首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to experimentally investigate net N mineralization in sandy arable soils and to derive adequate N mineralization parameters for simulation purposes. Long‐term incubations at 35 °C were done for at least 200 days with 147 sandy arable soils from Northwest Germany. To cumulative net N mineralization curves the simultaneous two‐pool first‐order kinetic equation was fitted in order to differentiate between N mineralization from an easily decomposable, fresh organic matter pool (Nfast) and from a slowly decomposable pool (Nslow) of more humified OM. North German loess soils served as a reference, since available model parameters were mainly derived from those soils. Although curve patterns in sandy soils often somewhat deviated from typical double‐exponential patterns, the mineralization equation generally could be fitted. Two pools were clearly revealed, but a transfer of the standard parameters was found to be not appropriate — except maybe for the pool size of the fast decomposable N pool. The mean kfast at 35 °C (0.1263 d—1) is about 46% higher than the known ’︁standard’ loess value, indicating better conditions for decomposition of fresh residues at this temperature. The mean kslow at 35 °C (0.0023 d—1), which is 60% lower than reported earlier from loess soils, and much lower mineralization rates of the slowly decomposable N pool give reason to the presence of generally more resistant organic material in these sandy soils. The relation between Nslow and total N was found to be not close enough to derive the pool size of slowly decomposable N just from total N as done for loess soils. Reducing the variability is necessary, promising approaches exist. The eight reference loess soils revealed — on an average — the known N mineralization parameters.  相似文献   

2.
The aim of this study was to evaluate experimentally derived temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany via field measurements. In part I of this paper (Heumann and Böttcher, 2004), different temperature functions for the rate coefficients of a two‐pool first‐order kinetic equation were derived by long‐term laboratory incubations at 3°C to 35°C. In this paper, field net N mineralization during winter of 25 plots was measured in undisturbed soil columns with a diameter of 20 cm to the depth of the Ap horizon. Mean simulated net N mineralization with the most adequate multiple functions corresponded also best with the mean of the measured values despite of an overestimation of about 10%. Distinctly larger deviations under use of other temperature functions (Arrhenius, Q10) were directly related to their deviations from mean, experimentally derived rate coefficients. Simulated net N mineralization in the soil columns was significantly correlated with measured values, regardless of the temperature functions. Yet the goodness of fit was generally relatively low due to the spatial variability of measured net N mineralization within replicate soil columns, although the mean CV (38%) was by far not extraordinary. The pool of slowly mineralizable N contributed considerably to net N mineralization during four to five winter months, on an average 10.0 kg N ha–1, about one third of total simulated N mineralization. Sometimes, it contributed even 21.3 kg N ha–1, which is almost sufficient to reach the EU drinking‐water limit for nitrate in these soils. Simulations with widely used functions that were once derived from loess soils overestimated mineralization from pool Nslow in the studied sandy arable soils by a factor of two.  相似文献   

3.
Abstract

Atmospheric carbon dioxide (CO2) levels have risen from 260 to 340 mg kg‐1(ppm) over the last 150 years, largely attributed to worldwide industrialization and continual change in land use. Conventional tillage practices have also added to the atmospheric CO2 pool via the accelerated decay of soil organic matter. The objective of this work was to derive a simple estimate of CO2 in the atmosphere that could be attributed to tillage and decomposition of soil organic matter from arable land. The percent increase in atmospheric CO2due to a worldwide decrease of 3,2, and 1% in soil organic matter of arable land was estimated to be 20 mg kg‐1,12.5 mg kg‐1, and 5 mg kg‐1, respectively. This decrease in soil organic matter would have accounted for 6 to 25% of the 80 mg kg‐1 (340–260) increase in atmospheric CO2 over the last 150 years.  相似文献   

