首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The present study investigated the nitrogen balance in swine manure composting to evaluate the effect of nitrite (     ) accumulation, which induces nitrogenous emissions, such as N2O, during compost maturation. During active composting, most N losses result from NH3 emission, which was 9.5% of the initial total nitrogen (TNinitial), after which,     began to accumulate as only ammonia-oxidizing bacteria proliferated. After active composting, the addition of mature swine compost (MSC), including nitrite-oxidizing bacteria (NOB), could prevent     accumulation and reduce N2O emission by 70% compared with the control in which     accumulated as a result of delayed growth of indigenous NOB. Total N2O emissions in the control and in the treatment of MSC addition (MA) were 9.3% and 3.0% of TNinitial, respectively, whereas N losses as the sum total of NH3 and N2O over the whole period were 19.0% (control) and 12.8% (MA) of TNinitial, respectively. However, the difference in total N losses was markedly greater than that measured as NH3 and N2O, which were 27.8% (control) and 13.3% (MA) of TNinitial, respectively. These results demonstrated that the magnitude of nitrogen losses induced by     accumulation is too large to ignore in the composting of swine manure.  相似文献   

2.
过磷酸钙用量对猪粪堆肥过程及磷形态变化的影响   总被引:1,自引:5,他引:1  
【目的】过磷酸钙作为常用的畜禽粪便堆肥添加剂,具有减少氮素损失率并提高氮、磷养分含量等优点,但其对磷的有效性和形态的影响有待深入探讨。通过试验研究不同过磷酸钙添加量对猪粪锯末好氧堆肥过程的影响及堆肥中不同形态磷含量和形态之间的相互转化规律,以期为畜禽粪便堆肥中磷素的转化及合理施用提供科学依据。【方法】将猪粪和锯末以质量比(鲜重)4:1的比例混合,然后按照猪粪和锯末干物质量的5%、10%、15%添加过磷酸钙,以不添加过磷酸钙作为对照(CK),进行42 d好氧堆肥,监测堆肥温度、含水率、pH、全氮、有机碳、全磷、有效磷、有机磷等指标。【结果】与CK相比,添加适量过磷酸钙可以显著提高堆肥的温度,增加高温持续期2~10 d;提高堆肥物料的持水能力,加快有机碳降解。添加5%~15%的过磷酸钙可以显著降低堆肥初始pH值0.33~0.68个单位,有效抑制堆肥过程中铵态氮的挥发损失,CK、5%、10%和15%的处理在堆肥结束时的氮素损失率分别为29.4%、26.6%、18.5%和8.0%,全氮和全磷含量分别较堆肥初增加17.3~34.2%和37.0%~123.1%。CK有效磷含量随堆肥时间不断上升,第42 d较堆肥初增加73.0%,而添加过磷酸钙5%、10%和15%的处理有效磷含量显著降低,分别较堆肥初减少了4.0%、23.2%和41.8%。随着堆肥的进行,各处理中有效磷占全磷的比例均不断下降,表明堆肥过程降低了磷的有效性。堆肥前期以有机磷的矿化为主,后期以有机磷的合成为主,第42 d有机磷占全磷的比例CK最高(22.1%),添加5%、10%和15%过磷酸钙的处理分别为15.4%、11.0%和8.7%。【结论】猪粪堆肥中添加过磷酸钙,可以有效减少氮素损失,加快有机物料降解,以10%的添加量效果最佳;堆肥过程降低了磷的有效性,随着过磷酸钙用量的增加有效磷的比例不断下降;腐熟后堆肥中的磷以无机态为主,有机磷占全磷的比例随着过磷酸钙用量的增加而递减。  相似文献   

3.
堆体大小对猪粪堆肥影响和袋装堆肥的研究   总被引:14,自引:0,他引:14  
研究了堆体大小对堆肥的影响以及堆制10 d的物料袋装堆肥的可行性。试验将猪粪和秸秆按一定比例混合均匀后分800 kg、400 kg和200 kg三种规格堆制40 d,另设800 kg组物料堆制10 d后转移分装到袋中继续堆制至40 d。每天上午、下午测定堆温,并于堆制第1、5、10、20、30和40 d取物料测定C/N比、水溶性碳、总腐殖质、氨态氮和硝态氮。结果表明,400 kg和800 kg组经40 d左右可以达到腐熟,而200 kg组不能完成彻底的有机质分解。与非袋装组比较,袋装堆肥堆制结束(40 d)物料的C/N比较低、腐殖质和氨态氮相近、水溶性碳和硝态氮较高。袋装法简单经济,占地少,便于畜牧场和农村推广应用。  相似文献   

