首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
    
ABSTRACT

The influence of long-term application of different types of compost on rice grain yield, CH4 and N2O emissions, and soil carbon storage (0 ? 30 cm) in rice paddy fields was clarified. Two sets of paddy fields applied with rice straw compost or livestock manure compost mainly derived from cattle were used in this study. Each set comprised long-term application (LT) and corresponding control (CT) plots. The application rates for rice straw compost (42 years) and livestock manure compost (41 years in total with different application rates) were 20 Mg fresh weight ha–1. Soil carbon storage increased by 33% and 37% with long-term application of rice straw compost and livestock manure compost, respectively. The soil carbon sequestration rate by the organic matter application was 23% higher with the livestock manure compost than with the rice straw compost. The rice grain yield in the LT plot was significantly higher than that in the corresponding CT plot with both types of compost. Although the difference was not significant in the rice straw compost, cumulative CH4 emissions increased with long-term application of both composts. Increase rate of CH4 emission with long-term application was higher in the livestock manure compost (99%) than that in the rice straw compost (26%). In both composts, the long-term application did not increase N2O emission significantly. As with the rice straw compost, the increase in CH4 emission with the long-term application of livestock manure compost exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was positive, indicating a net increase in the GHG emissions. The increase in CH4 and net GHG emissions owing to the long-term application of the livestock manure compost could be higher than that of the rice straw compost owing to the amount of applied carbon, the quality of compost and the soil carbon accumulation. The possibility that carbon sequestration in the subsoil differs depending on the type of composts suggests the importance of including subsoil in the evaluation of soil carbon sequestration by long-term application of organic matter.  相似文献   

3.
    
ABSTRACT

The influence of the long-term combination of rice straw removal and rice straw compost application on methane (CH4) and nitrous oxide (N2O) emissions and soil carbon accumulation in rice paddy fields was clarified. In each of the initial and continuous application fields (3 and 39?51 years, respectively), three plots with different applications of organic matter were established, namely, rice straw application (RS), rice straw compost application (SC) and no application (NA) plots, and soil carbon storage (0?15 cm), rice grain yield and CH4 and N2O fluxes were measured for three years. The soil carbon sequestration rate by the organic matter application was higher in the SC plot than in the RS plot for both the initial and continuous application fields, and it was lower in the continuous application field than in the initial application field. The rice grain yield in the SC plot was significantly higher than those in the other plots in both the initial and continuous application fields. Cumulative CH4 emissions followed the order of the NA plot < the SC plot < the RS plot for both the initial and continuous application fields. The effect of the organic matter application on the N2O emissions was not clear. In both the initial and continuous application fields, the increase in CH4 emission by the rice straw application exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was a positive, indicating a net increase in the GHG emissions. However, the change in the GHG balance by the rice straw compost application showed negative (mitigating GHG emissions) for the initial application field, whereas it showed positive for the continuous application field. Although the mitigation effect on the GHG emissions by the combination of the rice straw removal and rice straw compost application was reduced by 21% after 39 years long-term application, it is suggested that the combination treatment is a sustainable management that can mitigate GHG emissions and improve crop productivity.  相似文献   

4.
稻草还田和非稻季持续淹水是我国最重要的稻田管理方式之一,此种管理方式下稻田碳排放并不清楚。本研究以江汉平原中稻-冬闲制度为对象,探讨稻草还田耦合非稻季持续淹水对稻季碳排放的影响,为准确评估稻田温室气体排放提供数据支撑和理论支持。结果表明,在稻草秸秆全量覆盖还田下,非稻季自然排水比持续淹水显著降低稻季CH_4累积排放量,稻季第一次排水晒田之前CH_4排放占总排放量的80%以上;非稻季持续淹水使稻季CO_2累积排放量比自然排水稍有降低,CO_2排放主要集中在第一次排水晒田之后,占总排放量的60%左右。非稻季淹水降低稻季土壤NO_3~--N、NH_4~+-N和DOC浓度以及10 cm土层土壤Eh值,但使乙酸浓度升高,这可能是稻草还田耦合非稻季淹水导致CH_4排放量增加的主要原因。  相似文献   

