首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
pp. 881–889
In order to understand the influences of nitrogen and silicate fertilizer application on anther length and percentage of the sterility of the rice plant, we investigated by field experiment in Hokkaido Kamikawa Agric. Exp. Stn. (Brown Lowland soil) and by air-conditioned room experiment.
  The results are summarized as follows.
1) Application of silicate fertilizer decreased percentage of sterility. Compared with basal application, topdressing of silicate fertilizer was more effective in increasing carbohydrate content and anther length, decreasing percentage of sterility.
2) The anther length was negatively correlated to percentage of sterility and was positively correlated to carbohydrate content in the rice plant. Similar regression curves were plotted between the field experiment and the air-conditioned room experiment.
3) Silicate content in rice plants was increased at the flag leaf stage by applying both basal and topdressing silicate fertilizer. Furthermore, silicate content was correlated to carbohydrate content. Nitrogen content was negatively correlated to carbohydrate content.
4) Protein content in polished rice was decreased by silicate fertilizer application.  相似文献   

2.
ABSTRACT

In order to formulate a nitrogen (N) management strategy under continuous full amount of straw returning (CFSR) for double cropping rice production, long-term (2013–2016) paddy field experiments were conducted in double cropping rice production area in the Jiangxi province, China. Five N fertilizer treatments under CFSR were tested, that is, (i) no N fertilizer application (CK); (ii) conventional N fertilizer application (165kg N ha?1 and 195 kg N ha?1 in early and late rice variety with the ratio of basal dressing to topdressing as 6:4, respectively) (CNF6:4); (iii) recommended N fertilizer application (135 kg ha?1 N and 165 kg ha?1 N in early and late rice variety with the ratio of basal dressing to topdressing as 4:6, 6:4, and 8:2, respectively) (RNF4:6, RNF6:4, and RNF8:2). Nitrogen fertilizer treatments under CFSR had 5.70% and 8.93% higher soil total nitrogen (TN), 1.32% and 0.80% higher available nitrogen (AN), 16.55% and 22.94% higher NH4+-N, and 13.10% and 7.93% higher NO3--N than CK treatments in early and late rice variety, respectively. There were no differences in soil TN, AN, NH4+-N, and NO3--N contents between CNF6:4 and RNF6:4 treatments, while CNF6:4 treatment showed higher or significantly higher soil N contents than RNF4:6 and RNF8:2 treatments. N fertilizer treatment under CFSR showed 88.9% and 43.20% higher grain yield and 62.15% and 42.52% higher panicle numbers than CK treatments in early and late rice variety, respectively. Compared with CNF6:4, RNF treatments did not significantly reduce grain yield and yield components in early and late rice variety, respectively, except for RNF8:2. Compared with RNF6:4 and 8:2, RNF4:6 showed higher rice grain yield, while no obvious differences in yield components were obtained among all RNF treatments. We concluded that N fertilizer under CFSR was helpful to improve soil N contents and double rice grain yield and panicle numbers. Appropriate reduction of N application (18% and 15% reduction in early and late rice variety, respectively) on the basis of adjusting ratio of basal dressing to topdressing as 4:6 and 6:4 did not significantly reduce soil TN and double rice grain yield and yield components, especially, the 40% basal N dressing and 60% N topdressing was beneficial to increase double rice grain yield under CFSR.  相似文献   

3.
以中筋小麦济麦22为试材,在小麦拔节期和开花期0—40cm土层土壤相对含水量均补灌至70%和总施氮量为240kg/hm~2条件下,设置5个氮肥基追比例处理:0∶10(N1)、3∶7(N2)、5∶5(N3)、7∶3(N4)、10∶0(N5),研究测墒补灌节水栽培条件下氮肥基追比例对小麦植株氮素利用和土壤氮素表观盈亏的影响。结果表明:N3处理的植株氮素积累量、籽粒氮素积累量显著高于其他基追比例处理;营养器官氮素积累量、土壤矿质氮损失量、氮肥表观残留率和氮肥表观损失率显著低于其他处理。与N1、N2、N4、N5处理相比,N3处理的氮素生理利用率分别高33.22%,12.60%,11.54%,98.14%,籽粒氮素利用率高148.65%,56.48%,59.63%,229.29%,氮肥农学效率高96.52%,34.86%,37.64%,204.98%,氮素表观盈亏量分别低35.04%,13.82%,30.36%,29.30%。根据不同氮肥基追比例下各指标的相关系数分析表明,植株氮素积累量、籽粒氮素积累量、氮素生理利用率、籽粒氮肥利用率、氮肥农学效率与土壤硝态氮积累量、成熟期0—200cm土层土壤矿质氮残留总量均呈显著负相关。综上,氮肥基追比例为5∶5的N3处理为试验条件下的最优处理。  相似文献   