4.
Summary Field studies of the effects of different N fertilizers on emission of nitrous oxide (N20) from three Iowa soils showed that the N2O emissions induced by application of 180 kg ha–1 fertilizer N as anhydrous ammonia greatly exceeded those induced by application of the same amount of fertilizer N as aqueous ammonia or urea. On average, the emission of N2O-N induced by anhydrous ammonia was more than 13 times that induced by aqueous ammonia or urea and represented 1.2% of the anhydrous ammonia N applied. Experiments with one soil showed that the N2O emission induced by anhydrous ammonia was more than 17 times that induced by the same amount of N as calcium nitrate. These findings confirm indications from previous work that anhydrous ammonia has a much greater effect on emission of N2O from soils than do other commonly used N fertilizers and merits special attention in research relating to the potential adverse climatic effect of N fertilization of soils.Laboratory studies of the effect of different amounts of NH4OH on emission of N2O from Webster soil showed that the emission of N2O-N induced by addition of 100 g NH4OH-N g–1 soil represented only 0.18% of the N applied, whereas the emissions induced by additions of 500 and 1 000 g NH4OH-N g–1 soil represented 1.15% and 1.19%, respectively, of the N applied. This suggests that the exceptionally large emissions of N2O induced by anhydrous ammonia fertilization are due, at least in part, to the fact that the customary method of applying this fertilizer by injection into soil produces highly alkaline soil zones of high ammonium-N concentration that do not occur when urea or aqueous ammonia fertilizers are broadcast and incorporated into soil.  相似文献   

5.
利用外源微生物进行牛粪高温好氧堆肥试验,研究堆肥过程中不同形态有机态氮组分的变化规律。结果表明,全氮与酸水解氮均呈下降趋势,与不加外源微生物处理相比,外源微生物处理只是加速全氮与酸水解氮含量的降低,并没有引起氮素过多的损失;氨基酸态氮呈现先降低后增加的趋势,堆肥结束时,外源微生物处理含量明显高于不加微生物处理;酰胺态氮与氨基糖态氮各处理含量都在升温期、高温期增加,然后随着堆肥温度的下降而降低,在腐熟期则呈现较平稳的走势。在堆肥的不同时期,外源微生物处理酰胺态氮含量明显低于不加微生物处理,而氨基糖态氮则相反。  相似文献   

6.
Microbial mineralization of urea and uric acid in poultry litter can lead to loss of nitrogen (N) content and its value as a fertilizer. To minimize the loss of N in the composting processes, controlling the water content in litters is a key to reduce the mineralization processes of N compounds. The N content of litter may be influenced by diets, hen age and the type of poultry houses used. The objectives of the present study were i) to determine the relationship between the water content and the decomposition rate of uric acid in poultry litter and ii) to investigate the effect of hen age and crude protein (CP) percentages in diets on the N content of poultry litter. A layer feeding trial was conducted in two poultry farms with windowless and open-floor houses. An incubation study of poultry litter was performed under different levels of water content. Our study found that the diet CP percentage (16.5–18%) and the growth stage of laying hens did not have a significant effect on the amount of total N (52–56?g?kg?1) and uric acid-N (26–31g?kg?1) in fresh litters. At the 7th day of litter incubation study, the concentration of uric acid-N was 22 g kg?1 in litters with a water content of 35%, whereas it further decreased to less than 1.3 g kg?1 in litters with a water content of 55% and higher levels. The decomposition rate of uric acid-N in litter was 0.3–3.1g?kg?1?day?1 in the windowless house and 3.1–7.1g?kg?1?day?1 in the open-floor house. Decomposition of uric acid in litters was positively correlated to the litter moisture content that is controlled to be lower in windowless houses (40–50%) than in open-floor houses (55–80%) during the composting period. Our study suggests that the use of windowless houses for layer chicken production is effective for producing poultry manure with a high N content.  相似文献   