4.
围海造田是沿海地区拓展土地面积的主要途径。土壤氮矿化参数是揭示围海造田土壤肥力演变和土壤氮供应的重要指标,但是我国沿海造田土壤的相关研究少有报道。本研究以杭州湾南岸海积平原上慈溪市1000年和520年筑塘造田区为对象,选择4个代表性采样点,每个点从低洼稻田采集1个表层混合水稻土,在其相邻高地采集1个表层混合旱地土壤,共8个样品。采用间隙淋洗法研究了土壤样品氮矿化动力学特征。结果如下: 119 d培养试验证实水稻土和旱地土壤有机氮矿化动力学符合一级反应动力学方程Nt=N0(1-e-kt); 水稻土有机氮矿化势(N0)为82.7~161.9 mg/kg(平均114 mg/kg),占有机氮的7.3%,旱地土壤N0为63.9~104.4 mg/kg(平均83.4 mg/kg),占有机氮的7.3%; 水稻土有机氮矿化速率(k)为0.033~0.114/d(平均0.064/d),旱地土壤k为0.007~0.023/d(平均0.020/d)。土壤综合供氮指标(N0k),水稻土为3.8418.46 mg/(kgd)[平均8.0 mg/(kgd)],旱地土壤为0.54~2.66 mg/(kgd)[平均1.6 mg/(kgd)]。水稻土总氮含量为1.4~2.0 g/kg (平均1.6 g/kg),旱地为0.87~2.0 g/kg(平均1.3 g/kg)。可见,水稻土氮库、供氮潜力和速率均大于相邻旱地土壤。因此,从土壤氮肥力来讲,相对于旱地,围海形成的水稻田更具有可持续利用性。  相似文献   

5.
With a world population now > 7 billion, it is imperative to conserve the arable land base, which is increasingly being leveraged by global demands for producing food, feed, fiber, fuel, and facilities (i.e., infra‐structure needs). The objective of this study was to determine the effect of varying fertilizer‐N rates on soil N availability, mineralization, and CO2 and N2O emissions of soils collected at adjacent locations with contrasting management histories: native prairie, short‐term (10 y), and long‐term (32 y) no‐till continuous‐cropping systems receiving five fertilizer‐N rates (0, 30, 60, 90, and 120 kg N ha–1) for the previous 9 y on the same plots. Intact soil cores were collected from each site after snowmelt, maintained at field capacity, and incubated at 20°C for 6 weeks. Weekly assessments of soil nutrient availability along with CO2 and N2O emissions were completed. There was no difference in cumulative soil N supply between the unfertilized long‐term no‐till and native prairie soils, while annual fertilizer‐N additions of 120 kg N ha–1 were required to restore the N‐supplying power of the short‐term no‐till soil to that of the undisturbed native prairie soil. The estimated cumulative CO2‐C and N2O‐N emissions among soils ranged from 231.8–474.7 g m–2 to 183.9–862.5 mg m–2, respectively. Highest CO2 fluxes from the native prairie soil are consistent with its high organic matter content, elevated microbial activity, and contributions from root respiration. Repeated applications of ≥ 60 kg N ha–1 resulted in greater residual inorganic‐N levels in the long‐term no‐till soil, which supported larger N2O fluxes compared to the unfertilized control. The native prairie soil N2O emissions were equal to those from both short‐ and long‐term no‐till soils receiving repeated fertilizer‐N applications at typical agronomic rates (e.g., 90 kg N ha–1). Eighty‐eight percent of the native soil N2O flux was emitted during the first 2 weeks and is probably characteristic of rapid denitrification rates during the dormant vegetative period after snowmelt within temperate native grasslands. There was a strong correlation (R2 0.64; p < 0.03) between measured soil Fe‐supply rate and N2O flux, presumably due to anoxic microsites within soil aggregates resulting from increased microbial activity. The use of modern no‐till continuous diversified cropping systems, along with application of fertilizer N, enhances the soil N‐supplying power over the long‐term through the build‐up of mineralizable N and appears to be an effective management strategy for improving degraded soils, thus enhancing the productive capacity of agricultural ecosystems. However, accounting for N2O emissions concomitant with repeated fertilizer‐N applications is imperative for properly assessing the net global warming potential of any land‐management system.  相似文献   