5.
Soil organic carbon (C) is a major determinant for the sustainability of agricultural systems. The changes in C pools (active or total) reflect the changes in an agricultural system. The C management index (CMI) can be used to monitor the soil over time, and it also tells whether a new system or practice is declining or rehabilitating the soil. Carbon management index was calculated for a long‐term experiment after 10 cycles of rice–wheat cropping to assess the influence of rice straw compost application either alone or in combination with inorganic fertilizers on soil C buildup. Total and labile C was greater in rice straw compost–amended soil as compared to unamended control or soils receiving inorganic fertilizers only. Application of rice straw compost increased the mean CMI (47.1) as compared to control (21.0). Labile C was positively related to mean weight diameter, and seemingly it plays an important role in the maintenance of physical fertility of soils and thus sustainability of the cropping system.  相似文献   

6.
【目的】研究秸秆还田后不同水温和肥剂管理措施下土壤碳素转化特征。【方法】以华中双季稻区低产水稻土黄泥田为供试材料,模拟早稻和晚稻秸秆还田的田间环境,在实验室控制条件下,开展了两种温度环境中(15℃、35℃)不同水分(40%和100%最大田间持水量,即40%WHC、100%WHC)、配施氮肥类型(尿素、猪粪即U、M)、以及促腐菌剂添加对秸秆腐解效果及其过程中土壤碳素转化影响的研究。对水稻秸秆腐解过程中土壤CO2释放量、以及土壤可溶性有机碳(DOC)和总有机碳(TOC)含量在105天培养周期内变化特征进行动态监测分析。【结果】两种温度环境中整个培养周期内,各处理的CO2释放速率和释放总量通常表现为100%WHC-M100%WHC-U40%WHC-M40%WHC-U,即猪粪优于尿素的规律,而不论配施何种氮肥都存在100%WHC40%WHC(P0.01)的现象,同时40%WHC条件下辅施菌剂可显著提升CO2释放量;与此相反,两种温度环境下DOC含量都表现为40%WHC-M40%WHC-U100%WHC-M100%WHC-U(后两者差异小),即40%WHC条件下DOC含量显著高于100%WHC(P0.05),且配施猪粪处理优于配施尿素处理,但这两种氮肥处理间差异随培养时间延长而减小;以CO2-C释放量计算0 7 d、0 28 d、0 105 d内物料分解率,结果表明,35℃时100%WHC-U的处理中物料分解最快,15℃时40%WHC-M的处理中物料分解最慢。与之对应,105 d内TOC含量和净增量则在35℃时100%WHC-U的处理中最小(P0.01),而在15℃时40%WHC-M的处理中最大(P0.01);TOC的净增量和净损失量在相同温度条件下,尤其试验前期不同水分(P0.01)、氮素(P0.05)间均存在显著差异,且促腐菌剂添加普遍减小TOC含量;培养周期内所有处理的CO2释放速率与DOC含量间存在显著相关(P0.05)。【结论】水分状况对碳素的转化存在极大影响,其次是氮肥类型,且氮肥的影响作用随秸秆还田时间的延长而减弱;高湿条件更利于促进秸秆腐解,但导致土壤DOC含量较低,TOC的固持量也较少,而配施猪粪则可促进土壤DOC含量的提升及TOC的固持;促腐菌剂添加可促进秸秆腐解,但由于40%WHC条件下显著激发了CO2的释放而不利于土壤固碳。因此在华中低产黄泥田双季轮作稻区,早稻还田时由于气温高周期短,建议保持100%WHC、辅施适量尿素、并配合添加秸秆腐解菌剂,侧重秸秆快腐;而晚稻还田时气温低周期长,建议保持40%WHC并辅施缓效猪粪,侧重土壤固碳。  相似文献   

