首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant growth–promoting rhizobacteria (PGPR) have been reported to stimulate the growth and yield of grain crops, particularly when nutrient supply is poor. However, the mechanisms underlying stimulation of plant growth may vary depending not only on growth conditions and crop management but also on plant and bacterial species. The present study assessed the effect of an inoculation with single or multiple PGPR strains on phosphorus (P)‐solubilization processes in the soil and on grain yield in wheat. Single inoculation with Bacillus subtilis OSU‐142, Bacillus megaterium M3, or Azospirillum brasilense Sp245 increased grain yield by 24%, 19%, and 19%, respectively, while a mixed inoculation with OSU‐142, M3, and Sp245 increased grain yield by 33% relative to noninoculated plants. Single inoculations with Paenibacillus polymyxa RC05 or Bacillus megaterium RC07 were less effective. Single or mixed treatments with OSU‐142, M3, and Sp245 increased the concentrations of the labile and moderately labile P fractions in rhizosphere soil. The growth‐stimulating effect of OSU‐142, M3, and Sp245 was also reflected by higher P concentrations in most plant organs. Among all inocula tested, the highest plant P acquisition was obtained in the presence of M3 and accompanied by the highest microbial P levels and the highest phosphatase activities in the rhizosphere soil. In conclusion, seed inoculation with mixed PGPR strains may effectively substitute for a part of P‐fertilizer application in extensive wheat production, and in particular M3 appears to improve the solubilization of inorganic soil P.  相似文献   

2.
In this study we aimed to investigate the effects of plant-growth-promoting rhizobacteria (PGPR) on seed incubation of spring wheat and barley. Three bacterial strains were applied singly and in combinations. Seed inoculation with strains significantly affected grain yield (GY), straw (SWY), total yield (TY), and plant nutrient element (PNE) content. In field trials, compared to the control, single inoculations gave GY, SWY, and TY increases by 27.5–31.9%, 1.1–5.3%, and 1.3–11.3% in wheat and 15.1–27.8%, 10.8–15.5%, and 14.5–18.5% in barley, respectively, but mixtures of strains gave increases in GY, SWY, and TY by 54.7%, 2.1%, and 6.7% in wheat and 57.8%, 14.6%, and 17.5% in barley, respectively. According to the results, it was concluded that seed inoculations with PGPR and mixture inoculation might satisfy nitrogen requirements, but Bacillus megaterium M3 and MIX (Bacillus subtilis OSU142, B. megaterium M3, Azospirillum brasilense Sp245) inoculation provided greater PNE concentrations than mineral fertilizer application for wheat and barley under field conditions.  相似文献   

3.
Summary Three field experiments with wheat were conducted in 1983, 1984, and 1985 in Terra Roxa soil in Paraná, the major Brazilian wheat-growing region, to study inoculation effects of various strains of Azospirillum brasilense and A. amazonense. In all three experiments inoculation with A. brasilense Sp 245 isolated from surface-sterilized wheat roots in Paraná produced the highest plant dry weights and highest N% in plant tops and grain. Grain yield increases with this strain were up to 31 % but were not significant. The application of 60 or 100 kg N ha–1 to the controls increased N accumulation and produced yields less than inoculation with this strain. Another A. brasilense strain from surface-sterilized wheat roots (Sp 107st) also produced increased N assimilation at the lower N fertilizer level but reduced dry weights at the high N level, while strain Sp 7 + Cd reduced dry weights and N% in the straw at both N levels. The A. amazonense strain isolated from washed roots and a nitrate reductase negative mutant of strain Sp 245 were ineffective. Strains Sp 245 and Sp 107st showed the best establishment within roots while strain Cd established only in the soil.  相似文献   