6.
Abstract

This study was undertaken to assess the mineralization of nitrogen (N) in rice soils amended with organic residues under flooded condition. A lab incubation study with a 3x3 factorial design (two replications) was conducted with three rice soils (Joydebpur, Faridpur, and Thakurgaon) receiving the following treatments: 1) control, 2) rice straw (Oryza sativa L.), or 3) pea vine (Pisum sativum L.). The organic residue (25 mg straw g‐1 soil) was mixed with soil and glass beads (1:1, soil to beads ratio), and transferred into a Pyrex leaching tube, flooded and then incubated at 35°C for up to 12 weeks. The soils in the leaching tubes were leached (while maintaining flooded condition) at 1,2,4, 8, and 12 weeks with deionized water for determination of NH4‐N, NO3‐N, pH, and Eh. Nitrogen mineralization in soils amended with rice straw was somewhat different than that of soils treated with pea vine. Soil treated with rice straw had a higher N mineralization rate than soils treated with pea vine, which was due to a lower carbon (C):N ratio for rice straw. The potentially mineralizable N pool (No) in soils amended with rice straw and pea vine under flooded conditions, estimated using a 1st order exponential equation, were 7 to 15 times, and 3 to 9 times greater for rice straw No values and pea vine, respectively, than the control. The KN values for unamended soils ranged from 0.35 to 0.52 mg N kg‐1 wk‐1 and rice straw and pea vine treated soils were from 0.75 to 1.22 and 0.46 to 0.58 mgN kg‐1 wk‐1. The lower No and KN values in pea vine treatments suggested there was greater immobilization of N than in rice straw treatments.  相似文献   

7.
Sandy cropland soils in NW Europe were found to contain unusually high organic‐carbon (OC) levels, and a link with their land‐use history has been suggested. This study's aim was to assess the discriminating power of physical and chemical fractionation procedures to yield information on soil‐organic‐matter (OM) stability for these soils. In relict‐ and cultivated‐heathland soils, much higher proportions of 6% NaOCl treatment–resistant but 10% HF–soluble OC (MOC) and N (32.2% and 29.9%) were measured compared to a set of “permanent"‐cropland soils without a history of heathland land use (11.9% and 8.5%). Also, the proportions of 6% NaOCl– and 10% HF treatment–resistant OC and N in the relict and cultivated heathlands (19.2% and 12.0%) were higher than in the permanent‐cropland soils (17.7% and 5.7%). Stepwise multiple linear‐regression yielded a significant relationship between the annual mineralization (g C [100 g OC]–1), soil OC (g C kg–1) content, and %MOC: Annual mineralization = 4.347 – 0.087 soil OC – 0.032 %MOC (R2 = 0.65). Combinations of incubation experiments for quantification of the labile soil OM pool with chemical fractionation may thus yield meaningful data for development of soil‐organic‐matter models with measurable pools, but their applicability will be limited to specific combinations of former land use with soil, climate, and current management.  相似文献   

