首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to experimentally investigate net N mineralization in sandy arable soils and to derive adequate N mineralization parameters for simulation purposes. Long‐term incubations at 35 °C were done for at least 200 days with 147 sandy arable soils from Northwest Germany. To cumulative net N mineralization curves the simultaneous two‐pool first‐order kinetic equation was fitted in order to differentiate between N mineralization from an easily decomposable, fresh organic matter pool (Nfast) and from a slowly decomposable pool (Nslow) of more humified OM. North German loess soils served as a reference, since available model parameters were mainly derived from those soils. Although curve patterns in sandy soils often somewhat deviated from typical double‐exponential patterns, the mineralization equation generally could be fitted. Two pools were clearly revealed, but a transfer of the standard parameters was found to be not appropriate — except maybe for the pool size of the fast decomposable N pool. The mean kfast at 35 °C (0.1263 d—1) is about 46% higher than the known ’︁standard’ loess value, indicating better conditions for decomposition of fresh residues at this temperature. The mean kslow at 35 °C (0.0023 d—1), which is 60% lower than reported earlier from loess soils, and much lower mineralization rates of the slowly decomposable N pool give reason to the presence of generally more resistant organic material in these sandy soils. The relation between Nslow and total N was found to be not close enough to derive the pool size of slowly decomposable N just from total N as done for loess soils. Reducing the variability is necessary, promising approaches exist. The eight reference loess soils revealed — on an average — the known N mineralization parameters.  相似文献   

2.
黑垆土有机氮组分对可矿化氮的关系   总被引:4,自引:0,他引:4  
LI Ju-Mei  LI Sheng-Xiu 《土壤圈》2003,13(3):279-288
Mineralizable N and organic N components in different layers (0-15, 15-30, 30-45, 45-60, 60-80 and 80-100 cm) of six soils with different fertilities sampled from Yongshou County, Shaanxi Province, China,were determined by the aerobic incubation method and the Bremner procedure, respectively. Correlation,multiple regression and path analyses were performed to study the relation of minerallzable N to organic N components. Results of correlation and regression analyses showed that the amounts of the N mineralized were parallel to, and significantly correlated with, the total acid hydrolyzahle N, but was not so with the acid-insoluble N. Of the hydrolyzable N, the amino acid N and the ammonia N had a highly consistent significant correlation with the mineralized N, and their partial regression coefficients were significant in the regression equations, showing their importance in contribution to the mineralizable N. The amino sugar N, on the other hand, had a relatively high correlation with the mineralized N, but their partial regression coefficients were not significant in the regression equations. In contrast, the hydrolyzable unknown N had no such relations.Path analysis further indicated that the amino acid N and ammonia N made great direct contributions to the mineralized N, but the contributions of the amino sugar N were very low. These strongly suggested tha tthe mineralized N in the soils tested was mainly from the hydrolyzable N, particularly the amino acid N and ammonia N which are the major sources for its production.  相似文献   

3.
This study aimed to experimentally determine adequate temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany. Long‐term laboratory incubations were carried out in seven sandy arable soils at 3°C, 10°C, 19°C, 28°C, and 35°C in order to derive the rate coefficients of a simultaneous two‐pool first‐order kinetic equation. Thereby we differentiated between a small, fast mineralizable N pool, comprising mainly fresh residues, and a larger, slowly mineralizable N pool of old, humified organic matter. The rate coefficients were plotted against temperature, and fits of several different functions were tested: Arrhenius, Q10, and multiple non‐mechanistic equations. The two derived rate coefficients showed very different temperature functions. Especially in critical temperature ranges (<5/10°C, >30/35°C) common Q10 functions failed to fit well, and, only below 10°C, the Arrhenius functions were in agreement with mean measured rate coefficients. Over the studied temperature range, only relatively complex, multiple equations could adequately account for the observed patterns. In addition, temperature functions that have been derived earlier from loess soils from NW Germany were found not to be transferable to the sandy arable soils studied. Thus, the results strongly question the use of the same Arrhenius or Q10 function or the same rate modifying factor for different N pools as well as for different soils as is generally done in models. Evaluations with field measurements of net N mineralization in part II of the paper (Heumann and Böttcher, 2004) will show which functions perform best in the field.  相似文献   