4.
In 2009 a greenhouse experiment was conducted to determine the effects of boron (B) and plant growth-promoting rhizobacteria (PGPR) on wheat (Triticum aestivum spp. vulgare cv ‘Bezostiya’) and barley (Hordeum vulgare cv ‘Tokak’) on plant growth, freezing injury, and antioxidant enzyme capacity. Results showed that boron (0, 1, 3, 6, 9 kg B ha?1) and PGPR application (Bacillus megaterium M3, Bacillus subtilis OSU142, Azospirillum brasilense Sp245 and Raoultella terrigena) at which 50% of leaves were injured (LT50) values and ice nucleation activities in both plants were found statistically significant. Boron application with all PGPR strains decreased LT50 values in wheat and barley plants under noncold stress (NCS) and cold stress conditions (CS). There were statistically significant differences between bacterial inoculation and B fertilizer in terms of root and shoot dry weight under NCS and CS conditions. Reactive oxidative oxygen species (ROS) and antioxidant enzyme activities (SOD, POD, CAT) were negatively affected CS conditions and decreased with reduced temperatures of media, but B and PGPR applications alleviated the low-temperature deleterious effects in both plants species tested. The lowest ROS and antioxidant enzyme (SOD, POD, CAT) of wheat and barley were observed with 6 kg B ha?1 with R. terrigena.  相似文献   

5.
Drawbacks of intensive farming practices and environmental costs of N fertilizers have renewed interest in bio‐fertilizers. This study was conducted in order to investigate the effectiveness of 7 N2‐fixing bacterial isolates from various sources in sugar beet and barley production under field conditions in the higland plateau of Erzurum, Turkey (29° 55′ N and 41° 16′ E with an altitude of 1950 m) in 1999 and 2000. Seeds were inoculated with five bacterial strains of Bacillus; BA‐140, BA‐142, M‐3, M‐13, and M‐58, a strain of Burkholderia (BA‐7) and Pseudomonas (BA‐8). The bacterial strains had been demonstrated to grow in N‐free basal medium. The experiment also included applications of mineral nitrogen (N), phosphorous (P), and NP‐fertilizer as well as a control treatment without inoculation and fertilizer application. Two years of trials under field conditions showed that seed inoculation with bacterial strains significantly affected yield, yield components, and quality parameters both in sugar beet and barley. On an average of both years, seed inoculation of sugar beet with BA‐140, BA‐142, M‐58, BA‐7, BA‐8, M‐13, and M‐3 increased root yield by 13.0, 12.6, 10.5, 9.2, 8.1, 6.1, and 6.5% as compared to the control and sugar yield by 7.8, 6.3, 5.1, 4.0, 3.2, 2.3, and 5.3%, respectively. N, P, and NP applications, however, increased root yield up to 13.6, 5.3, and 21.4% and sugar yield by 6.1, 4.0, and 14.8%, respectively. Of the bacteria tested, BA‐140 and BA‐142 had yields equal to N application. All bacterial inoculations also gave higher seed and total biomass yields in barley than control plots. BA‐140 and BA‐142 were top yielding strains. In conclusion, bacterial seed inoculations especially with BA‐140 and BA‐142 may satisfy nitrogen requirements of sugar beet and barley under field conditions even in upland areas.  相似文献   

6.
In 2009 a greenhouse experiment was conducted to determine the effects of boron (B) and plant growth-promoting rhizobacteria (PGPR) treatments, applied either alone or in combination, on yield, plant growth, leaf total chlorophyll content, stomatal conductance, membrane leakage, and leaf relative water content of wheat (Triticum aestivum L. cv. Bezostiya) and barley (Hordeum vulgare L. cv. Tokak) plants. Results showed that alone or combined B (0, 1, 3, 6, 9 kg ha?1) and PGPR (Bacillus megaterium M3, Bacillus subtilis OSU142, Azospirillum brasilense Sp245, and Raoultella terrigena) treatments positively affected dry weight and physiological parameters searched in both species. Statistically significant differences were observed between bacterial inoculation and B fertilizer on root and shoot dry weight under non-cold-stress (NCS) and cold-stress (CS) conditions. Leaf total chlorophyll content (LTCC), stomatal conductance (SC), leaf relative water content (LRWC), and membrane leakage (ML) were negatively affected by CS conditions and decreased with reduced temperatures of media, but B and PGPR application alleviate the low-temperature deleterious effect in both species. The greatest SC and LRWC, and the lowest ML, were obtained by 6 kg B ha?1 combined with R. terrigena treatment. The greatest LTCC in both NCS and CS conditions was observed with B. megaterium M3 application alone.  相似文献   