7.
种植绿肥和秸秆还田是稻田土壤培肥的重要措施。研究江汉平原单季稻田冬闲期种植绿肥及稻秸不同利用模式对土壤有机碳库和土壤酶活性的影响,为合理利用秸秆和土地资源提供科学依据。该研究基于3 a田间定位试验,以稻秸不还田不种绿肥(CK1)和不施肥空白(CK0)为对照,分析了冬闲期稻秸全量覆盖单独还田(RSM)、稻秸原位焚烧还田(RSB)、单种绿肥(GM)以及稻秸全量覆盖与种植绿肥协同还田利用(RSM+GM)等处理模式下土壤有机碳各组分含量、碳库管理指数、酶活性的变化及其与水稻产量的关系。结果表明:与CK1和CK0相比,RSB处理3 a后显著降低了土壤稳态有机碳含量,对土壤总有机碳、活性有机碳含量以及碳库管理指数均无显著影响;而GM、RSM及RSM+GM处理3a后显著提高了土壤活性有机碳含量、碳库指数、碳库活度、碳库活度指数和碳库管理指数,尤其是RSM和RSM+GM处理还可显著提高土壤总有机碳含量,且多数指标均以RSM+GM处理增幅为最大,其次是RSM处理。与CK1相比,RSB处理3a后显著提高了过氧化氢酶和蔗糖酶活性,但对土壤脲酶活性无显著影响;而RSM、GM及RSM+GM处理模式3 a后均可显著增加土壤过氧化氢酶、脲酶和蔗糖酶活性,其中RSM+GM处理模式在1 a后即可显著提高土壤脲酶活性,2 a后显著提高土壤过氧化氢酶和蔗糖酶活性,3 a后土壤过氧化氢酶和蔗糖酶活性增幅均是最大。相比于CK1,RSM和RSB处理模式3 a的稻谷增产效果均不显著,而GM和RSM+GM处理模式连续3 a显著提高了稻谷产量,增幅分别为6.88%~11.67%和6.00%~13.40%。相关性分析表明,土壤总有机碳、活性有机碳、碳库管理指数、土壤酶活性与水稻产量之间均呈极显著正相关关系。综上,在江汉平原单季稻作条件下,冬闲期稻秸全量覆盖还田或种植绿肥均可改善土壤肥力,增加作物产量,但前者更有助于土壤有机碳积累,后者更利于作物产量提升。为了兼顾秸秆资源利用、土壤质量改善和作物增产稳产,稻田冬闲期稻秸全量覆盖与种植绿肥协同还田利用模式是一种较好的选择。  相似文献   

8.
淤地坝是黄土高原地区重要的沟道治理措施,也是陆地生态系统中重要的储碳场所。评估淤地坝的碳汇作用与能力,可为研究其他水土保持措施碳汇提供重要借鉴,也为我国碳达峰、碳中和目标提供科学依据。以黄土高原淤地坝为研究对象,系统探讨淤地坝的碳汇效应与机理,提出淤地坝碳汇能力估算方法。结果表明:淤地坝具有保土保碳、减蚀减排和增绿增汇作用。在过去50年中黄土高原淤地坝保碳能力为2.16×107 t C,减排能力为4.33×106~8.66×106 t C,增汇能力为6.84×105 t C。淤地坝产生积极的碳汇效益,对提升生态系统碳中和能力、降低碳达峰的峰值发挥重要作用。淤地坝与其他主要水土保持措施都具有保土、减蚀等多种水土保持效益,可充分发挥保碳、减排、增汇等多种碳汇作用。推行碳汇水土保持工作、实施水土保持增汇行动,既可全面巩固陆地生态系统碳汇作用,又能持续提升生态系统增汇能力,对碳达峰与碳中和作出水土保持贡献。  相似文献   

9.
    