4.
A pot experiment was conducted to examine how soil amendment with water-treatment residue (WTR) containing polysilicate-iron affected dissolved arsenic (As) in flooded soils and As uptake by rice plants (Oryza sativa L.). The WTR was applied at a rate of 0 (control), 5, 10 or 20 t ha?1. Simple linear regression analyses showed significant negative relationships between the concentrations of dissolved As in soil solution and WTR application rates at all sampling times, probably due to adsorption of As onto ferrihydrite in the WTR. Compared to As concentrations in rice plants grown on control soil, the concentrations in plants grown on WTR-treated soils decreased by 20.1–41.6% in straw (stems and leaves), 19.8–31.7% in husk and 18.6–21.0% in grain. The regression analyses demonstrated that the concentration and content of As in rice are negatively correlated with WTR application rate. Total As content was 16.5–32.0% lower in rice shoots grown on WTR-treated soils than on control soil. The percentage of each As species in grain decreased in the following order: As(III) » dimethylarsinic acid » As(V). The application of WTR did not change the As speciation in grain. Silicon contents in shoot significantly increased with application of WTR, indicating the potency of WTR as a silicate fertilizer. Taken together, our results indicate that WTR containing polysilicate-iron promises to be a practical amendment for stabilizing As and attenuating As uptake by rice plants.  相似文献   

5.
通过田间机插试验,在施氮量及其基追比相同的条件下,设置6种不同的分蘖肥和穗肥施用方法,研究不同的追肥方式对杂交中籼水稻机插群体质量和产量形成的影响。结果表明,氮肥作为分蘖肥分次追施对机插杂交中籼稻的群体质量和产量的影响比穗肥的作用明显;在机插后5~7 d和12~15 d分两次追施氮肥作为分蘖肥能够显著提高群体茎蘖成穗率、抽穗期群体叶面积指数和粒叶比,促进抽穗后干物质生产、积累与分配,提高收获指数,优化产量结构,提高机插杂交中籼水稻的产量。  相似文献   

6.
高供氮水平下不同硅肥对水稻茎秆特征的影响   总被引:4,自引:0,他引:4  
【目的】 倒伏是水稻生长的主要限制因子,不仅降低稻谷的产量,而且还影响其品质。因此,通过在两种氮水平条件下,研究硅肥对水稻茎秆特征及其抗倒伏的影响。 【方法】 以唐粳2号水稻品种为材料,在田间试验条件下,设不施硅 (–Si)、硅酸钠 (Si1) 和硅钙肥 (Si2) 三个硅处理 (SiO2 用量 70 kg/hm2),每个硅处理含正常和过量两个氮水平 (分别为N 180 和450 kg/hm2)。水稻成熟期,测量株高、第1节和第2节长度、茎粗、旗叶和倒2片叶夹角、茎秆厚度和茎秆抗折力,分析水稻植株中硅和钾的含量,并观测了水稻茎秆的解剖显微结构。 【结果】 正常供氮水平(180kg/hm2)下,施硅对水稻株高、节间长度、茎粗、旗叶和倒2片叶夹角均无显著影响。过量供氮条件下,施硅显著降低水稻基部第1节和第2节长度,倒2片叶夹角显著降低了20%(P < 0.05),显著增加了水稻基部第1节和第2节壁厚度和茎粗,增加了茎的细胞层数和紧实度,促进维管束的发育。过量供氮水平下,与不施硅相比,施用硅酸钠的植株硅含量在水稻拔节期和成熟期分别显著提高了14.2%和11.3% ( P < 0.05),施用硅钙肥处理的均显著提高了14.9% ( P < 0.05);成熟期各处理水稻植株抗折力从大到小表现为Si2 > Si1 > –Si,施硅的水稻茎秆倒伏指数均显著低于不施硅处理,且过量供氮水平,施硅钙肥的倒伏指数比施硅酸钠的处理显著降低了6.2% ( P < 0.05);施用硅酸钠和硅钙肥的水稻产量分别显著增加12.3%和12.5% ( P < 0.05)。 【结论】 过量施用氮肥条件下,可增加水稻基部第1节和第2节壁厚度和茎粗,增加茎细胞层数和紧实度,从而提高茎秆的抗倒伏指数,显著提高水稻产量。供试土壤上硅钙肥效果好于硅酸钠。   相似文献   