8.
Abstract

Mineralization of soil organic nitrogen (N) and its contribution toward crop N uptake is central to developing efficient N‐management practices. Because biological incubation methods are time consuming and do not fit into the batch‐analysis techniques of soil‐testing laboratories, an analytical procedure that can provide an estimate of the mineralizable N would be useful as a soil‐test method for predicting plant‐available N in soil. In the present studies, the ability of boiling potassium chloride (KCl) to extract potentially mineralizable and plant‐available N in arable soils of semi‐arid India was tested against results from biological incubations and uptake of N by wheat in a pot experiment. Mineralization of organic N in soils was studied in the laboratory by conducting aerobic incubations for 112 days at 32°C and 33 KPa of moisture. Cumulative N mineralization in different soils ranged from 8.2 to 75.6 mg N kg?1 soil that constituted 2.7 to 8.8% of organic N. The amount of mineral N extracted by KCl increased with increase in length of boiling from 0.5 to 2 h. Boiling for 0.5, 1, 1.5, and 2 h resulted in an increase in mineral‐N extraction by 9.3, 12.7, 19.6, and 26.1%, respectively, as compared to mineral N extracted at room temperature. The boiling‐KCl‐hydrolyzable N (ΔNi) was directly dependent upon soil organic N content, but the presence of clay retarded hydrolysis for boiling lengths of 0.5 and 1 h. However, for boiling lengths of 1.5, and 2 h, the negative effect of clay was not apparent. The ΔN i was significantly (P=0.05) correlated to cumulative N mineralized and N‐mineralization potential (N0). The relationship between N0 and ΔN i was curvilinear and was best described by a power function. Boiling length of 2 h accounted for 78% of the variability in N0. Results of the pot experiment showed that at 21‐ and 63‐day growth stages, dry‐matter yield and N uptake by wheat were significantly correlated to boiling‐KCl‐extractable mineral N. Thus, boiling KCl could be used to predict potentially mineralizable and plant‐available N in these soils, and a boiling time of 2 h was most suitable to avoid the negatively affected estimates of boiling‐KCl‐hydrolyzable N in the presence of clay. The results have implications for selecting length of boiling in soils varying widely in clay content, and this may explain why, in earlier studies, longer boiling times (viz. 2 or 4 h) were better predictors of N availability as compared to 0.5 and 1 h.  相似文献   

9.
Organic carbon (OC) is generally low in Alabama (U.S.A.) soils and varies considerably with cropping systems. Information on decomposition rates of the added C is a prerequisite to designing strategies that improve C sequestration in farming systems. Different models including exponential models have been used to describe OC mineralization in soils as well as to describe its potential as CO2 to be released into the environment. We investigated the decomposition of broiler litter added to ten non-calcareous soils (Appling, Troup, Cecil, Decatur, Sucarnoochee, Linker, Hartsells, Dothan, Maytag, and Colbert soils). A non-linear regression approach for N mineralization was used to estimate the potentially mineralizable OC pools (Co) and the first-order rate constant (k) in the soil samples. Results showed that the non-amended soils have distinct differences in their ability to release their native OC as CO2 and can be divided into four groups depending on their potentially mineralizable C (Co) and their ability to protect stable organic matter. Sucarnoochee soil represents the first group and contains a moderate amount of OC (11.4 g C kg−1) but had the highest Co (7.30 g C kg−1 soil). The second distinct group of soils has Co varying between 5.50 and 5.00 g C kg−1 soil (Decatur, Hartsells, Dothan, and Maytag). The third group has Co between 5.00 and 4.00 (Appling, Cecil, and Linker). The fourth group has Co less than 4.00 g C kg−1 soil (Troup and Colbert). Half-life of C remaining in non-amended soils varied from 26 days in Maytag soil to 139 days in Cecil soil. The OC in these non-amended soils represents a very stable form of organic C and thus, not easily decomposed by soil microorganisms. In the broiler litter-amended soils, the Co varied from 3.82 g C kg−1 in Appling soil amended with broiler litter 1-7.04 g C kg−1 soil in Maytag amended with broiler litter 2. Decomposition of the added OC proceeded in two phases with less than 31% decomposed in 43 days. Potentially mineralizable organic C (Co) was related to soil organic C (r = 0.661**) and soil C/N ratio (r = 0.819*).  相似文献   