Solar vegetable greenhouse soils show low soil organic carbon content and thus also low rates of soil respiration. Processing vegetable residues to biochar and mixing biochar with maize straw might improve soil respiration and increase soil organic carbon stocks, while preventing the spread of soil-borne diseases carried by vegetable residues. In an incubation experiment, we tested how additions of maize straw (S) and biochar (B) added in varying ratios (100S, 75S25B, 50S50B, 25S75B, 100B and 0S0B (control)) affect soil respiration and fraction of added C remaining in soil. Daily CO2 emissions were measured over 60 days incubation, the natural abundance of 13C in soil and in the added biochar and maize straw were analysed. Our result shows that (a) soil CO2 emissions were significantly increased compared to soil without the straw additions, while addition of biochar only decreased soil respiration; (b) cumulative CO2 emissions decreased with increasing ratio of added biochar to maize straw; (c) the abundance of soil 13C was significant positively correlated with cumulative CO2 emissions, and thus with the ratio of straw addition. Our results indicate that incorporation of maize straw in greenhouse soils is a meaningful measure to increase soil respiration and to facilitate greenhouse atmosphere CO2 limitation while producing vegetables. On the other hand, additions of biochar from vegetable residues will increase soil organic carbon concentration. Therefore, the simultaneous application of maize straw and biochar obtained from vegetable residues is an effective option to maintain essential soil functions for vegetable production in sunken solar greenhouses.  相似文献   

10.
    
Agricultural soils play a very important role in regulating the carbon dioxide (CO2) content of the atmosphere, and can behave either as carbon sources or sinks. We have simulated the dynamics of carbon in the soil under different land uses and soil-management systems in a Mediterranean olive grove with the Rothamsted carbon (RothC) model. To this end we chose patches of native vegetation (NV) and two different olive grove soils (chromic calcisols and calcic vertisols) under different soil-management systems: conventional tillage (T), and mulching with shredded olive-pruning debris and residues from olive-fruit cleaning (PD + CR). We measured the clay content, bulk density, soil organic carbon (SOC) and total nitrogen (N) in each patch. The SOC and N values decreased by more than 30% as a result of a change in soil use from NV to T olive grove. After adding PD + CR these values rose once more, even to levels above NV. The RothC model performed well for covered soils (NV and PD + CR) but overestimated the SOC values after the soil use was changed from NV to T olive grove, probably due to high carbon losses caused by erosion, common to T soils in the Mediterranean basin. As a result of mulching the soil with only pruning debris, CO2 emitted to the atmosphere was reduced by >55% for both soils. Associated with this decrease in the emission rate, RothC estimated a potential carbon sequestration of 0.5 and 0.6 t C/ha/yr for chromic calcisols and calcic vertisols, respectively. The reuse of organic debris generated in the olive grove, such as pruning debris and residues from olive-fruit cleaning, is an efficient way of improving soil properties, diminishing CO2 emissions and increasing the soil’s capacity to store carbon.  相似文献   

11.
为较全面评价秸秆覆盖旱作水稻栽培模式的生态意义,采用田间试验研究了常规淹水(F)、秸秆覆盖旱作(NF-M)和无覆盖旱作(NF-ZM)3种栽培模式稻田甲烷排放、水稻产量及土壤养分的变化规律。结果表明:3种水稻栽培模式的甲烷排放均集中在水稻生育期的前20d;在水稻生育期内,秸秆覆盖旱作稻田甲烷的排放总量为11.12g·m^-2,显著高于常规淹水稻田的7.78g·m^-2和无覆盖旱作稻田的4.23g·m^-2。秸秆覆盖旱作稻田的水稻产量为8.60t·hm^-2,与常规淹水处理没有显著差异,但二者均显著高于无秸秆覆盖旱作处理的6.78t·hm^-2;与常规淹水处理相比,秸秆覆盖旱作还可以提高水稻单株生物量10g以上。秸秆覆盖旱作还可以显著提高稻田表层土壤有机质含量,维持和改善表层土壤养分状况,对实现农业可持续性有重要意义。因此,在水资源缺乏地区,秸秆覆盖旱作是一种值得考虑的替代传统淹水栽培的水稻栽培模式,同时秸秆覆盖旱作还田也是一种值得推广的稻田秸秆管理技术。  相似文献   

12.
    