7.
除氨菌系对牛粪堆肥氮素转化的影响   总被引:1,自引:0,他引:1  
为了减轻牛粪堆肥过程中NH3释放对环境的污染及氮素损失,在牛粪堆肥时添加除氨菌系,研究其对氮素形态转化的影响。加除氨菌系处理的NH4+-N、NH3较对照分别降低20.47%和61.21%,全氮、NO3--N较对照分别提高11.63%和65.01%,酸解有机氮、氨基酸态氮、酰胺态氮和氨基糖态氮含量分别提高12.42%、11.26%、16.92%和19.51%。表明除氨菌系在牛粪堆肥过程中,能够固定NH4+-N向有机氮各组分转化,减少NH3挥发,具有较好的保氮作用。  相似文献   

8.
添加剂对猪粪秸秆堆肥的氮素损失控制效果   总被引:4,自引:2,他引:4  
为减少堆肥过程中的氨气挥发和氮素损失,该文以新鲜猪粪和玉米秸秆为原料,采用强制通风静态垛堆肥装置进行35 d的好氧堆肥试验,研究2种固氮添加剂(过磷酸钙+氢氧化镁、磷酸+氢氧化镁)对猪粪秸秆堆肥过程中的氮素损失控制效果。结果表明:添加适量的固氮剂均可降低堆肥化过程中氨气的排放率。过磷酸钙+氢氧化镁处理相比较对照和磷酸+氢氧化镁处理,氮素固定率较高,固氮效果较好。与对照处理相比,该处理在整个堆肥过程中的累积氨气挥发量和总氮损失分别降低了41.78%和13.27%;在堆肥结束时,铵态氮和硝态氮含量分别提高了60.00%和24.66%。最终堆肥产品的种子发芽率指数为97.22%~115.86%,表明所有处理在堆置35 d后均达到腐熟。X射线衍射分析证实了添加固定剂处理的堆肥产品中均有鸟粪石(Mg NH_4PO_4·6H_2O)的存在,说明通过添加过磷酸钙+氢氧化镁、磷酸+氢氧化镁2种固定剂可以改变堆肥的理化性质,促进堆肥的降解和腐熟。  相似文献   

9.
A 3-year field study in southeast China was performed to examine the relationship between N2O emission and winter wheat production. Over the 2002–03, 2003–04 and 2004–05 wheat-cropping seasons, N2O emissions depended on nitrogen addition, plowing practice, and preceding crop type treatments, and showed a pronounced inter-annual variation. N2O–N emission factor, the proportion of fertilizer N released as N2O–N from the wheat field, varied from 1.33% to 2.97%. The relationship between N2O emission (y) and crop yield (x) was well explained by the function y = 3.773Ln(x) + 1.46. Similarly, the function y = 4.445Ln(x) − 3.52 can be employed to address the relationship between N2O emission (y) and above ground biomass (x). About 84% and 87% of variation in seasonal N2O emission were explained by the two functions, while only 66% of the variation was represented by the N input with a linear relationship. The results of this study suggest that seasonal N2O emission of soil under winter wheat could be better predicted by crop yield and biomass than by N input. Submitted to Biology and Fertility of Soils.  相似文献   

10.
Nitrous oxide (N2O) is a greenhouse gas and agricultural soils are major sources of atmospheric N2O. Its emissions from soils make up the largest part in the global N2O budget. Research was carried out at the experimental fields of the Leibniz-Institute of Agricultural Engineering Potsdam-Bornim (ATB). Different types (mineral and wood ash) and levels (0, 75 and 150 kg N ha−1) of fertilization were applied to annual (rape, rye, triticale and hemp) and perennial (poplar and willow) plants every year. N2O flux measurements were performed 4 times a week by means of gas flux chambers and an automated gas chromatograph between 2003 and 2005. Soil samples were also taken close to the corresponding measuring rings. Soil nitrate and ammonium were measured in soil extracts.N2O emissions had a peak after N fertilization in spring, after plant harvest in summer and during the freezing–thawing periods in winter. Both fertilization and plant types significantly altered N2O emission. The maximum N2O emission rate detected was 1081 μg N2O m−2 h−1 in 2004. The mean annual N2O emissions from the annual plants were more than twofold greater than those of perennial plants (4.3 kg ha−1 vs. 1.9 kg ha−1). During January, N2O fluxes considerably increased in all treatments due to freezing–thawing cycles. Fertilization together with annual cropping doubled the N2O emissions compared to perennial crops indicating that N use efficiency was greater for perennial plants. Fertilizer-derived N2O fluxes constituted about 32% (willow) to 67% (rape/rye) of total soil N2O flux. Concurrent measurements of soil water content, NO3 and NH4 support the conclusion that nitrification is main source of N2O loss from the study soils. The mean soil NO3-N values of soils during the study for fertilized soils were 1.6 and 0.9 mg NO3-N kg−1 for 150 and 75 kg N ha−1 fertilization, respectively. This value reduced to 0.5 mg NO3-N kg−1 for non-fertilized soils.  相似文献   