7.
Phosphorus (P)‐solubilizing bacteria and fungi can increase soil‐P availability, potentially enhancing crop yield when P is limiting. We studied the effectiveness of Bacillus FS‐3 and Aspergillus FS9 in enhancing strawberry (Fragaria × ananasa cv. Fern) yield and mineral content of leaves and fruits on a P‐deficient calcareous Aridisol in Eastern Anatolia, Turkey. The 120 d pot experiment was conducted in three replicates with three treatments (Bacillus FS‐3, Aspergillus FS9, control) and five increasing rates of P addition (0, 50, 100, 150, and 200 kg P ha–1). Fruit yield and nutrient content of fruits and leaves and soil P pools were determined at the end of the experiment. Phosphorus‐fertilizer addition increased all soil P fractions. Strawberry yield increased with P addition (quadratic function) reaching a maximum of 94 g pot–1 at 200 kg P ha–1 in the absence of P‐solubilizing microorganisms. At this yield level, Bacillus FS‐3 and Aspergillus FS9 inoculation resulted in P‐fertilizer savings of 149 kg P ha–1 and 102 kg P ha–1, respectively. Both microorganisms increased yields beyond the maximum achievable yield with sole P‐fertilizer addition. Microorganism inoculation increased fruit and leaf nutrient concentrations (N, P, K, Ca, and Fe) with the largest increases upon addition of Bacillus FS‐3. We conclude that Bacillus FS‐3 and Aspergillus FS9 show great promise as yield‐enhancing soil amendments in P‐deficient calcareous soils of Turkey. However, moderate additions of P fertilizer (50–100 kg ha–1) are required for highest yield.  相似文献   

8.
Abstract

New studies are needed to optimize the nitrogen (N) amount that can be applied to utilize the Azospirillum brasilense benefits. In addition, information regarding the interaction between the urease inhibitor and biological nitrogen fixation (BNF) and how they affect the macronutrients accumulation are also needed. We evaluate the effect of N sources and doses associated with A. brasilense regarding the macronutrients accumulation in straw and grains and wheat grain yield in tropical conditions. A randomized block experimental design was used with four replications in a 2?×?5?×?2 factorial arrangement as follows: two N sources (urea and urea with urease enzyme inhibitor NBPT; five N doses (0, 50, 100, 150, and 200?kg ha?1) applied in topdressing; with and without A. brasilense inoculation. We found that an increase in N doses positively influenced the accumulation of macronutrients in straw and grains and the wheat grain yield. N sources have similar effects. Inoculation with A. brasilense increased accumulation of Mg and S in straw and P, Ca, and Mg in grains, regardless of the N dose. The inoculation with A. brasilense associated with 140?kg ha?1 of N increased wheat grain yield. The inoculation can contribute in a more sustainable way to wheat nutrition and optimizing N fertilization.  相似文献   

9.
 A field experiment was conducted in the Inshas area (Sharkeia governorate) to study the potential of biofertilizers, when the quantities of commercial fertilizers were reduced, for optimal wheat production. The different treatments were arranged in a completely randomized block design with seven replicates. N fertilizer was applied in three treatments with one control, i.e. zero, full, half and one-fourth rates, in the presence or absence of inocula. Azospirillum brasilense strain Sp245 was used as a biofertilizer. Generally, inoculation increased the accumulation of shoot dry matter and grain yield by about 35%, relative to the control treatment. Similar trends were observed in the case of N and P uptake by shoots and grains, as well as the efficient use of both, where inoculation increased the acquisition of the two elements as compared with the uninoculated plants. The obtained data showed that N2 fixed by shoots and grains ranged from 2 to 10 kg N ha–1 and from 8 to 19 kg N ha–1, respectively. With respect to fixed N2, the best treatment was inoculation combined with the one-fourth dose of N, followed by inoculation combined with half of the recommended N dose. Most of the fixed N was utilized by grains and the results clearly reflected the negative effect of high N fertilizer rates on biological N fixation. It is obvious that inoculation, in general, enhanced the N fertilizer utilized by both shoots and grains of wheat plants. In conclusion, the application of biofertilization technology to a light-textured soil with low fertility had a positive effect on plant growth, N gained from the air and enhancement of fertilizer N uptake (apparent recovery fraction). Received: 22 April 1999  相似文献   