Paddy fields play an important role in global carbon(C) cycling and are an important source of methane(CH4) emissions. Insights into the processes influencing the dynamics of soil organic C(SOC) in paddy fields are essential for maintaining global soil C stocks and mitigating climate change. Periphytic biofilms composed of microalgae, bacteria, and other microorganisms are ubiquitous in paddy fields, where they directly mediate the transfer of elements at the soil-water interface. How...  相似文献   

13.
    
Climate, soil physical–chemical characteristics, land management, and carbon (C) input from crop residues greatly affect soil organic carbon (SOC) sequestration. According to the concept of SOC saturation, the ability of SOC to increase with C input decreases as SOC increases and approaches a SOC saturation level. In a 12‐year experiment, six semi‐arid cropping systems characterized by different rates of C input to soil were compared for ability to sequester SOC, SOC saturation level, and the time necessary to reach the SOC saturation level. SOC stocks, soil aggregate sizes, and C inputs were measured in durum wheat monocropping with (Ws) and without (W) return of aboveground residue to the soil and in the following cropping systems without return of aboveground residue to soil: durum wheat/fallow (Wfall), durum wheat/berseem clover, durum wheat/barley/faba bean, and durum wheat/Hedysarum coronarium. The C sequestration rate and SOC content were lowest in Wfall plots but did not differ among the other cropping systems. The C sequestration rate ranged from 0.47 Mg C ha−1 y−1 in Ws plots to 0.66 Mg C ha−1 y−1 in W plots but was negative (−0.06 Mg C ha−1 y−1) in Wfall plots. Increases in SOC were related to C input up to a SOC saturation value; over this value, further C inputs did not lead to SOC increase. Across all cropping systems, the C saturation value for the experimental soil was 57.7 Mg ha−1, which was reached with a cumulative C input of 15 Mg ha−1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
现代气候变化情景下土壤微生物活性和碳动态研究进展   总被引:1,自引:0,他引:1  
Microbial activities are affected by a myriad of factors with end points involved in nutrient cycling and carbon sequestration issues. Because of their prominent role in the global carbon balance and their possible role in carbon sequestration, soil microbes are very important organisms in relation to global climate changes. This review focuses mainly on the responses of soil microbes to climate changes and subsequent effects on soil carbon dynamics. An overview table regarding extracellular enzyme activities (EAA) with all relevant literature data summarizes the effects of different ecosystems under various experimental treatments on EAA. Increasing temperature, altered soil moisture regimes, and elevated carbon dioxide significantly affect directly or indirectly soil microbial activities. High temperature regimes can increase the microbial activities which can provide positive feedback to climate change, whereas lower moisture condition in pedosystem can negate the increase, although the interactive effects still remain unanswered. Shifts in soil microbial community in response to climate change have been determined by gene probing, phospholipid fatty acid analysis (PLFA), terminal restriction length polymorphism (TRFLP), and denaturing gradient gel electrophoresis (DGGE), but in a recent investigations, omic technological interventions have enabled determination of the shift in soil microbe community at a taxa level, which can provide very important inputs for modeling C sequestration process. The intricacy and diversity of the soil microbial population and how it responds to climate change are big challenges, but new molecular and stable isotope probing tools are being developed for linking fluctuations in microbial diversity to ecosystem function.  相似文献   