7.
Abstract

Excessive use of nitrogen (N) fertilizers in wheat fields has led to elevated NO3-N concentrations in groundwater and reduced N use efficiency. Three-year field and 15N tracing experiments were conducted to investigate the effects of N application rates on N uptake from basal and topdressing 15N, N use efficiency, and grain yield in winter wheat plants; and determine the dynamics of N derived from both basal and topdressing 15N in soil in high-yielding fields. The results showed that 69.5–84.5% of N accumulated in wheat plants derived from soil, while 6.0–12.5%and 9.2–18.1% derived from basal 15N and top 15N fertilizer, respectively. The basal N fertilizer recovery averaged 33.9% in plants, residual averaged 59.2% in 0–200 cm depth soil; the topdressing N fertilizer recovery averaged 50.5% in plants, residual averaged 48.2% in 0–200 cm soil. More top 15N was accumulated in plants and more remained in 0–100 cm soil rather than in 100–200 cm soil at maturity, compared with the basal 15N. However, during the period from pre-sowing to pre-wintering, the soil nitrate moved down to deeper layers, and most accumulated in the layers below 140 cm. With an increase of N fertilizer rate, the proportion of the N derived from soil in plants decreased, but that derived from basal and topdressing fertilizer increased; the proportion of basal and top 15N recovery in plants decreased, and that of residual in soil increased. A moderate application rate of 96–168 kg N ha?1 led to increases in nitrate content in 0–60 cm soil layer, N uptake amount, grain yield and apparent recovery fraction of applied fertilizer N in wheat. Applying above 240 kg N ha?1 promoted the downward movement of basal and top 15N and soil nitrate, but had no significant effect on N uptake amount; the excessive N application also obviously decreased the grain yield, N uptake efficiency, apparent recovery fraction of applied fertilizer N, physiological efficiency and internal N use efficiency. It is suggested that the appropriate application rate of nitrogen on a high-yielding wheat field was 96–168 kg N ha?1.  相似文献   

8.
氮肥用量及其分施比例对棉花氮利用和土壤氮平衡的影响   总被引:1,自引:0,他引:1  
The Yellow River valley is one of the three largest cotton production areas in China.An experiment was performed in cotton fields of Anyang,China from 2013 to 2014 to investigate the effects of nitrogen(N) application rate and the ratio between basal and topdressing N fertilizer on N balance in a soil-plant system,N use efficiency,and cotton yield.Five N application rates as treatments were applied with the same split application ratio.Half of the N(50% basal fertilizer) was applied at pre-planting and the other half(50% topdressing fertilizer) at the initial flowering stage.These treatments were:zero N(N0,control),90 kg N ha~(-1)(N90(5/5)),180 kg N ha~(-1)(N180(5/5)),270 kg N ha~(-1)(N270(5/5),a reduced N rate),and 360 kg N ha~(-1)(N360(5/5),a conventional N rate).Additional 2 split application ratios as treatments were applied with the same N rate of 270 kg N ha~(-1).The split application ratios between basal N and topdressing N were 30%:70%(N270(3/7)) and 70%:30%(N270(7/3)).Results demonstrated that soil NH_4-N content in the 0–60 cm layer and NO3-N content in the 0–20 cm layer increased with increased N rate at the squaring and boll-opening stages and then decreased to lower levels at the initial flowering and harvest stages.Soil NO_3-N content in the 20–60 cm layer after the initial flowering stage increased with the increase of topdressing N rate.Soil apparent N surplus varied at different growth stages,while the soil apparent N surplus over the entire growth period exhibited a positive relationship at N rates over 180 kg ha~(-1).Seed cotton yield of N270(3/7) was the highest of all treatments.Plant N uptake,N agronomic efficiency,and apparent N recovery efficiency of N270(3/7) were significantly higher than those of N270(5/5) and N270(7/3) in both growing seasons.These suggest both economic and ecological benefits in cotton production in the Yellow River valley could be created,by appropriately reducing total N application rate and increasing the ratio of topdressing to basal N fertilizer at the initial flowering stage.  相似文献   