10.
The relationships between the denitrification capacities of 17 surface soils and the amounts of total organic carbon, mineralizable carbon, and water-soluble organic carbon in these soils were investigated. The soils used differed markedly in pH, texture, and organic-matter content. Denitrification capacity was assessed by determining the N evolved as N2 and N2O on anaerobic incubation of nitrate-treated soil at 20°C for 7 days, and mineralizable carbon was assessed by determining the C evolved as CO2 on aerobic incubation of soil at 20°C for 7 days. The denitrification capacities of the soils studied were significantly correlated (r = 0·7771) with total organic carbon and very highly correlated (r = 0·9971) with water-soluble organic carbon or mineralizable carbon. The amount of nitrate N lost on anaerobic incubation of nitrate-treated soils for 7 days was very closely related (r = 0·99971) to the amount of N evolved as N2 and N2O.The work reported indicates that denitrification in soils under anaerobic conditions is controlled largely by the supply of readily decomposable organic matter and that analysis of soils for mineralizable carbon or water-soluble organic carbon provides a good index of their capacity for denitrification of nitrate.  相似文献   

11.
The objective of this study was to investigate differences in organic matter fractions, such as dissolved organic carbon and humic substances, in soils under different land uses. Soil samples were collected from the upper layer of arable lands and grasslands. Humic substances (HS) were chemically fractionated into fulvic acids (FA), humic acids (HA) and humins (HUM), and based on the separated fractions, the humification index (HI) and the degree of HS transformation (DT) were calculated. Dissolved organic carbon (DOC) was determined by cold (CWE) and hot water (HWE) extractions. Regardless of land use, the results indicated significant differences in soil organic carbon (SOC) and HS composition, with HA and HUM as the dominant fractions. Total SOC was higher in grassland (median = 17.51 g kg?1) than arable soils (median = 9.98 g kg?1); the HI and DT indices did not differ significantly between land uses (HI = 0.3–10.3 and DT = 0.2–6.2 for grasslands, > 0.05; HI = 0.3–3.9 and DT = 0.2–20.1 for arable lands, > 0.05). This indicates the relatively high stability of organic carbon and efficient humification processes in both land uses. Additionally, in arable soils lower CWE‐C (0.75 g kg?1) and higher HWE‐C (2.59 g kg?1) than in grasslands (CWE‐C = 1.13 g kg?1, HWE‐C = 1.60 g kg?1) can be related to farming practice and application of soil amendments. The results showed that both labile and humified organic matter are better protected in grassland soils and are consequently less vulnerable to mineralization.  相似文献   

12.
We evaluated the contents of organic carbon (Corg) of Ap horizons from 11 North German study areas along a Southeast to Northwest precipitation gradient with respect to their general levels and as related to C : N ratio, soil texture (clay content), bulk soil density, climate, and historical land‐use since 1780. The focus was on sandy soils, with the largest group of samples originating from 308 km2 of the Fuhrberg catchment north of Hannover/Lower Saxony. Data from loess areas were used for comparisons. Major aims were (1) to quantify current Corg stocks, (2) to provide data on site‐specific, steady‐state Corg levels in old arable soils, and (3) to identify the main controls of Corg levels in the studied sands. The mean Corg content in sandy, well‐drained, old Ap horizons (uplands, > 200 years under cultivation, near steady‐state) increased with precipitation from < 8 g kg—1 in the dry eastern parts of the study area (530 mm year—1, 8.3°C) to 25 g kg—1 in the moist Northwest (825 mm year—1, 8.4°C). The Corg levels in lowlands which have been drained for more than 40 years were approximately 3 g kg—1 higher than those of uplands under a similar climate. The factor clay content had no predictive value because low contents were associated with high Corg levels. Large proportions of refractory organic matter in sands resulting from specific features of historical land‐use and soil development (calluna heathland, heath plaggen fertilization, podzolization) appeared to be the most probable reason for such high Corg levels. However, the high Corg levels of these old arable sites were still exceeded by those of younger arable areas formerly under continuos grassland. A chrono‐sequence suggested that a period of about 100 years is necessary until a new steady‐state Corg level is established after conversion of grassland into arable land. Elevated Corg levels in current Ap horizons were also found for former woodland and heathland soils. The main conclusion is that sands can contain a lot of stable organic matter, sometimes more than finer textured soils.  相似文献   