10.
A pot experiment in a greenhouse was conducted in order to investigate the effect of different N2‐fixing, phytohormone‐producing, and P‐solubilizing bacterial species on wheat and spinach growth and enzyme activities. Growth parameters and the activities of four enzymes, glucose‐6‐phosphate dehydrogenase (G6PD; EC 1.1.1.49), 6‐phosphogluconate dehydrogenase (6PGD; EC 1.1.1.44), glutathione reductase (GR; EC 1.8.1.7), and glutathione S‐transferase (GST; EC 2.5.1.18) were determined in the leaves of wheat (Triticum aestivum L., Konya) and spinach (Spinacia oleracea L.), noninoculated and inoculated with nine plant growth–promoting rhizobacteria (PGPR: Bacillus cereus RC18, Bacillus licheniformis RC08, Bacillus megaterium RC07, Bacillus subtilis RC11, Bacillus OSU‐142, Bacillus M‐13, Pseudomonas putida RC06, Paenibacillus polymyxa RC05 and RC14). Among the strains used in the present study, six PGPR exhibited nitrogenase activity and four were efficient in phosphate solubilization; all bacterial strains were efficient in indole acetic acid (IAA) production and significantly increased growth of wheat and spinach. Inoculation with PGPR increased wheat shoot fresh weight by 16.2%–53.8% and spinach shoot fresh weight by 2.2%–53.4% over control. PGPR inoculation gave leaf area increases by 6.0%–47.0% in wheat and 5.3%–49.3% in spinach. Inoculation increased plant height by 2.2%–24.6% and 1.9%–36.8% in wheat and spinach, respectively. A close relationship between plant growth and enzyme activities such as G6PD, 6PGD, GR, and GST was demonstrated. Plant‐growth response was variable and dependent on the inoculant strain, enzyme activity, plant species, and growth parameter evaluated. In particular, the N2‐fixing bacterial strains RC05, RC06, RC14, and OSU‐142 and the P‐solubilizing strains RC07 and RC08 have great potential in being formulated and used as biofertilizers.  相似文献   

11.
Abstract

Results of 240 annual N fertilizer trials in 1991–2007 in spring and winter cereals are presented. On average, spring barley and oat yields increased little beyond 120 kg N ha?1 in fertilizer. Somewhat higher figures were found for spring and winter wheat. Regression equations for yield and N uptakes in grain and straw were derived, related to N fertilizer input and the yield level in individual trials (indicator of yield expectancy). These equations accounted for 90% of the variation in yield and 80% of that in N uptake. Quadratic N responses were significant in all cases, as were interactions between N responses and yield level. They were verified with data from 27 separate trials performed in 2008–2010. The yield equations were used to calculate economically optimum N fertilizer levels with varying ratios of product price to fertilizer cost at contrasting levels of yield. The optimum N fertilizer level for barley and oats was found to increase by 8.3 kg N ha?1 per Mg increase in expected yield. The equivalent figure in wheat was 16.3 kg N ha?1. Optimum N fertilizer levels decreased by 4.1 and 6.7 kg N ha?1, for barley/oats and wheat respectively, per unit increase in the cost/price ratio. The equations for N uptake were used to calculate simple N balances between fertilizer input and removal in crop products. Large N surpluses were indicated at low levels of yield expectancy, but the surplus declined markedly with increasing yield level, despite greater N fertilizer inputs at high yield. Calculations made for national average yield levels in recent years showed N surpluses of 50–60 kg N ha?1 when only grain is removed and 25–40 kg N ha?1 when straw is removed also. Limiting N input to obtain zero balance reduces yields considerably at average levels of yield expectancy.  相似文献   

12.
Summary Pot experiments with oats were carried out to study the effect of Azospirillum brasilense Sp 7 and Azotobacter chroococcum 94K on the yield of plants, the N content of soil and the 14N balance. The plants were grown on gray forest soil under irrigation with deionized water and application of 15N-labelled fertilizer at a rate of 4 mg N 100 g-1 soil. Inoculation of plants with Azospirillum spp. and Azotobacter spp. failed to increase the plant yield. However, the increase in total N in the soil at the end of the experiment and the positive 14N balance in the soil-plant system due to increased nitrogenase activity in the rhizosphere were statistically significant. The amount of N accumulated in the soil was comparable with the rate of N applied as fertilizer.  相似文献   