4.
The aim of this study was to evaluate experimentally derived temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany via field measurements. In part I of this paper (Heumann and Böttcher, 2004), different temperature functions for the rate coefficients of a two‐pool first‐order kinetic equation were derived by long‐term laboratory incubations at 3°C to 35°C. In this paper, field net N mineralization during winter of 25 plots was measured in undisturbed soil columns with a diameter of 20 cm to the depth of the Ap horizon. Mean simulated net N mineralization with the most adequate multiple functions corresponded also best with the mean of the measured values despite of an overestimation of about 10%. Distinctly larger deviations under use of other temperature functions (Arrhenius, Q10) were directly related to their deviations from mean, experimentally derived rate coefficients. Simulated net N mineralization in the soil columns was significantly correlated with measured values, regardless of the temperature functions. Yet the goodness of fit was generally relatively low due to the spatial variability of measured net N mineralization within replicate soil columns, although the mean CV (38%) was by far not extraordinary. The pool of slowly mineralizable N contributed considerably to net N mineralization during four to five winter months, on an average 10.0 kg N ha–1, about one third of total simulated N mineralization. Sometimes, it contributed even 21.3 kg N ha–1, which is almost sufficient to reach the EU drinking‐water limit for nitrate in these soils. Simulations with widely used functions that were once derived from loess soils overestimated mineralization from pool Nslow in the studied sandy arable soils by a factor of two.  相似文献   

5.
6.
Pedotransfer functions (PTFs) make use of routinely surveyed soil data to estimate soil properties but their application to soils different from those used for their development can yield inaccurate estimates. This investigation aimed at evaluating the water retention prediction accuracy of eight existing PTFs using a database of 217 Sicilian soils exploring 11 USDA textural classes. PTFs performance was assessed by root mean square differences (RMSD) and average differences (AD) between estimated and measured data. Extended Nonlinear Regression (ENR) technique was adopted to recalibrate or develop four new PTFs and Wind’s evaporation method was applied to validate the effectiveness of the relationships proposed. PTFs evaluation resulted in RMSD and AD values in the range 0.0630–0.0972 and 0.0021–0.0618 cm3 cm–3, respectively. Best and worst performances were obtained respectively by PTF-MI and PTF-ZW. ENR allowed to recalibrate PTF-MI and PTF-ZW with improvements of RMSD (0.0594 and 0.0508 cm3 cm–3) and to develop two relationships that improved RMSD by 75–78% as compared to PTF-MI. The results confirmed the potential of ENR technique in calibrating existing PTFs or developing new ones. Validation conducted with an independent dataset suggested that recalibrated/developed PTFs represent a viable alternative for water retention estimation of Sicilian soils.  相似文献   

7.
The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC) and N (SMBN) in 16 loessial soils sampled from Ansai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg C g-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils.  相似文献   

8.
Abstract. Experiments were set up at two sites to measure nitrogen (N) leaching loss from applications of separated pig/cattle slurry and cattle farmyard manure(FYM), during winters 1990/91–1993/94 (site A) and from broiler litter and FYM, during winters 1990/91–1992/93 (site B). The manures were applied at a target rate of 200 kg ha-1 total N during the autumn and winter to overwinter fallow or top dressed onto winter rye. The total N in leachate was calculated from leachate N concentrations, in samples collected using ceramic cups buried at 90 cm, and an estimate of drainage volume. Nitrogen losses were greatest following manure applications in September, October and November but losses following applications in December or January were not significantly elevated above those from untreated controls. Losses were consistently lower from FYM than from broiler litter or separated slurry. The presence of a cover crop (winter rye) significantly reduced overall N leaching compared with the fallow, but only reduced the manure N leaching losses at one site during one winter when a high proportion of drainage occurred late. The incorporation of a nitrification inhibitor (DCD) with manures applied in October did not significantly reduce the manure N leaching.  相似文献   

9.
土壤生物活性有机碳库及其表征指标的研究   总被引:36,自引:0,他引:36  
土壤生物活性有机碳库 (C0)的大小和周转可以指示土壤供应养分的能力以及养分的循环状况。对浙江省 11个土壤的研究表明 ,生物活性有机碳库的变化幅度为 184.87~ 3022.41mg/kg ,占土壤总有机碳的2.91%~8.94% ,生物活性有机碳库的周转速率k为0.0070~0.0199d-1。C0与土壤总有机碳、全氮、有效氮、CEC、重铬酸钾易氧化有机碳、微生物生物量碳、微生物生物量氮、水溶性有机碳、热水提取有机碳、轻组有机碳都呈显著性正相关 ,k与这些指标均无相关性。C0与重铬酸钾易氧化有机碳、微生物生物量碳、微生物生物量氮、水溶性有机碳、热水提取有机碳、轻组有机碳占土壤总有机碳的百分比均无相关性 ,k只与水溶性有机碳占土壤总有机碳的百分比呈显著性正相关 (R2=0.4684 ,P0.025)。水溶性有机碳占土壤总有机碳的百分比是表征土壤生物活性有机碳库周转的较好指标。  相似文献   