13.
Increasing use of N fertilizer for crop production necessitates more rapid estimates on N provided by the soil in order to prevent under‐ or overfertilization and their adverse effect on plant nutrition and environmental quality. A study was conducted to investigate the responses of arginine ammonification (AA), L‐glutaminase activity (LG), soil N–mineralization indices, corn (Zea mays L.) crop–yield estimation, and corn N uptake to application of organic amendments. The relationships between corn N uptake and the microbial and enzymatic processes which are basically related to N mineralization in soil were also studied. The soil samples were collected from 0–15 cm depth of a calcareous soil that was annually treated with 0, 25, or 100 Mg ha–1 (dry‐weight basis) of sewage sludge and cow manure for 7 consecutive years. Soil total N (TN), potentially mineralizable N (N0), and initial potential rates of N mineralization (kN0) were significantly greater in sewage sludge–treated than in cow manure–treated soils. However, the amendment type did not influence soil organic C (SOC), AA, LG, and anaerobic index of N mineralization (Nana). The application rates proportionally increased N‐availability indices in soil. Corn N concentration and uptake were correlated with indices of mineralizable N. A multiple stepwise model using AA and Nana as parameters provided the best predictor of corn N concentration (R = 0.86, p < 0.001). Another model using only LG provided the best predictor of corn N uptake (R = 0.78, p < 0.001). This results showed that sewage‐sludge and cow‐manure application is readily reflected in certain soil biological properties and that the biological tests may be useful in predicting N mineralization and availability in soil.  相似文献   

14.
Investigations of 23 northwestern German sandy Ap horizons (mean clay content 35 g kg−1), that had higher organic matter (OM) levels than expected for sands, showed that the bulk soil C to N ratio reliably indicated the release of N from stabilized OM. Soils were incubated at 35 °C for 200 days under aerobic conditions. Cumulative N release curves were split into N released from fresh materials (Nfast) and N released from the larger pool of stabilized, older OM (Nslow rates, 0.06-0.77 μg N g−1 soil d−1, or 0.7-49 μg N g−1 OM). Correlating the Nslow rates with total N contents of soils yielded no satisfactory relationships while their relationship with C to N ratios was very close (negative exponential, R2=0.88). Low rates of N release (Nslow) per unit of OM occurred if C to N exceeded 15. This was associated with historical factors like podzolization, calluna heathland, plaggen fertilization or a combination of these.  相似文献   

15.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

16.
The influence of 30 years of cropping with different fertilizer and farmyard manure (FYM) inputs on the contents and depth distribution of organic C, total N (Nt), soil mineralizable N, and organic and inorganic N fractions was investigated in an Eutrochrept. Continuous application of 100 %NPK(+S), 150 %NPK(+S), and 100 %NPK(+S)+FYM led to a marked increase in organic C, total N, hydrolyzable N (viz., amino acid N, hydrolyzable NH4‐N, hexose amine N, and unidentified hydrolyzable N), and nonhydrolyzable N as compared to an adjacent fallow. The contents of the various organic N fractions were largest in surface soil and thereafter decreased with the depth. However, at 30 – 45 cm depth the content of organic C was not affected by the different treatments except 100 %NPK(+S)+FYM. On the other hand, continuous cropping without fertilization resulted in a depletion of total hydrolyzable N in control over fallow by 27.2 % (0–15 cm), 19.6 % (15–30 cm), and 4.7 % (30–45 cm). The incorporation of FYM with 100 %NPK(+S) resulted in greater contents of soil mineralizable N as compared to 100 %NPK(+S) (0–15, 15–30 cm). The proportion of hydrolyzable N (57–76 % of Nt) decreased and that of nonhydrolyzable N (22–40 % of Nt) increased with depth. The proportion of amino acid N (19–26 % of Nt), hexose amine N (2.1–3.5 % of Nt) and unidentified hydrolyzable N (17–27 % of Nt) decreased with depth. All organic soil N fractions including even nonhydrolyzable N in surface and subsurface soils were highly significantly correlated with soil mineralizable N derived from incubations under waterlogged and aerobic conditions. The best correlation to mineralizable N was found for amino acid N and the least significant correlation for nonhydrolyzable N.  相似文献   