13.
A field experiment was conducted to evaluate the effect of integrated use of farmyard manure and bio-inoculants on wheat productivity for two years in succession. Increasing levels of farmyard manure (FYM) up to 15 t ha?1 significantly (p ≤ 0.05) improved the dry matter accumulation, effective tillers per m row length, and grain weight per spike in both the years. Application of 15 t ha?1 FYM caused significant increase in spikelets per spike and grains per spike over control and 5 t ha?1 during two consecutive years. Inoculation with MSX-9 strain of Azotobacter chroococcum produced significantly higher dry matter accumulation to 25.63, 13.33, 7.78 and 23.66, 8.35, 5.50% over uninoculation, Azospirillum brasilense (SP-7) and Azospirillum lipoferum (A-5) at harvest during 1999–2000 and 2000–2001, respectively. Incorporation of 15 t ha?1 FYM significantly (p ≤ 0.05) enhanced grain and straw yield to 62.45 and 38.05%; 56.66 and 36.28%; 59.42 and 37.52% over control in 1999–2000, 2000–2001 and pooled analysis, respectively. The grain and straw yield of wheat significantly (p ≤ 0.05) enhanced to 26.51, 10.10, 7.54 and 14.45, 5.77, 3.16% through A. chroococcum (MSX-9), A. brasilense (SP-7) and A. lipoferum (A-5) over uninoculation.  相似文献   

14.
Nitrogen fixation in faba bean (Vicia faba cv. Mesay) as affected by sulfur (S) fertilization (30 kg S ha–1) and inoculation under the semi‐arid conditions of Ethiopia was studied using the 15N‐isotope dilution method. The effect of faba bean–fixed nitrogen (N) on yield of the subsequent wheat crop (Triticum aestivum L.) was also assessed. Sulfur fertilization and inoculation significantly (p < 0.05) affected nodulation at late flowering stage for both 2004 and 2005 cropping seasons. The nodule number and nodule fresh weighs were increased by 53% and 95%, relative to the control. Similarly, both treatments (S fertilization and inoculants) significantly improved biomass and grain yield of faba bean on average by 2.2 and 1.2 Mg ha–1. This corresponds to 37% and 50% increases, respectively, relative to the control. Total N and S uptake of grains was significantly higher by 59.6 and 3.3 kg ha–1, which are 76% and 66% increases, respectively. Sulfur and inoculation enhanced the percentage of N derived from the atmosphere in the whole plant of faba bean from 51% to 73%. This corresponds to N2 fixation varying from 49 to 147 kg N ha–1. The percentage of N derived from fertilizer (%Ndff) and soil (%Ndfs) of faba bean varied from 4.3% to 2.8 %, and from 45.1% to 24.0%, corresponding to the average values of 5.1 and 47.9 kg N ha–1. Similarly, the %Ndff and %Ndfs of the reference crop, barley, varied from 8.5 % to 10.8% and from 91.5% to 89.2%, with average N yields of 9.2 and 84.3 kg N ha–1. Soil N balance after faba bean ranged from 13 to 52 kg N ha–1. Beneficial effects of faba bean on yield of a wheat crop grown after faba bean were highly significant, increasing the average grain and N yields of this crop by 1.11 Mg ha–1 and 30 kg ha–1, relative to the yield of wheat grown after the reference crop, barley. Thus, it can be concluded that faba bean can be grown as an alternative crop to fallow, benefiting farmers economically and increasing the soil fertility.  相似文献   