10.
Abstract

Pedotransfer functions (PTFs) to estimate plant available water were developed from a database of arable soils in Sweden. The PTFs were developed to fulfil the minimum requirements of any agro-hydrological application, i.e., soil water content at wilting point (θ wp ) and field capacity (θ fc ), from information that frequently is available from soil surveys such as texture and soil organic carbon content (SOC). From the same variables we also estimated bulk density (ρ) and porosity (ε), which seldom are included in surveys, but are needed for calculating element mass balances. The seven particle-size classes given in the data set were aggregated in different ways to match information commonly gained from surveys. Analysis of covariance and stepwise multiple linear regression were used for quantifying the influence of depth, particle size class, textural class and soil organic carbon on the characteristic variables. PTFs developed from other data sets were also tested and their goodness-of-fit and bias was evaluated. These functions and those developed for the Swedish database were also tested on an independent data set and finally ranked according to their goodness of fit. Among single independent variables, clay was the best predictor for θ wp , sand (or the sum of clay and silt) for θ fc and SOC for ρ and ε. A large fraction of the variation in θ wp and θ fc is explained by soil texture and SOC (up to 90%) and root mean square errors (RMSEs) were as small as 0.03 m3 water m?3 soil in the best models. For the prediction of ρ and ε in the test data set, the best PTF could only explain 40–43% of the total variance with corresponding RMSEs of 0.14 g cm?3 and 5.3% by volume, respectively. Recently presented PTFs derived from a North American database performed very well for estimating θ wp (low error and bias) and could be recommended for Swedish soils if measurements of clay, sand and SOC were available. Although somewhat less accurately, also θ fc could be estimated satisfactorily. This indicates that the determination of plant available water by texture and SOC is rather independent of soil genesis and that certain PTFs are transferable between continents.  相似文献   

11.
Soil organic nitrogen mineralization rates and possible predictors thereof were investigated for vegetable‐growing soils in Belgium. Soil organic matter (SOM) was fractionated into sand (> 53 μm) and silt+clay (< 53 μm) fractions. The latter fraction was further separated into 6%NaOCl‐oxidation labile (6%NaOCl‐ox) and resistant N and C and subsequently into 10%HF‐extractable (mineral bound) and resistant (recalcitrant) N and C. The N mineralization turnover rate (% of soil N/year) correlated with several of the investigated N or C fractions and stepwise linear regression confirmed that the 6%NaOCl‐ox N was the best predictor. However, the small (0.42) of the regression model suggests that soil parameters other than the soil fractions isolated here would be required to explain the significant residual variation in N mineralization rate. A next step could be to look for alternative SOM fractionations capable of isolating bioavailable N. However, it would appear that the observed relationships between N fractions and N mineralization may not be causal but indirect. The number of vegetable crops per rotation did not influence N mineralization, but it did influence 6%NaOCl‐ox N, probably as an effect of differences in crop residues returned and organic manure supply. However, the nature of this relation between management, SOM quality and N mineralization is not clear. Explanation of correlations between N mineralization and presumed bioavailable N fractions, like the 6%NaOCl‐ox N, requires further mechanistic elucidation of the N mineralization process.  相似文献   

12.
Most of the nitrogen (N) in agricultural soils is organically bound, while the N uptake by plants and also the N losses from the soil-plant system into the environment are as inorganic N. The electro-ultrafiltration (EUF) method and the extraction by a CaCl2 solution extract an organic N fraction (Norg) that is thought to provide information about the amount of rapidly mineralizable N in soils. This paper aims to illustrate various aspects regarding the biological meaning of the Norgfractions extracted by these two extraction methods and also the opportunities and limitations for predicting the mineralizable N based on an Norg analysis. From an evaluation of numerous data on EUF and CaCl2 extract-able Norg fractions we concluded that these methods extract N compounds which can be used as indices for easily mineralizable soil N. However, both methods extract only some of the rapidly mineralizable N in soils, and some of the Norg ecxtracted appears to be from the more recalcitrant soil organic N. This was particularly true for the EUF-method. It may therefore be desirable to improve both the extractability and the selectivity of the extraction methods. This may be achieved by measuring extractable amino-N compounds instead of the total extractable Norg. Evaluating the numerous field experiments done during the last decade shows that the calibration factors obtained for extractable Norg were not the same for different growing seasons, geographical regions and management practices. Theoretically, for each combination of these factors separate calibrations would be necessary. It is this inflexibility which appears to be the most serious drawback for the use of extractable Norg fractions in practice. A possible solution may be to combine the flexibility of a simulation model with additional information obtained by the analysis of extract-able soil organic N. Further work in this direction may be desirable.  相似文献   