15.
Recently, soil carbon sequestration in agro-ecosystems has been attracting significant interest as soil organic carbon (SOC) can potentially offset some atmospheric carbon dioxide. The objectives of this study were to use the RothC model to simulate soil carbon sequestration and determine the proportion of pasture production as carbon input for SOC sequestration under different pasture types and pasture management in a long term experiment established in 1992. There were two types of pastures, annual and perennial pastures, with or without application of limestone. Simulation results showed that with an initial setting for the stubble retention factor of 0.65 and root/shoot ratio of 0.5 for annual pasture and 1.0 for perennial pasture, RothC can adequately simulate SOC for both pasture types, especially annual pasture. Using an inverse modelling technique, the root/shoot ratio was determined as 0.49 and 0.57 for annual pasture and 0.72 and 0.76 for perennial pasture with and without limestone application, respectively. There was a large improvement in model performance for perennial pasture with and without limestone application. The root mean squared errors (RMSE) reduced from 3.19 and 2.99 t C ha−1 in the initial settings to 2.09 and 2.10 t C ha−1, while performance efficiency (PE) increased from 0.89 and 0.91 to the same value of 0.95 when the root/shoot ratio of 0.72 and 0.76 were used for limed and unlimed perennial pastures. However, there was little improvement for annual pasture as RMSE had little change and PE was the same. As the stubble retention factor and root/shoot ratio can be combined into one factor that measures an equivalent amount of total above-ground pasture production allocated for soil carbon input, the modelled results can be summarised as 1.2 times and 1.4 times the above-ground dry matter for annual and for perennial pasture, respectively, regardless of liming. Our results provide useful information for simulation of soil carbon sequestration under continuous pasture systems.  相似文献   

16.
The effect of rice straw (RS) incorporated at the time of plowing in the previous cr–p season on CH4 emission from rice paddies was investigated in a pot experiment. Rice straw that incorporated just before transplanting of rice seedlings (June) into a paddy field was collected after the harvest (October) and at the beginning of the next cropping period (May). Methane emission rates from the rice-planted pots with the application of fresh RS, RS collected in October. and RS collected in Mayas well as the pots without RS application were measured using the chamber method. The composition of organic constituents in the three kinds of RS was estimated by the proximate analysis. The cumulative amount of CH4 emitted during the first 50–d period was lower in the order of the pots with RS collected in May, pots with RS collected in October, and pots with fresh RS. The cumulative amount of CH4 emitted throughout the rice growth period from the pots with fresh RS and with RS collected in October was significantly larger while that from the pots with RS collected in May did not differ statistically compared with the total CH4 emission from the pots without RS. These results suggested that there was an overall decrease in the amount of organic constituents in RS based on the large differences in T-C content and similar composition of organic constituents between the fresh RS and RS collected in May. Significant effect of RS continuously applied during the previous cropping period on the increase in CH4 emission was discussed.  相似文献   

17.
    
Managing soil carbon requires accurate estimates of soil organic carbon (SOC) stocks and its dynamics, at scales able to capture the influence of local factors on the carbon pool. This paper develops a spatially explicit methodology to quantify SOC stocks in two contrasting regions of Southern Spain: Sierra Norte de Sevilla (SN) and Cabo de Gata (CG). Also, it examines the relationship between SOC stocks and local environmental factors. Results showed that mean SOC stocks were 4·3 kg m−2 in SN and 3·0 kg m−2 in CG. Differences in SOC in both sites were not significant, suggesting that factors other than climate have a greater influence on SOC stocks. A correlation matrix revealed that SOC has the highest positive correlation with clay content and soil depth. Based on the land use, the largest SOC stocks were found in grassland soils (4·4 kg m−2 in CG and 5·0 kg m−2 in SN) and extensive crops (3·0 kg m−2 in CG and 5·0 kg m−2 in SN), and the smallest under shrubs (2·8 kg m−2 in CG and 3·2 kg m−2 in SN) and forests soils (4·2 kg m−2 in SN). This SOC distribution is explained by the greatest soil depth under agricultural land uses, a common situation across the Mediterranean, where the deepest soils have been cultivated and natural vegetation mostly remains along the marginal sites. Accordingly, strategies to manage SOC stocks in southern Spain will have to acknowledge its high pedodiversity and long history of land use, refusing the adoption of standard global strategies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
生物质燃烧对全球大气碳排放和气候变化产生重要的影响。近年来,利用生物质制备生物炭实现碳封存备受重视。该文根据2001-2010年中国粮食产量,估算了主要粮食作物秸秆产量,结合秸秆露天焚烧比例及CO和CO2排放因子,得出CO和CO2的排放量及碳排放总量。同时,根据实验室条件下秸秆转化为生物炭的产率及碳含量,估算了中国粮食作物秸秆转化生物炭后固定碳的量。结果发现,中国粮食作物秸秆因焚烧年排放CO、CO2和总碳量分别为1.15×107、1.57×108和4.77×107t。中国粮食作物秸秆全部转化为生物炭后年平均可固碳0.96×108t,如果把每年焚烧秸秆的量全部转化为生物炭可减少近一半因焚烧秸秆排放碳的量,可见,生物炭固碳技术是一种非常有前景的碳汇技术。  相似文献   