11.
Abstract

It is well known that some fungal species are remarkably tolerant of high copper concentration, although copper is toxic to most fungi (Garraway and Evans 1984). Bedford (1936) and Jurkowska (1952) reported that Penicillium and Aspergillus species can grow in liquid media saturated or nearly saturated with copper sulfate. Okamoto and Fuwa (1974) isolated Penicillium ochro-chloron from the laboratory air, and found that the fungus was able to grow in a medium saturated with copper sulfate.  相似文献   

12.
采用室外人工翻堆好氧堆肥方法,进行了70d的鸡粪、鸡粪添加1%稻草和鸡粪添加3%稻草堆肥试验,采用平板记数法和最大可能记数法(MPN),研究了堆肥过程中氨化细菌、固氮菌、硝化菌和反硝化菌的数量变化规律。结果表明:氨化作用在堆肥初期显著,硝化作用、反硝化作用、硝化细菌和反硝化细菌数量随堆肥时间的推移有上升的趋势;堆肥中存在固氮菌,但数量变化不大。堆肥中氮转化微生物变化特征与堆肥中铵态氮、硝态氮变化规律相一致。  相似文献   

13.
猪粪堆肥过程中NH3和H2S的释放及除臭微生物的筛选研究   总被引:1,自引:1,他引:1  
为了治理粪便臭气污染,测定了猪粪好氧堆肥过程中NH3和H2S的释放量以及堆肥温度、pH值、含水率、水溶性铵态氮等指标。结果表明,NH3在前20天释放量占总释放量的84.6%、H2S在前13天释放量占总释放量的100%。因此,在堆肥初期的前20天是控制臭气的最佳时期。并从畜禽粪便、垃圾、土壤和堆肥中分离、纯化了一些微生物,经过初筛得到能利用NH3的微生物41株,经过复筛得到脱除H2S较好的细菌一株,与对照相比其去除率达85.7%,经鉴定该菌是松鼠葡萄球菌。  相似文献   

14.
不同施肥处理稻田甲烷和氧化亚氮排放特征   总被引:48,自引:14,他引:48  
采用静态箱-气相色谱法对长期不同施肥处理(NPKS、CK、NPK和NKM)的稻田CH4和N2O排放进行了观测。结果表明,稻田CH4和N2O排放季节变化规律明显不同,二者排放通量季节变化呈显著负相关(p<0.01)。与单施化肥和CK相比,施用有机肥显著促进CH4排放,排放量最高的NPKS处理早晚稻田排放量分别是:526.68 kg/hm2和1072.92 kg/hm2。对于N2O排放,早稻田各处理间差异不显著,NPK处理排放量最大,为1.48 kg/hm2;晚稻田各处理差异极显著(p<0.01),NPKS处理排放量最大,为1.40 kg/hm2。晚稻田CH4排放通量和10 cm土层温度及土壤pH值相关极显著(p<0.01),并与二者存在显著的指数关系。没发现N2O排放通量与温度及pH值间存在显著相关。稻田CH4和N2O排放受多种因素影响,但对全球变暖的贡献率CH4远大于N2O。NPKS处理的增温潜势最大,NPK处理的最小。  相似文献   