9.
Iron (Fe) toxicity is one of the major mineral disorders affecting rice (Oryza sativa L.) production in Madagascar. This study aimed at linking physiological and agronomic responses of diverse rice genotypes to Fe resistance mechanisms with different nutrient management practices. Twenty‐three local and exotic rice varieties were grown in Fe‐toxic soil in parallel greenhouse and field experiments and subjected to two treatments: (1) no fertilizer; (2) mineral and organic fertilizer application at recommended rates. Growth, straw and grain yield, symptom formation, and physiological responses including Fe uptake, root plaque formation, and lipid peroxidation were monitored. The application of fertilizer significantly decreased average shoot Fe concentrations partly due to Fe exclusion favored by enhanced root plaque formation. Visual symptoms negatively correlated with straw biomass in both experiments and grain yield in the greenhouse experiment, and positively correlated with lipid peroxidation. However, no plausible correlation occurred with grain yield in the field due to sterility in exotic varieties un‐adapted to local climate. Even though grain Fe concentrations were orders of magnitude lower than in vegetative tissue, some exotic varieties were significantly superior to local checks. Our results provide insight into management and genotype options for adapting rice to Fe toxicity under field conditions.  相似文献   

10.
Abstract

The current study aimed to evaluate the effect of split application of potassium (K) fertilizer on the production and quality of sweet potatoes. Ten treatments were evaluated in factorial design (3?×?3?+?1): three doses of potassium (60, 90, and 120?kg K2O ha?1); three application types (100% applied at planting; 50% applied at planting and 50% was given as topdressing; 25% applied at planting and 75% was given as topdressing) and one control (without the application of K2O either at planting or topdressing). The experiment used a randomized complete block design and four repetitions. The following parameters were studied: root number; root fresh matter per plant; total dry matter; yield; total macronutrient extraction; sugar content of starch; and commercial starch. The production characteristics of the roots presented a significant interaction between the factors doses of potassium and application types (parcelaments). Finally, better results were obtained when potassium was applied 50% at planting and 50% as topdressing.  相似文献   

11.
通过田间试验,以传统配方肥+尿素一基两追施肥模式(CG)为对照,研究了以脲甲醛类缓控释肥(NC)和木质素类缓控释肥(MC)为基肥、脲铵为分蘖或穗分化追肥的缓控释肥+脲铵一基一追施肥模式对水稻产量、氮吸收累积、氮素利用效率以及土壤养分的影响。结果表明:缓控释肥+脲铵一基一蘖施肥模式水稻产量与CG处理相比无明显差异,但脲甲醛类缓控释肥+脲铵(NC-S)和木质素类缓控释肥+脲铵一基一穗(MC-S)处理分别比CG处理明显增产3.96%和6.01%,主要原因为NC-S和MC-S处理每穗粒数分别比CG处理明显增加16.7%和17.6%;与CG处理相比,脲甲醛类缓控释肥+脲铵(NC-F)和木质素类缓控释肥+脲铵一基一蘖(MC-F)处理成熟期地上部氮累积分别比CG处理增加2.50%和5.89%,NC-S和MC-S处理分别比CG处理明显增加10.0%和11.6%;NC-S和MC-S处理氮素利用效率(NUE)分别比CG处理高3.96%和6.01%。缓控释肥+脲铵一基一追施肥模式增加了水稻氮吸收效率(NupE)和表观氮肥回收效率(ANR),其中MC-S处理的NupE明显比CG处理高11.6%,NC-S和MC...  相似文献   

12.
In view of the difficulty in practicing water management as a measure to prevent the production of high Cd rice, alkaline or calcareous soil amendment materials were examined, concerning their pH effect on the availability of soil heavy metals.