13.
为深入理解土壤有机氮有效性,利用Bremner酸解法测定了洞庭湖区典型水稻土有机氮组分,采用淹水生物培养法测定了土壤可矿化氮,并分析了二者间的内在关系。结果表明,酸解氮是土壤有机氮素的主要存在形式,其占土壤全氮的比例为58.6%~83.8%,不同类型水稻土酸解氮含量总体上依潴育性水稻土、潜育性水稻土、淹育性水稻土的次序逐渐降低;酸解氮中,氨基酸氮、氨基糖氮、氨态氮与未知氮占土壤全氮的比例分别为25.6%~43.1%、2.6%~9.0%、11.9%~22.3%和8.0%~25.3%。土壤可矿化氮数量变化主要受有机碳、全氮及粘粒含量的影响。酸解氮各组分均与土壤可矿化氮显著正相关(R=0.427~0.858,P0.05),但多元逐步回归和通径分析表明,氨基酸氮是对可矿化氮有直接重要贡献的组分,是可矿化氮的主要来源。氨基酸氮、氨基糖氮、氨态氮、未知氮与氮矿化势的通径分析决策系数分别为0.685、0.251、0.028、-0.050,表明提升有机氮中除未知氮外的其它酸解组分特别是氨基酸氮的分配比例有利于增加土壤可矿化氮供应容量。  相似文献   

14.
Soil bulk density(BD) is an important physical property and an essential factor for weight-to-volume conversion. However, BD is often missing from soil databases because its direct measurement is labor-intensive, time-consuming, and sometimes impractical, particularly on a large scale. Therefore, pedotransfer functions(PTFs) have been developed over several decades to predict BD. Here, six previously revised PTFs(including five basic functions and stepwise multiple linear regression(SMLR)) and t...  相似文献   

15.
Investigations of 23 northwestern German sandy Ap horizons (mean clay content 35 g kg−1), that had higher organic matter (OM) levels than expected for sands, showed that the bulk soil C to N ratio reliably indicated the release of N from stabilized OM. Soils were incubated at 35 °C for 200 days under aerobic conditions. Cumulative N release curves were split into N released from fresh materials (Nfast) and N released from the larger pool of stabilized, older OM (Nslow rates, 0.06-0.77 μg N g−1 soil d−1, or 0.7-49 μg N g−1 OM). Correlating the Nslow rates with total N contents of soils yielded no satisfactory relationships while their relationship with C to N ratios was very close (negative exponential, R2=0.88). Low rates of N release (Nslow) per unit of OM occurred if C to N exceeded 15. This was associated with historical factors like podzolization, calluna heathland, plaggen fertilization or a combination of these.  相似文献   