15.
Under the controlled conditions of the greenhouse and by varying some biotic and abiotic factors, we tried to identify some of the factors critical to obtain successful Azospirillum inoculation. Spring wheat and grain maize were inoculated with different concentrations of the wild type strains A. brasilense Sp245 and A. irakense KBC1, and grown in a substrate with varying concentrations of organic matter (OM) and N fertiliser. The inoculum concentration was one of the factors that influenced most the outcome of an inoculation experiment on wheat, with lower inoculum concentrations (105-106 cfu plant-1) stimulating root development and plant dry weight and higher inoculum concentrations (107-108 cfu plant-1) having no effect or sometimes even inhibiting root development. The effect of inoculation was most pronounced at low to intermediate N fertilisation levels, while the OM content of the substrate had no effect. Inoculation was found to affect early plant and root development, plant and root dry weight, grain yield and the N-uptake efficiency of plants. However, inoculation did not change the N concentration in plants or grains. In addition, a difference in the ability of both strains to stimulate plant growth and N uptake of wheat and maize was observed, with A. brasilense Sp245 having most effect on spring wheat and A. irakense KBC1 being more effective on grain maize. The significance of the obtained results for agriculture is discussed.  相似文献   

16.
Inoculants are of great importance in sustainable and/or organic agriculture. In the present study, plant growth of barley (Hordeum vulgare) has been studied in sterile soil inoculated with four plant growth-promoting bacteria and mineral fertilizers at three different soil bulk densities and in three harvests of plants. Three bacterial species were isolated from the rhizosphere of barley and wheat. These bacteria fixed N2, dissolved P and significantly increased growth of barley seedlings. Available phosphate in soil was significantly increased by seed inoculation of Bacillus M-13 and Bacillus RC01. Total culturable bacteria, fungi and P-solubilizing bacteria count increased with time. Data suggest that seed inoculation of barley with Bacillus RC01, Bacillus RC02, Bacillus RC03 and Bacillus M-13 increased root weight by 16.7, 12.5, 8.9 and 12.5% as compared to the control (without bacteria inoculation and mineral fertilizers) and shoot weight by 34.7, 34.7, 28.6 and 32.7%, respectively. Bacterial inoculation gave increases of 20.3–25.7% over the control as compared with 18.9 and 35.1% total biomass weight increases by P and NP application. The concentration of N and P in soil was decreased by increasing soil compaction. In contrast to macronutrients, the concentration of Fe, Cu and Mn was lower in plants grown in the loosest soil. Soil compaction induced a limitation in root and shoot growth that was reflected by a decrease in the microbial population and activity. Our results show that bacterial population was stimulated by the decrease in soil bulk density. The results suggest that the N2-fixing and P-solubilizing bacterial strains tested have a potential on plant growth activity of barley.  相似文献   

17.
Abstract

Biofertilizers are an alternative to mineral fertilizers for increasing soil productivity and plant growth in sustainable agriculture. The objective of this study was to evaluate possible effects of three mineral fertilizers and four plant growth promoting rhizobacteria (PGPR) strains as biofertilizer on soil properties and seedling growth of barley (Hordeum vulgare) at three different soil bulk densities, and in three harvest periods. The application treatments included the control (without bacteria inoculation and mineral fertilizers), mineral fertilizers (N, NP and P) and plant growth promoting rhizobacteria species (Bacillus licheniformis RC04, Paenibacillus polymyxa RC05, Pseudomonas putida RC06, and Bacillus OSU-142) in sterilized soil. The PGPR, fungi, seedling growth, soil pH, organic matter content, available P and mineral nitrogen were determined in soil compacted artificially to three bulk density levels (1.1, 1.25 and 1.40 Mg m?3) at 15, 30, and 45 days of plant harvest. The results showed that all the inoculated bacteria contributed to the amount of mineral nitrogen. Seed inoculation significantly increased the count of bacteria and fungi. Data suggest that seed inoculation of barley with PGPR strains tested increased root weight by 9–12.2%, and shoot weight by 29.7–43.3% compared with control. The N, NP and P application, however, increased root weight up to 18.2, 25.0 and 7.4% and shoot weight by 31.6, 43.4 and 26.4%, respectively. Our data show that PGPR stimulate barley growth and could be used as an alternative to chemical fertilizer. Soil compaction hampers the beneficial plant growth promoting properties of PGPR and should be avoided.  相似文献   

