高,但所有元素均未超过目前的相关标准。表层土壤中上述元素的平均含量均未超出《温室蔬菜产地环境质量评价标准》(HJ333-2006)相应的标准限值,但Cd平均含量已接近评价标准。除了As和Pb元素外,表层土壤中Cd、Cu、Hg和Zn的含量随着种植年限的增长而增加,出现积累。在目前的重金属积累状况下,主要蔬菜可食部分的重金属含量明显低于中国食品污染物限量标准,处于安全级别。由于蔬菜生产最初均是在底层土壤上开始的,加之封闭的生产环境,表明土壤中重金属主要来自各种农用投入品的输入,而各种肥料的高量输入是其积累的主要原因。今后对该地区设施蔬菜生产的环境管理,除了制定更严格的肥料重金属含量标准外,更重要的是要严格控制各种肥料的施用量,这样既可降低系统养分过量盈余,又可控制土壤重金属的积累。  相似文献   

16.
土壤中重金属的生物有效性研究进展   总被引:41,自引:3,他引:41  
尚爱安  刘玉荣  梁重山  党志 《土壤》2000,32(6):294-300,314
综述了年十年来国内及国际上研究土壤中重金属的生物有效性的态势,尤其是影响土壤中重金属生物有效性的诸多因素,以期进一步推动国内的土壤中重金属生物有效的研究工作和重金属污染土壤的生物治理工作。  相似文献   

17.
基于多元统计学和地统计学的土壤重金属源解析   总被引:2,自引:0,他引:2  
The main objectives of this study were to introduce an integrated method for effectively identifying soil heavy metal pollution sources and apportioning their contributions, and apply it to a case study. The method combines the principal component analysis/absolute principal component scores (PCA/APCS) receptor model and geostatistics. The case study was conducted in an area of 31 km2 in the urban-rural transition zone of Wuhan, a metropolis of central China. 124 topsoil samples were collected for measuring the concentrations of eight heavy metal elements (Mn, Cu, Zn, Pb, Cd, Cr, Ni and Co). PCA results revealed that three major factors were responsible for soil heavy metal pollution, which were initially identified as “steel production”, “agronomic input” and “coal consumption”. The APCS technique, combined with multiple linear regression analysis, was then applied for source apportionment. Steel production appeared to be the main source for Ni, Co, Cd, Zn and Mn, agronomic input for Cu, and coal consumption for Pb and Cr. Geostatistical interpolation using ordinary kriging was finally used to map the spatial distributions of the contributions of pollution sources and further confirm the result interpretations. The introduced method appears to be an effective tool in soil pollution source apportionment and identification, and might provide valuable reference information for pollution control and environmental management.  相似文献   

18.
Strongly acidic soils (pH < 5.0) are detrimental to tea (Camellia sinensis) production and quality. Little information exists on the ability of surface amendments to ameliorate subsoil acidity in the tea garden soils. A 120-d glasshouse column leaching experiment was conducted using commonly available soil ameliorants. Alkaline slag (AS) and organic residues, pig manure (PM) and rapeseed cake (RC) differing in ash alkalinity and C/N ratio were incorporated alone and in combination into the surface (0--15 cm) of soil columns (10 cm internal diameter × 50 cm long) packed with soil from the acidic soil layer (15--30 cm) of an Ultisol (initial pH = 4.4). During the 120-d experiment, the soil columns were watered (about 127 mm over 9 applications) according to the long-term mean annual rainfall (1 143 mm) and the leachates were collected and analyzed. At the end of the experiment, soil columns were partitioned into various depths and the chemical properties of soil were measured. The PM with a higher C/N ratio increased subsoil pH, whereas the RC with a lower C/N ratio decreased subsoil pH. However, combined amendments had a greater ability to reduce subsoil acidity than either of the amendments alone. The increases in pH of the subsoil were mainly ascribed to decreased base cation concentrations and the decomposition of organic anions present in dissolved organic carbon (DOC) and immobilization of nitrate that had been leached down from the amended layer. A significant (P < 0.05) correlation between alkalinity production (reduced exchangeable acidity -- N-cycle alkalinity) and alkalinity balance (net alkalinity production -- N-cycle alkalinity) was observed at the end of the experiment. Additionally, combined amendments significantly increased (P < 0.05) subsoil cation concentrations and decreased subsoil Al saturation (P < 0.05). Combined applications of AS with organic amendments to surface soils are effective in reducing subsoil acidity in high-rainfall areas. Further investigations under field conditions and over longer timeframes are needed to fully understand their practical effectiveness in ameliorating acidity of deeper soil layers under naturally occurring leaching regimes.  相似文献   

19.
Abstract

The analysis of soils, using 0.1 N HC1 as an extractant for the heavy metals, Cd, Cr, Ni and Pb on “fine”; textured North Shore and “coarse”; textured Annapolis Valley soils was completed. Results show ranges of 0.012 to 0.469 parts per million Cd; 0.102 to 2.90 parts per million Cr; 0.16 to 29.25 parts per million Ni and 0.12 to 244.8 parts per million Pb. Correlation studies indicate that the heavy metal content of fine textured soils is less influenced by changes in clay content and organic matter than are coarse textured soils. Generally the surface layers (0–15 cms) are higher in extractable heavy metal content than the lower layers (15–30 cms).  相似文献   

20.
石灰组配土壤改良剂抑制污染农田水稻镉吸收   总被引:3,自引:2,他引:3  
为达有效地调控污染稻田水稻糙米对Cd吸收,该研究选取湖南省长株潭地区的湘潭、醴陵和株洲3处不同Cd污染程度田块,研究石灰配施海泡石、钙镁磷肥、有机肥对水稻Cd吸收和累积的影响。结果表明,施用石灰及其组配改良剂均可明显提高土壤pH值,有效降低土壤中酸提取态Cd含量和水稻中Cd含量。与不施用改良剂相比,石灰配施海泡石或有机肥、配施海泡石和有机肥,Cd污染稻田土壤pH值平均升高1.08,0.96和0.93个单位,酸提取态Cd质量分数分别平均降低20.6%,15.6%和21.2%。石灰配施海泡石、有机肥或钙镁磷肥处理下在轻度Cd污染田块中糙米Cd含量较对照分别显著降低了48.3%,46.7%和34.2%,石灰配施有机肥、钙镁磷肥或钙镁磷肥和有机肥处理下在中度Cd污染田块中糙米Cd含量较对照分别显著降低了52.8%,47.8%和37.5%,石灰配施钙镁磷肥和有机肥、有机肥或海泡石处理下在重度Cd污染田块中糙米Cd含量较对照分别显著降低了51.2%,44.6%和42.5%,均低于食品安全国家标准中糙米限量值0.2 mg/kg(GB2762-2017)。相关分析表明,土壤中酸提取态Cd含量与水稻根、茎叶和糙米中Cd含量呈显著正相关关系(P0.05),说明土壤酸提取态Cd含量是影响糙米对Cd吸收的关键因素之一。上述结果说明,石灰配施海泡石、有机肥或钙镁磷肥+有机肥可有效调控污染稻田土壤中Cd进入水稻,实现水稻安全生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号