1. In the experiment conducted on the contaminated paddy field, the essential Cd uptake by the plant occurred after the ear-forming stage and was reduced remarkably by a basal application of the amendment materials followed by top application, depending on the activity of raising the soil pH. Combined use of calcium silicate and fused magnesium phosphate for a basal dressing was most effective on Cd uptake, producing rice of the lowest Cd content, one fifth of the control.

2. The content of Cu in rice also decreased with the treatment to an extent second to Cd, while that of Zn and Pb decreased in straw but hardly changed in rice. Cu seemed fastest in the straw-to-grain movement which was also promoted by the treatments.

3. Soil Cd and Cu were less soluble in 0.1 N HCl solutions than were Zn and Pb, with the application of fused phosphate. Soil Cd became more insoluble in the incubated soil in a submerged condition and its solubility appeared to be depressed by the addition of ammonium sulfate.

4. Based on the good results for the control of high Cd rice obtained through three years' survey in the problem area, it was recommended that these materials be used in sufficient quantity to raise soil pH, taking care not to cause delay in the first growth.  相似文献   

13.
烤烟基肥施用时间与氮肥利用的相关性研究   总被引:1,自引:0,他引:1  
烤烟是一种氮素敏感型的品质作物, 对氮素的需求非常严格。氮肥的合理施用不仅有利于提高烤烟对氮素养分的吸收利用, 也有利于提高烤烟烟叶品质。本研究采用大田试验的方法, 在湖北省烤烟主产区研究了基肥在3个不同施用时间(烤烟烟苗移栽前0 d、15 d和30 d)对烤烟氮肥利用参数的影响及其相关性。结果表明, 烤烟地上部烟叶和茎秆中干物质累积量和氮素含量均随着基肥施用时间的提前而表现出增加趋势。与移栽当天(0 d)施用基肥相比, 提前15 d、30 d施用基肥, 烤烟烟叶中干物质累积量和氮素含量分别平均增加16.4%、22.6%和1.5%、8.7%; 茎秆中则分别平均增加2.5%、12.7%和13.4%、33.9%。提前施用基肥有提高烤烟氮肥表观利用率的趋势, 但是各处理间差异不显著(P>0.05), 而在烤烟烟苗移栽前15 d、30 d施用基肥显著降低烤烟地上部氮肥农学利用率(35.2%、37.4%)和生理利用率(35.4%、41.6%)(P<0.05)。另外, 基肥施用时间与氮肥农学利用率、生理利用率和偏生产力均表现出显著或者极显著负相关关系, 而氮肥农学利用率与生理利用率和氮肥偏生产力以及氮肥生理利用率与偏生产力之间均表现出显著或极显著正相关关系。因此, 在烤烟烟苗移栽时适当提前基肥的施用时间(15~30 d)有利于提高烤烟对氮素的吸收利用, 促进烟叶中干物质的累积。  相似文献   

14.
稻草还田对烟田追肥气态氮损失及相关微生物的影响   总被引:1,自引:1,他引:0  
研究不同农业措施下N2O和NH3的排放,对减缓温室效应及雾霾治理有重要意义。针对烟田追肥浇施的特殊管理方式,以水稻烤烟轮作定位试验为平台,于2017年选择单施化肥(NPK)、化肥+稻草还田(NPKS)、化肥+稻草还田+饼肥(NPKSB)3个处理,研究稻草还田对追肥气态氮损失及其相关微生物群落结构的影响。研究显示,烤烟追肥后土壤NH3挥发和N2O排放速率开始上升,2~3d达到最大,之后开始下降。NPK处理追肥氨挥发氮量为1.45±0.04 kg/hm2、N2O排放氮量为2.49±0.23 kg/hm2,气态氮损失中以N2O排放为主。与单施化肥相比,稻草还田配施化肥提高了土壤含水量、改变了氧化亚氮还原酶基因(nosZ)和氨氧化细菌(AOB,Ammonia Oxidizing Bacteria)的微生物群落结构,其根瘤菌目相对丰度显著降低、红螺菌目相对丰度显著升高;同时N2O排放量增加了55.35%、氨挥发氮量显著降低了11.43%,气态氮损失显著增加。与单施化肥相比,化肥+稻草还田+饼肥处理提高了土壤含水量、改变了nosZ和AOB基因的微生物群落结构,其伯克尔霍尔德氏菌目相对丰度显著提高。化肥+稻草还田+饼肥处理N2O排放量与单施化肥差异不显著,氨挥发氮量显著降低了8.91%,但两者气态氮损失差异不显著。化肥+稻草还田+饼肥处理N2O排放量较化肥+稻草还田处理降低27.82%,但两者氨挥发量差异不显著。综上所述,秸秆还田抑制了土壤氨挥发、激发了N2O排放,稻草还田配施饼肥能够降低土壤氨挥发、抑制稻草还田引起的N2O排放。  相似文献   