18.
Many of the poorly drained clayey soils of the Mississippi River delta region in Arkansas are used for soft red winter wheat (Triticum aestivum L.) production. Oftentimes, excessive rainfall occurs between the last N application and physiological maturity, resulting in soil conditions conducive to denitrification. Studies were conducted in 1989 and 1990 to evaluate late N applications on five wheat cultivars on a Sharkey silty clay (very fine, montmorillonitic, nonacid, thermic, Vertic Haplaquepts) at Keiser, AR. A linear‐move irrigation system was used to maintain excessive soil moisture conditions throughout the spring growing season to best insure denitrification conditions. After the recommended spring N was applied, N as urea was applied at rates of 0, 34, and 68 kg ha‐1 at growth stage (GS) 9 in 1989 and GS 10 in 1990. Ammonium nitrate was also evaluated at the 34 kg N ha‐1 rate. Grain yield, yield components, whole‐plant N concentration, grain N content, and whole‐plant N uptake were evaluated. Grain yield increased each year with late N applications. The optimum N rate was 34 kg ha‐1 with no difference between the N sources, urea and ammonium nitrate. The yield component accounting for this grain yield increase were kernels per spike in 1989 and kernel weight and kernels per spike in 1990. Whole plant N concentration increased each year and grain N content increased in 1990 with the late N application. The N sources affected N nutrition similarly.  相似文献   

19.
Soil fertility is declining in most agro‐ecosystems in sub‐Saharan Africa, and incorporation of forage legumes into production systems to utilize the nitrogen fixed by the legumes could alleviate the problem, if efficient nitrogen‐fixing legumes are used. The amounts of nitrogen fixed by Lablab, Medicago, Trifolium, and Vicia species and their contribution to the following wheat crop were estimated in field experiments on an Alfisol at Debre Zeit in the Ethiopian highlands. The amounts of nitrogen (N) fixed ranged from 40 kg N ha‐1 for T. steudneri to 215 kg N ha‐1 for L. purpureus. The increase in grain yields of wheat following the legumes ranged from 16% for T. steudneri to 71% for M. tranculata where no N fertilizer was applied to the wheat. Additional N fertilizer applied to wheat at 60 kg N ha‐1 had no significant effects on wheat grain or straw DM andN yields. In another experiment, eight lablab treatments consisting of factorial combinations of two cultivars (Rongai and Highworth), two Rhizobium inoculation treatments (inoculated and uninoculated) and two times of harvest (for hay at 50% flowering and for seed at seed maturity), were compared on lablab forage production and N yield, and residual effects on two succeeding wheat crops. Inoculation had no significant effects on nodulation, shoot DM or N yields. Rongai had significantly higher shoot DM and N yields than Highworth. Lablab harvested at flowering had significantly higher shoot DM and N yields than lablab harvested at seed maturity. Grain yields of the first wheat crop following the various lablab crops were 93–125% higher than grain yields of the wheat following wheat (continuous wheat) where no N fertilizer was applied. Therefore, lablab is a potential forage crop for incorporation into cereal production systems to improve feed quality and to reduce dependence on N fertilizers for cereal production.  相似文献   

20.
The synergistic effects of nitrogen‐fixing and phosphate‐solubilizing rhizobacteria on plant growth, yield, grain protein, and nutrient uptake of chickpea plants were determined in a sandy clay‐loam soil. Legume grain yield and concentration and uptake of nitrogen (N) and phosphorus (P) were significantly increased as a result of co‐inoculation with Mesorhizobium and P‐solubilizing Pseudomonas and Bacillus spp. The inoculation with M. ciceri RC4 + A. chroococuum A10 + Bacillus PSB9 tripled the seed yield and resulted in highest grain protein (295 mg g–1) at 145 d after sowing (DAS). An 8% increase in P concentration above the uninoculated control was observed in case of a single inoculation with Pseudomonas PSB 5, while the P uptake was highest (2.14‐fold above the uninoculated control) with a combined inoculation with [M. ciceri RC4 + A. chroococcum A10 + Bacillus PSB 9] at 145 DAS. The highest N concentration and N uptake at 145 DAS (81% and 16% above the uninoculated control, respectively) were observed with the triple inoculation of [M. ciceri RC4 + A. chroococcum A10 + Pseudomonas PSB 5). These findings show that multiple inoculations with rhizospheric microorganisms can promote plant growth and grain yield and increase concentrations and uptake of N and P by field‐grown chickpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号