17.
Dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soils are increasingly recognized as important components of nutrient cycling and biological processes in soil‐plant ecosystems. The aims of this study were to: (i) quantify the pools of DON and DOC in a range of New Zealand pastoral soils; (ii) compare the effects of land use changes on these pools; and (iii) examine the seasonal variability associated with these two components of dissolved organic matter. Soil samples (0–7.5 cm depth) from 93 pastoral sites located in Northland, Waikato, Bay of Plenty and Otago/Southland, New Zealand, were collected in autumn. Adjacent sites under long‐term arable cropping or native vegetation and forestry land use were also sampled at the same time to estimate the impacts of different land use on DON and DOC in these soils. Twelve dairy and 12 sheep and or beef pastures were sampled in winter, spring, summer and autumn for a 2‐year period to study the seasonal fluctuations of DON and DOC. A field incubation study was also carried out in a grazed pasture to examine fluctuations in the concentrations of and and DON levels in soil. Other soil biological properties, such as microbial biomass‐C, biomass‐N and mineralizable N, were also measured. Pastoral soils contained the greatest amounts of DON (13–93 mg N kg−1 soil, equivalent to 8–55 kg N ha−1) and DOC (73–718 mg C kg−1 soil, equivalent to 44–431 kg C ha−1), followed by cropping and native vegetation and forestry soils. The DON concentration in soils was found to be more seasonally variable than DOC. There was approximately 80% fluctuation in the concentration of DON in winter from the annual mean concentration of DON, while DOC fluctuated between 23 and 28% at the dairy and the sheep and beef monitoring sites. Similar fluctuations in the concentrations of DON were also observed in the field incubation studies. These results indicate that DON is a dynamic pool of N in soils. There was a strong and significant positive correlation between DON and DOC in pastoral soils (r = 0.71, P < 0.01). There were also significant positive correlations between DON and total soil C (r = 0.59, P < 0.01), total soil N (r = 0.62, P < 0.01) and mineralizable N (r = 0.47, P < 0.01). The rather poor correlations between total soil C and N with DOC and DON, suggest other biogeochemical processes may be influencing concentrations of DOC and DON in these soils. Given the size of DON and DOC pools in the pastoral soils, we suggest that these pools of C and N should be taken into account when assessing the impact of pastoral land use on soil C and N enrichment of surface and groundwater.  相似文献   

18.
Improved understanding of the seasonal dynamics of C and N cycling in soils, and the main controls on these fluctuations, is needed to improve management strategies and to better match soil N supply to crop N demand. Although the C and N cycles in soil are usually considered to be closely linked, few data exist where both C and N pools and gross N fluxes have been measured seasonally. Here we present measurements of inorganic N, extracted soluble organic N, microbial biomass C and N, gross N fluxes and CO2 production from soil collected under wheat in a ley‐arable and continuous arable rotation within a long‐term experiment. The amounts of inorganic N and extracted soluble organic N were similar (range 5–35 kg N ha−1; 0–23 cm) but had different seasonal patterns: whilst inorganic N declined during wheat growth, extracted soluble organic N peaked after cultivation and also during maximal stem elongation. The microbial biomass was significantly larger in the ley‐arable (964 kg C ha−1; 0–23 cm) than the continuous arable rotation (518 kg C ha−1; 0–23 cm) but with no clear seasonal pattern. In contrast, CO2 produced from soil and gross N mineralization showed strong seasonality linked to soil temperature and moisture content. Normalization of soil CO2 production and gross N mineralization with respect to these environmental regulators enabled us to study the underlying influence of the incorporation of fresh plant material into soil on these processes. The average normalized gross rates of N mineralized during the growing season were 1.74 and 2.55 kg N ha−1 nday−1 in continuous arable and ley‐arable rotations respectively. Production rates (gross N mineralization, gross nitrification) were similar in both land uses and matched rates of NH4+ and NO3 consumption, resulting in periods of net N mineralization and immobilization. There was no simple relationship between soil CO2 production and gross N mineralization, which we attributed to changes in the C : N ratio of the mineralizing pool(s).  相似文献   