15.
碳源调理剂对黄瓜秧堆肥进程和碳氮养分损失的影响   总被引:4,自引:3,他引:4  
由于中国蔬菜产地的黄瓜秧无害化处理与循环利用缺乏针对性的使用技术,这类废弃资源多成为当地的环境污染源。该文以黄瓜秧为原料(空白对照,CK)进行高温好氧堆肥,并在此基础上设置2组处理,即把玉米秸秆(CS)和木本泥炭(WP)作为辅助碳源调理剂,按照C/N比为25添加到物料中。通过对比分析不同处理的CO2和氨气的排放速率和累积量、物料损失率、有机质含量、p H值、电导率(EC)、发芽指数等指标,研究外加碳源对黄瓜秧堆肥过程和碳氮氧分损失的影响,以期实现对黄瓜秧堆肥化进程进行工艺优化,并降低碳氮元素以气态形式的损失,进而减少温室气体排放。结果表明:玉米秸秆和木本泥炭作为外加碳源调理剂,可以减少物料损失量,加速堆肥腐熟进程,其中尤以玉米秸秆效果更佳。但是,玉米秸秆的添加会增加整个堆肥过程中有机质的降解和CO2的排放强度,提高累积排放量(100g/kg),而木本泥炭会减少有机质的降解总量和CO2的累积排放量(77g/kg);玉米秸秆和木本泥炭都有利于控制堆肥过程中氨气的排放,且作用时间和机理不同。综合考虑堆肥进程和气体损失,木本泥炭作为碳源调理剂的改良效果更优于秸秆,应进一步研究两者联合使用的效果。  相似文献   

16.
Abstract

Nitrous oxide (N2O) emissions from agricultural soils, mainly caused by chemical nitrogen (N) fertilizer inputs, are major sources of N2O in Chinese terrestrial ecosystems. Thus, attempts to reduce N2O emissions from agricultural soils by optimizing N applications are receiving increasing attention. Further, organic fertilizers are being increasingly used in China to improve crop production/quality and prevent or reduce soil degradation. However, organic and chemical fertilizers are often both applied in spring in northeast China, which promotes N2O emissions and may be sub-optimal. Therefore, we hypothesized that reducing applications of chemical fertilizer N and applying manure in autumn could be an effective strategy for mitigating N2O emissions from cropped soils in the region. To test this hypothesis, we established a field trial to investigate the effects of different combinations of chemical N fertilizer applications and animal manure in autumn on both N2O emissions and maize (Zea mays L.) grain yields in northeast China. The treatments, expressed as NxMy (where Nx and My denote the total amounts of chemical fertilizer nitrogen (N) and manure (M) applied in kg N ha?1 and m3 M ha?1, respectively), were N0M0, N230M0, N270M12, N230M15, N320M18 in 2010 and N0M0, N230M0, N200M12, N200M15, N280M18 in 2011. Measurements of the resulting N2O emissions showed that pulse fluxes occurred after each chemical N fertilizer application, but not after manure inputs in autumn or during soil-thawing periods in the following spring. Emission factors for the chemical fertilizer N were on average 1.07% (1.00?1.10%) and 1.14% (0.49?1.83%) in 2010 and 2011, respectively. Furthermore, by comparing the nine pairs of fertilization treatments, the relative increase in cumulative nitrous oxide-nitrogen (N2O-N) emissions was found to be proportional to the relative increase in urea application, but independent of the amount of autumn-applied manure. These findings imply that N2O emissions from fertilized agricultural soils in northeast China could be mitigated by supplying manure in the autumn and reducing the total amount of chemical N fertilizer applied in the following year. Although no significant difference in maize grain yield was found among the fertilization treatments, the grain yield-scaled N2O emissions for the treatments with a lower chemical N application (e.g., N230M15 and N200M15 treatments) were significantly lower than those with a higher chemical N application (e.g., N320M18 and N280M18 treatments). Meanwhile, under the condition of the same application amount of chemical fertilizer N, the grain yield-scaled N2O emission decreased with the increase of manure application rate. Thus, the results support the hypothesis that combining reductions in chemical N fertilizer and applying manure in autumn could be an effective strategy for mitigating N2O emissions from N-fertilized soils in northeast China.  相似文献   

17.
A field study was conducted in the sub-humid tropical region of India to examine the effect of different nitrogen (N) management strategies on nitrate leaching, nitrous oxide (N2O) emission and N use efficiency in aerobic rice. Treatments were: control (no N), 120 kg N ha?1 applied as prilled urea (PU) in conventional method, 120 kg N ha?1 applied as neem coated urea (NCU) in conventional method, N applied as PU on the basis of leaf colour chart (LCC) reading, N applied as NCU on the basis of LCC reading, and 120 kg N ha?1 applied as PU and farm yard manure (FYM) in 1:1 ratio. Results showed that 3.4–16.1 kg NO3-N ha?1 was leached below 45 cm depth and 0.61–1.12 kg N2O-N ha?1 was emitted from aerobic rice during the growing season. NCU when applied conventionally reduced nitrate-nitrogen (NO3-N) leaching and N2O emission by 18.6% and 21.4%, respectively However when applied on the basis of LCC reading NCU reduced NO3-N leaching by 39.8% as compared to PU applied in conventional method. NCU when applied on the basis of LCC reading synchronized N supply with demand and reduced N loss, which resulted in higher yield and N use efficiency.  相似文献   