16.
We assessed the contribution of polysaccharides and lignin, major components of plant residues, to the refractory pool of soil organic carbon (SOC) in arable soils. Soil samples from two contrasting treatment types of European long-term agroecosystem experiments, i.e. conventionally managed (fertilized) and C-depleted plots, enriched in refractory compounds, were compared. Bulk samples from eight experimental sites and particle-size fractions of two of the sites were investigated. The CuO oxidation technique was used as a relative measure of lignin and its degree of structural alteration. The contents and composition of polysaccharides were determined following hydrolysis with trifluoroacetic acid (TFA). For the bulk samples, the amount of lignin phenols declined more than the total OC in the course of C-depletion. The contribution of lignin phenols to total OC was thus lower in the C-depleted versus the fertilized plots. A greater lignin biodegradation was found in the bulk samples of the depleted plots compared with the fertilized plots. The analysis of size fractions revealed lower OC-normalized contents of lignin phenols and a higher degree of lignin alteration in fractions <63 μm of the depleted versus the fertilized plots. These findings indicate that lignin does not accumulate within the refractory C pool of arable soils. The refractory SOC pool shows a lower contribution of lignin as compared with more labile fractions of SOC. If lignin-derived carbon is present in the stable pool it has been extensively modified so that it can no longer be identified as phenolic CuO oxidation products. OC-normalized contents of polysaccharides (neutral sugars and galacturonic acid) were similar in bulk samples of the C-depleted and fertilized plots. The contrasting treatments showed similar polysaccharide contents especially in separates <6 μm. The separates <6 μm in the C-depleted plots retained between 50 and 100% of the polysaccharide amounts in the fertilized plots. The mass ratio of (galactose+mannose)-to-(arabinose+xylose) (GM/AX) was higher in bulk samples of the C-depleted versus the fertilized plots, indicating a higher relative contribution of microbial sugars. Within a particular soil, the fine separates were those with the highest GM/AX ratio. These results indicate that the refractory C pool has a similar proportion of polysaccharides as the labile C pool, but refractory polysaccharides are mainly associated with fine separates and show a dominant contribution of microbial sugars. Our results provide evidence that polysaccharides, mainly those of microbial origin, are stabilized over the long-term within fine separates of arable soils. In contrast, CuO lignin is associated mainly with the coarse fractions and does not contribute to the refractory C pool.  相似文献   

17.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   

18.
Substantial losses of soil organic carbon (SOC) from the plough layer of intensively managed arable soils in western Europe have recently been reported, but these estimates are associated with very large uncertainties. Following soil surveys in 1952 and 1990 of arable soils in West Flanders (Belgium), we resampled 116 sites in 2003 and thus obtained three paired measurements of the OC stocks in these soils. Ten soils were selected for detailed physical fractionation to obtain possible further explanations for changes in SOC stocks. Between 1990 and 2003, the SOC stocks decreased at an average rate of ?0.19 t OC ha?1 year?1. This loss is significant but is still less than half the rate of SOC decrease that was estimated previously for the whole region of Flanders, which includes the study area. Variation in SOC stocks or in the magnitude of SOC stock losses could not be related to soil texture, to changes in ploughing depth, or to recent land‐use changes. A good relationship, however, was found between the SOC losses and organic matter (OM) inputs. The results of the physical fractionation also suggested management to be the predominant factor determining variation in SOC stocks because no correlation was found between soil texture and the absolute amounts of OC present in the largest OM fractions, that is, the OC in free particulate organic matter (POM), and OC associated with the silt + clay size fraction. The proportion of OC in free POM was up to 40% of the total OC, which indicates the important impact of management on SOC and also indicates that a substantial part of the SOC still present, may in the future be lost at a time scale of years to decades assuming that the intensive management continues.  相似文献   

19.
20.
科尔沁沙地土壤水分特征曲线传递函数的构建与评估   总被引:6,自引:2,他引:6  
为了快速准确的获取某一区域的水力性质,该文以科尔沁沙地典型沙丘-草甸相间地区为研究区,在对该区49个不同地貌类型采样点土壤水分特征曲线与土壤基本物理化学特性参数测试分析的基础上,采用函数参数非线性规划法构建了土壤干容重、粒径分布、有机质、pH值、电导率值等基本参数与水分特征曲线之间的传递函数,并进行了精度评估与分析。结果表明:1)研究区土壤水分特征曲线的坡度陡峭,不同地貌类型与土地利用方式下,土壤水分特征曲线有较大差异,相同负压下,土壤持水量按照流动沙丘-半固定沙丘-固定沙丘-农田-草甸的顺序递增;土壤的供水能力按照流动沙丘-半固定沙丘-固定沙丘-草甸-农田的顺序递减;2)利用土壤基本物化特性参数通过函数参数非线性规划法建立了研究区土壤水分特征曲线的传递函数,干容重和砂粒含量是预测土壤水分特征曲线模型参数的主要变量,增加土壤的理化指标可以提高预测精度,然而有机质含量、pH值、电导率值对本区土壤水分常数的影响并不大,对水分特征曲线模型3个参数的影响略微增加;3)通过对传递函数的检验与精度评估分析,各参数的平均误差均在0附近;饱和含水率、残余含水率的均方根误差分别为0.017、0.023;土壤水分常数的相关系数在0.95附近,饱和含水率、残余含水率的误差比的几何标准偏分别为1.04、1.27。表明所建土壤水分特征曲线传递函数的精度较高,可用于该区土壤水分特性研究。该研究可为该区水分、溶质运移、水-热-盐耦合运移模拟提供技术支持和理论保证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号