19.
Fundamental knowledge about the complex processes during the decomposition, mineralization and transfer of residue organic matter in soils is essential to assess risks of changes in agricultural practices. In a double tracer (13C, 15N) experiment the effect of maize straw on the mineralization dynamics and on the distribution of maize-derived organic matter within particle size fractions was investigated. Maize straw (a C4 plant) labelled with 15N was added to soils (13.2 g dry matter kg–1 soil) which previously had grown only C3 plants, establishing two treatments: (i) soil mixed with maize straw (mixed), and (ii) soil with maize straw applied on the surface (surface). Samples were incubated in the laboratory at 14°C for 365 days. The size fractions (> 200 μm, 200–63 μm, 63–2 μm, 2–0.1 μm and < 0.1 μm), obtained after low-energy sonication (0.2 kJ g–1), were separated by a combination of wet-sieving and centrifuging. The mineralization of maize C was similar in the two treatments after one year. However, decomposition of maize particulate organic matter (predominantly in the fraction > 200 μm) was significantly greater in the mixed treatment, and more C derived from the maize was associated with silt- and clay-sized particles. A two-component model fitted to the data yielded a rapidly mineralizable C pool (about 20% of total C) and a slowly mineralizable pool (about 80%). Generally, the size of the rapidly mineralizable C pool was rather small because inorganic N was rapidly immobilized after the addition of maize. However, the different mean half-lives of the C pools (rapidly decomposable mixed 0.035 years, and surface-applied 0.085 years; slowly decomposable mixed 0.96 years, and surface-applied 1.7 years) showed that mineralization was delayed when the straw was left on the surface. This seems to be because there is little contact between the soil microflora and plant residues. Evidently, the organic matter is more decomposed and protected within soil inorganic compounds when mixed into the soil than when applied on the soil surface, despite similar rates of mineralization.  相似文献   

20.
Macroporous anion-exchange resin extraction and 31P-NMR spectroscopy of dialysed NaOH extracts were used to investigate the effects of land use (Taubenberg, Bavaria: spruce forest, deciduous forest, permanent grass, arable) and fertilization (Askov, Denmark: unmanured, mineral fertilizer, animal manure) on forms of phosphorus in soil with emphasis on the potentially labile organic (Po) and inorganic (Pi pools. Carbon content ranged from 12.5–118.1 g kg?1 and total P (Pi) content from 511 to 2063 mg kg?1. For all soils, the C:Po ratios of SOM decreased in the order: whole soil, 150: 1–44:1; alkali extract, 57:1–41: 1; resin extract, 20:1–9:1; suggesting an increasing P functionality of the OM with increasing Po lability. Analysis of functional relation showed a close relation between resin Po and 31P-NMR estimates for diester-P including teichoic acid-P, indicating that these species contributed significantly to the labile Po pool as determined by the resin method. The most marked effects of land-use were an increase in Pi under grass and arable, a concurrent sequestration of Po and SOM under grass, and a depletion of Po under arable. The amount of resin Pj appeared to be a function primarily of fertilization, and amounted to around 100 mg kg?1 in the fertilized soils irrespective of the SOM content and P source. The forest soil and the unfertilized agricultural soil had much smaller resin Pj values. The soil under grass had the largest amounts in resin Po and diester-P including teichoic acid-P, indicating a rapid turnover of Po with build-up of a large potentially labile, microbially derived Po pool. 31P NMR also showed large proportions of labile Po species in soils where microbial activity is restrained by acidity (Taubenberg spruce forest, phosphonates) or where highly microbially altered OM is relatively enriched (Taubenberg arable, diester-P including teichoic acid-P). We conclude that the resin used in this study isolates a structurally and functionally reasonably uniform pool of potentially labile soil Po.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号