18.
According to Broadbent and Clark (3), there are numerous data indicating that denitrification leads to the emission of N2O together with N2, whereby loss of N is developed from soils. Nitrous oxide is also released from soils to the atmosphere during the nitrification of ammonium and ammonium-producing fertilizers under aerobic conditions (1). Relatively few attempts have been made to directly measure N2O evolution under field conditions (6, 7, 10–12), although a number of laboratory studies have been reported. These studies are essential for determining the N balance between additions and losses of soil N.  相似文献   

19.
Previous reports indicated that the emission of nitrous oxide (N2O) when manure compost pellets (MCP) were applied to soil was greater than when ordinary manure compost or inorganic fertilizer was applied, but that applying pellets of nitrogen-enriched manure compost, a by-product of deodorizing manure during composting, resulted in N2O emission rates less than those from MCPs. To investigate the mechanism by which N2O emission rates and cumulative emissions were reduced in nitrogen-enriched manure composts pellets (N+MCP), we studied the impact of pellet pH on N2O emission, because pH is different between MCP (pH 8.6) and N+MCP (pH 5.3). In an incubation experiment, the pH of pellets was adjusted to five levels (5.3, 6.0, 7.0, 8.0 and 8.6) with acid or alkaline solutions, and the pellets were incubated without soil in a beaker at 30°C for 90 d (MCP) or 42 d (N+MCP). A large peak in N2O emission rate was observed soon after beginning the incubation (within 1–3 d) in the neutral and alkaline treatments for both MCP and N+MCP, and these peaks corresponded to a rise in the pellet nitrite contents. Thus, this N2O emission peak might have been generated by the denitrification of nitrite in the pellets. In the acid treatments of MCP, the N2O emission was distributed more in the later incubation period (14–90 d), when the reduction of nitrate in MCP occurred. This led to a significant increase in cumulative N2O emission as compared with the alkaline treatments for MCP. Regarding the mechanism by which N2O emission was reduced in N+MCP, although larger cumulative N2O emission rates in the earlier stage (0–14 d for MCP and 0–7 d for N+MCP) were observed when the pellet pH was adjusted close to 7.0, lowering the pH of MCP to 5.3 (the pH of N+MCP) did not demonstrate a significant decrease in cumulative N2O emission as compared with the original pH treatment (pH 8.6). These results indicate that pellet pH might not relate directly to the mechanism by which N2O emission was reduced in N+MCP.  相似文献   

20.
Nitrous oxide (N2O) emissions from the soil surface of five different forest types in Thailand were measured using the closed chamber method. Soil samples were also taken to study the N2O production pathways. The monthly average emissions (±SD, n?=?12) of N2O from dry evergreen forest (DEF), hill evergreen forest (HEF), moist evergreen forest (MEF), mixed deciduous forest (MDF) and acacia reforestation (ARF) were 13.0?±?8.2, 5.7?±?7.1, 1.2?±?12.1, 7.3?±?8.5 and 16.7?±?9.2?µg N m?2 h?1, respectively. Large seasonal variations in fluxes were observed. Emission was relatively higher during the wet season than during the dry season, indicating that soil moisture and denitrification were probably the main controlling factors. Net N2O uptake was also observed occasionally. Laboratory studies were conducted to further investigate the influence of moisture and the N2O production pathways. Production rates at 30% water holding capacity (WHC) were 3.9?±?0.2, 0.5?±?0.06 and 0.87?±?0.01?ng N2O-nitrogen (N) g-dw?1day?1 in DEF, HEF and MEF respectively. At 60% WHC, N2O production rates in DEF, HEF and MEF soils increased by factors of 68, 9 and 502, respectively. Denitrification was found to be the main N2O production pathway in these soils except in MEF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号