15.
Slag-type silicate fertilizer, which contains high amount of active iron oxide, a potential source of electron acceptor, was applied at the rate of 0, 2, 6, 10, and 20 Mg ha−1 to reduce methane (CH4) emission from rice planted in potted soils. Methane emission rates measured by closed chamber method decreased significantly with increasing levels of silicate fertilizer application during rice cultivation. Soil redox potential (Eh) decreased rapidly after flooding, but floodwater pH and soil pH increased significantly with increasing levels of silicate fertilizer application. Iron concentrations in potted soils and in percolated water significantly increased with the increasing levels of silicate fertilizer application, which acted as oxidizing agents and electron acceptors, and thereby suppressed CH4 emissions. Silicate fertilization significantly decreased CH4 production activity, while it increased carbon dioxide (CO2) production activity. Rice plant growth, yield parameters, and grain yield were positively influenced by silicate application levels. The maximum increase in grain yield (17% yield increase over the control) was found with 10 Mg ha−1 silicate application along with 28% reduction in total CH4 flux during rice cultivation. It is, therefore, concluded that slag-type silicate fertilizer could be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity and restoring the soil nutrient balance in rice paddy soil.  相似文献   

16.
氮、磷、钾、硼肥对甘蓝型油菜籽品质的影响   总被引:12,自引:2,他引:10  
以多个正在大面积应用的甘蓝型油菜品种为研究对象,在长江流域冬油菜主产区的10个省(市)布置氮、磷、钾和硼肥田间肥效试验共284组,通过多点试验分别探讨当前生产条件下施用氮、磷、钾、硼肥对双低和双高甘蓝型油菜籽含油量、蛋白质、芥酸、硫甙的影响。结果表明,双低油菜籽平均含油量为41.66%,双高油菜含油量明显低于双低油菜,仅为38.92%。氮、磷、钾和硼肥施用对油菜籽的品质效应在不同试验点表现不尽相同,其总体趋势是:在磷、钾、硼肥基础上施用氮肥提高籽粒蛋白质含量而降低油分含量,且随氮肥用量的增加效果更明显,施氮对双高油菜油分及蛋白质含量的影响程度大于双低油菜;施磷、钾或硼肥有提高油菜籽含油量而降低蛋白质含量的趋势;施肥对油菜籽硫甙和芥酸含量有一定影响,但对品质影响不大。油菜籽含油量与收获指数、千粒重显著正相关,与蛋白质含量呈负相关。研究结果显示,在施氮的基础上配合施用磷、钾和硼肥能减少因施氮引起的油分损失。  相似文献   

17.
Abstract

Limited information is available regarding the utilization and loss of fertilizer nitrogen (N) applied to intensively managed upland rice. Effects of N fertilization on upland rice were conducted as N0 (no N applied), N225 (225 kg N · ha?1), N300 (300 kg N · ha?1), and N375 (375 kg N · ha?1) in pot experiments. 15N‐labeled techniques were used in basal and topdressing N fertilizations. Results showed with the increase of N quantity applied, tiller, panicle numbers per pot, and spikelet number per panicle increased significantly (P<0.05). Chlorophyll b content of N225 and N300 were significantly higher than N0 (P<0.05), and net photosynthetic rate (Pn) of N300 increased significantly compared with N0 and N225. Under basal fertilization, N use efficiency (NUE) of root, stem, leaf, and grain in N300 was the highest. The NUE and loss rate ranged from 23.3% to 30.3% and 62.4% to 73.8%, respectively, under basal fertilization. They varied from 16.5% to 27.5% and 70.7% to 80.4%, respectively, under topdressing fertilization. The highest NUE was observed in N300 under basal fertilization. As increased quantities of N were applied, Pn and biological characteristics improved, thus crop yield of upland rice increased. Grain yield of N300 and N375 were significantly higher than that of N0 and N225 (P<0.01); however, there was no significant difference between them. Therefore, N fertilization with medium applied quantity under basal fertilization will facilitate growing, photosynthesis, and grain yield increase of upland rice.  相似文献   