19.
为探明稻秸(稻草)及其不同组分(腐解稻秸、可溶性有机物和去活稻秸)对红黄泥水稻土微生物量碳、氮(MBC、MBN)和可溶性有机碳、氮(DOC、DON)含量的影响。通过室内恒温培养试验,研究了长期淹水条件下,添加稻秸及其组分对MBC、MBN、DOC和DON的影响。结果表明,与对照(S处理)相比,添加稻秸(RS+S处理)、腐解稻秸(DRS+S处理)和去活稻秸(NARS+S处理)均提高了MBC,提高幅度分别为11.17%(p0.01),1.83%和6.25%(p0.05),添加可溶性有机物(DOM+S处理)处理降低了MBC,降低幅度为2.67%;RS+S处理提高了MBN,提高幅度为15.29%,DRS+S、DOM+S和NARS+S处理均降低了MBN,降低幅度分别为15.19%,3.09%和15.92%。与S处理相比,RS+S、DRS+S、DOM+S和NARS+S处理均极显著提高了红黄泥DOC(p0.01),提高幅度依次分别为13.33%,10.88%,6.81%和11.41%;RS+S、DRS+S和DOM+S处理均显著提高了红黄泥DON(p0.05),NARS+S处理极显著提高了红黄泥DON(p0.01),提高幅度依次分别为6.96%,10.84%,10.12%和13.41%。与S处理相比,DRS+S和NARS+S处理极显著提高了MBC/MBN,RS+S处理显著降低了MBC/MBN,DOM+S处理对MBC/MBN几乎没有影响;各处理对DOC/DON没有显著影响。稻秸及其不同组分对红黄泥水稻土MBC、MBN、DOC和DON含量的影响基本一致,但影响程度存在差异,稻秸和去活稻秸影响较大。结果可为稻秸及其不同组分对MBC、MBN、DOC和DON的影响机理提供基础数据,进一步揭示稻田土壤速效养分的来源与转化关系,为农业生产中秸秆的科学利用和稻田土壤肥力定向培育提供科学依据。  相似文献   

20.
    
The effect of soil management and land use change are of interest to the sustainable land management for improving the environment and advancing food security in developing countries. Both anthropogenic changes and natural processes affect agriculture primarily by altering soil quality. This paper reviews and synthesizes the available literatures related to the influence of soil management and land use changes on soil carbon (C) stock in Ethiopia. The review shows that topsoil C stock declines approximately 0–63%, 0–23%, and 17–83% upon land use conversion from forest to crop land, to open grazing, and to plantation, respectively. An increase of 1–3% in soil C stock was observed within 10 years of converting open grazed land to protected enclosures. However, there was a little change in soil C stock below 20 cm depth. There is a large potential of increasing SOC pool with adoption of land restorative measures. Total potential of soil C sequestration with the adoption of restoration measures ranges 0·066–2·2 Tg C y−1 on rain‐fed cropland and 4·2–10·5 Tg C y−1 on rangeland. Given large area and diverse ecological conditions in Ethiopia, research data available in published literature are rather scanty. Therefore, researchable priorities identified in this review are important. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号