首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The xylem surface of seedlings, stem material and roots of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) were inoculated with strains of Heterobasidion annosum s. str. and H. parviporum s. str. The depth of necrosis in wounded spruce increased at a linear rate for at least seven weeks of incubation, but the rate of necrotic spread was significantly faster in infected wounds. In wounded pine the necrosis was maintained at a more superficial level for several weeks. Both spruce and pine sapwood were initially infected by hyphae of both species. In spruce, the hyphae advanced at a constant rate behind the necrotic front. On the contrary, after 1–2 weeks living H. parviporum hyphae were rare in pine rays. Heterobasidion annosum hyphae survived in pine rays, phloem and tracheids, despite a heavy accumulation of phenolics and resins and were able to penetrate into the sapwood at a linear rate although slower than infections in spruce. Histochemistry and quantitative estimates demonstrated that peroxidase activity was initially higher in spruce sapwood than in pine. Within three days of incubation, the activity in spruce sapwood disappeared concurrently with deepening necrosis. However, in pine, in both control and infected samples, there was a significant increase in peroxidase activity in the area surrounding the superficial necrosis, up to the wound surface and in the cambium and phloem around the wound. After wounding and infection, the content of soluble protein increased significantly in wood of older trees but not in seedlings. Infection resulted in an increased formation of lipophilic extractives in both spruce and pine but to a significantly greater degree in the latter, whereas the amount of hydrophilic compounds decreased in both. High‐performance liquid chromatography (HPLC) analyses of lipophilic extracts showed that inoculation of pine with the two species of Heterobasidion increased the amounts of pinosylvin, its monomethylether and several other phenolics as also resinous compounds. The results obtained may be relevant in explaining the known higher resistance of Scots pine to H. parviporum.  相似文献   

2.
Forty-one 2-year-old clones of Picea sitchensis (Bong.) Carr. from three full-sib families (14 clones from each of two families and 13 clones from a third family) were either wounded and inoculated with an isolate of Heterobasidion annosum (Fr.) Bref. or wounded without inoculation. Lesion lengths on the inner bark from the point of inoculation varied among clones 35 days after treatment. There was no relationship between lesion length and relatedness within families. Two clones (21342 and 25202) with the shortest lesions, tentatively designated as less susceptible to H. annosum, and two clones (21176 and 27166) with the longest lesions, designated more susceptible, were selected for comparison of host anatomical and chemical responses to infection. The position and structure of the ligno-suberized boundary zone (LSZ) in the bark of the clones suggested that the less susceptible clones formed thicker layers of suberized cells in the LSZ following wounding plus inoculation. No LSZ was observed in two ramets of the more susceptible Clone 27166 following wounding and inoculation with H. annosum. Compared with more susceptible genotypes, clones of P. sitchensis with low susceptibility to H. annosum had high relative proportions of (+)-alpha-pinene, (-)-beta-pinene and one unidentified terpene constituent (Unknown-15) in cortical resin sampled 25 cm from the lesions. In contrast, more susceptible clones had higher relative proportions of (-)-limonene, Unknown-16, Unknown-18 and Unknown-19. In the secondary resin produced in bark tissues surrounding the lesions, proportions of several monoterpene constituents varied; these changes included a decrease in the relative amount of beta-phellandrene and corresponding small increases in some minor constituents. The concentrations of the monoterpenes, except a few minor constituents, increased in the infected tissues. Wounding plus inoculation with H. annosum resulted in varied monoterpene responses, with distinct differences between less susceptible and more susceptible clones. In less susceptible clones, Unknown-19 increased following wounding plus inoculation, whereas in more susceptible clones, concentrations of delta-3-carene and Unknown-13 and Unknown-16 increased. Differences in both constitutive and induced resin monoterpene profiles may provide useful markers for resistance to H. annosum in selection and breeding programs.  相似文献   

3.
Majdi H 《Tree physiology》2001,21(14):1057-1061
Effects of irrigation and liquid fertilization on fine root (< 1 mm) production and longevity, and fine root (< 0.5-2 mm) biomass were studied in a Norway spruce (Picea abies (L.) Karst.) stand in northern Sweden. Fine root length production and longevity were measured by the minirhizotron technique at 0-10 cm depth in the following treatments: irrigation (I), liquid fertilization (IL) and control (C). Standing root biomass and root length density (RLD) were studied in the litter-fermented humus (LFH) layer and at depths of 0-10, 10-20 and 20-30 cm using soil cores in solid fertilized (F) and C plots. Minirhizotrons were installed in October 1994 and measurements recorded monthly from July to September 1995 and during the growing season in 1996. Soil cores were sampled in 1996. Fine root production increased significantly in IL plots compared with C plots, but the I treatment did not increase root production. Root mortality increased significantly in IL plots compared with C plots. Fine root longevity in IL plots was significantly lower compared with C and I plots. No significant difference was found between longevity of fine roots in I and C plots. Compared with C, F treatment increased fine root biomass in the LFH and mineral soil layers, and increased the amount of fine roots in mineral soil layers relative to the LFH layer. Furthermore, F increased RLD and the number of mycorrhizal root tips significantly.  相似文献   

4.
Rufat J  DeJong TM 《Tree physiology》2001,21(15):1133-1140
The PEACH computer simulation model of reproductive and vegetative growth of peach trees (Grossman and DeJong 1994) was adapted to estimate seasonal nitrogen (N) dynamics in organs of mature peach (Prunus persica (L.) Batsch cv. O'Henry) trees grown with high and low soil N availability. Seasonal N accumulation patterns of fruits, leaves, stems, branches, trunk and roots of mature, cropping peach trees were modeled by combining model predictions of organ dry mass accumulation from the PEACH model with measured seasonal organ N concentrations of trees that had been fertilized with either zero or 200 kg N ha(-1) in April. The results provided a comparison of the N use of perennial and annual organs during the growing season for trees growing under both low and high N availability. Nitrogen fertilization increased tree N content by increasing organ dry masses and N concentrations during the fruit growing season. Dry mass of current-year vegetative growth was most affected by N fertilization. Whole-tree N content of fertilized trees was almost twice that of non-fertilized trees. Although N use was higher in fertilized trees, calculated seasonal N accumulation patterns were similar for trees in both treatments. Annual organs exhibited greater responses to N fertilization than perennial organs. Estimated mean daily N use per tree remained nearly constant from 40 days after anthesis to harvest. The calculations indicated that fertilized trees accumulated about 1 g N tree(-1) day(-1), twice that accumulated by non-fertilized trees. Daily N use by the fertilized orchard was calculated to be approximately 1 kg N ha(-1), whereas it was approximately 0.5 kg N ha(-1) for the non-fertilized trees. During the first 25-30 days of the growing season, all N use by growing tissues was apparently supplied by storage organs. Nitrogen release from storage organs for current growth continued until about 75 days after anthesis in both N treatments.  相似文献   

5.
When Norway spruce trees were inoculated with Ceratocystis polonica, a dose-dependent response was recorded. Local resinosis near the inoculation sites decreased with increasing inoculum density; parallelled by an increasing degree of sapwood staining, and tree mortality. Suppressed trees, and trees showing growth decline appeared more susceptible than trees suffering less competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号