18.
一种新型硅肥在两系杂交水稻上的增产效果研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用多点田间试验,研究了在江淮、沿江地区增施新型硅肥对两系杂交稻产量的影响。结果表明,增施新型硅肥能够显著提高两系杂交水稻产量、优化产量结构并提高水稻抗性。当硅肥施用量从3 000 g/hm~2增加到12 000 g/hm~2时,产量增幅从2.76%提高到7.84%;水稻移栽后35 d,硅肥施用量为7 500 g/hm~2时,产量较对照显著提高6.2%,茎蘖成穗率达到67.3%,显著高于对照,结实率较对照提高3.2%,达到显著水平;增施新型硅肥后稻瘟病、稻曲病、纹枯病和二化螟等主要病虫害发病率显著下降,第1~4节间长度缩短0.15~0.85 cm,第2、3节茎秆壁增厚,提高了两系杂交稻的抗倒能力。  相似文献   

19.
氮肥后移对土壤氮素供应和冬小麦氮素吸收利用的影响   总被引:14,自引:4,他引:14  
采用田间试验研究了氮肥后移对土壤氮素供应和冬小麦氮素吸收利用的影响。结果表明,与农民习惯施氮(N 300 kg/hm2,基肥和拔节肥各占1/2)比较,氮肥后移处理(N210kg/hm2,基肥、拔节肥和孕穗肥各占1/3)在不降低小麦产量的同时,大大提高了氮肥利用率,且全生育期氮素表观损失极低。过量施用氮肥(N 300 kg/hm2)明显提高了60 cm以下土层硝态氮含量,增加了其向地下水淋溶迁移的风险。氮肥后移可提高小麦成熟期0-20cm土层硝态氮积累量,降低其在20-100cm土层的积累。基于冬小麦不同生育阶段的氮素吸收量而进行氮肥后移是可行的,氮肥后移可节省氮肥30%,是较为理想的施氮方式。  相似文献   

20.
Abstract

Slag silicate fertilizer (SSF) is applied to paddy fields with different soil chemical properties to increase silicon (Si) concentration in rice (Oryza sativa L.) plants. However, the effects of soil chemical properties on Si availability of SSF to rice Si uptake is poorly understood. To investigate the relationships between chemical properties of soils and the effects of SSF application on the Si concentration in rice plants, a field experiment was conducted in 2007 and 2008 at 18 paddy fields on the Shounai Plain, Yamagata, Japan. Two treatments were implemented: SSF applied at 1.5 t ha?1 and a no-SSF control. The Si concentrations of rice tissues were measured at the tillering and ripening stages. The difference in the Si concentrations of rice tissues between treatments (ΔSi concentration) was used to evaluate the effect of SSF. The Si concentrations in the shoots and aboveground parts of the rice plants were significantly increased by the SSF application in six or more of the fields at the two growth stages, whereas the Si concentrations in the panicles of the rice plants at the ripening stage were not increased significantly in most fields. Results of two-way analysis of variance evidenced a significant effect of field on the ΔSi concentrations in the shoots and aboveground parts at both growth stages. Furthermore, the ΔSi concentrations in the same rice plant tissues and at the same growth stages in the first year and in the second year were found to be positively correlated. These results indicate that the effect of SSF on the Si concentration in shoots and aboveground parts of rice plants varies from field to field. The ΔSi concentrations in shoots and aboveground plant parts at both growth stages were also found to be negatively correlated with soil chemical properties, i.e., available Si, Si adsorption capacity, contents of Si adsorbents (acid oxalate-extractable iron and manganese) and the pH under flooded soil conditions. These findings imply that those soil chemical properties of paddy fields should be taken into account for better prediction of ΔSi concentration of rice plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号