共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
利用FACE (free-air carbon dioxide enrichment)平台,采用静态暗箱-气相色谱法,研究了大气CO2浓度升高对稻田土壤CO2通过土壤-大气(土气)和植被-大气(植气)界面排放的影响.在整个水稻生长季中,土气界面CO2排放通量与土壤表面水层深度指数负相关,且在中期烤田和收获前排水阶段出现较大值;而植气界面CO2排放通量与根系生物量的变化趋势基本一致.在低氮(N 125 kg/hm2)和常氮(N 250 kg/hm2)水平上,高浓度CO2(对照大气CO2浓度+200 μmol/mol)有提高水稻生物量、降低土气和植气界面CO2累积排放量的趋势.在水稻的拔节、抽穗和成熟期,较高的施氮量显著增加水稻地上部分生物量,促进植气界面CO2的排放.研究结果表明,未来大气CO2浓度升高的环境下,稻田生态系统有增加CO2的固定(增加水稻生物量),减少CO2的排放(土气和植气界面CO2的排放)的趋势,可能发挥着碳汇的作用. 相似文献
3.
Abstract Column experiments were conducted to analyze the effect of the temperature on the amounts of organic materials in the leachate, especially organic acids and methane, from samples of the plow layer soil amended with rice straw. Total amount of inorganic carbon in the leachate during the 30-d period of incubation in relation to the temperature was 18°C < 25°C ≤ 30°C > 37°C > 45°C. Total amount of organic carbon in the leachate was signiicantly larger under 45°C incubation than that at other temperatures. Acetic acid was the dominant organic acid in the leachate regardless of the temperature. Butylic and propionic acids were also present in large amounts in the early and the late period of incubation of temperatures ranging between 18 and 37°C, while only acetic acid was the dominant organic acid during the 30-d period of incubation at 45°C. The total amount of methane in leachate during the 30-d period of incubation was very small at 18°C, while very large at 25, 30, and 37°C. It decreased nearly to one half at 45°C compared with that at 30°C. Based on the values of δ13CH4 in the leachate, 3 different stages were recognized in the predominant processes of methane production in the submerged paddy soil amended with rice straw: the stage when methane production from CO2-B2 was predominant followed by the stages of methane production from acetic acid and from CO2-H2 in this order. The second stage coincided with the time of decrease of the organic acid contents in the leachate. Under 45°C incubation, methane production from CO2-H2 was predominant throughout the 30-d period of incubation. 相似文献
4.
基于30年水稻土长期施肥定位试验,在保证原有定位试验正常开展的前提下,将部分化肥处理变更为有机肥处理(或反之),通过观测一年水稻轮作周期内不同处理甲烷(CH_4)排放通量季节性变化,探讨不同肥力水稻土中外源有机碳及土壤有机碳含量对田间CH_4排放的影响。结果表明:施化肥处理和有机肥处理,水稻土全年CH_4累积排放量范围分别为1.73~4.72和35.09~86.60 g·m~(-2)。有机肥处理改施化肥后,田间土壤CH_4的排放量显著降低;化肥处理改施有机肥或有机肥处理增施有机肥后,田间土壤CH_4的排放量显著提高。外源有机碳的输入量是田间土壤CH_4年排放量的决定性因素,外源有机碳输入量(x)与水稻土CH_4年累积排放量(y)之间满足直线方程:y=0.087 7 x+3.265 7(R~2=0.965 9,n=21)。土壤有机碳同样也是影响稻田CH_4排放的因素,在不同有机碳水平的水稻土上施用等量相同化肥或有机肥,土壤有机碳含量高的水稻土都更有利于CH_4的产生。单施化肥稻田土壤CH_4排放的最主要碳源是土壤有机碳,有机碳含量(x)和水稻土CH_4年累积排放量(y)之间的指数方程:y=0.162 4 e~(0.162 2 x)(R~2=0.940 6,n=9)。有机肥可促进土壤有机碳分解释放CH_4,土壤有机碳含量相同的条件下,高量有机肥比常量有机肥的土壤有机碳分解比率高0.65%,等量相同有机肥但土壤有机碳含量不同的条件下,土壤有机碳分解比率无显著差异;同样,土壤有机碳也可促进有机物料碳分解释放CH_4,在常量有机肥或高量有机肥处理中,土壤有机碳含量高者比低者的有机物料碳分解比率分别多出3.57%和2.34%。 相似文献
5.
The effect of rice straw (RS) incorporated at the time of plowing in the previous cr–p season on CH4 emission from rice paddies was investigated in a pot experiment. Rice straw that incorporated just before transplanting of rice seedlings (June) into a paddy field was collected after the harvest (October) and at the beginning of the next cropping period (May). Methane emission rates from the rice-planted pots with the application of fresh RS, RS collected in October. and RS collected in Mayas well as the pots without RS application were measured using the chamber method. The composition of organic constituents in the three kinds of RS was estimated by the proximate analysis. The cumulative amount of CH4 emitted during the first 50–d period was lower in the order of the pots with RS collected in May, pots with RS collected in October, and pots with fresh RS. The cumulative amount of CH4 emitted throughout the rice growth period from the pots with fresh RS and with RS collected in October was significantly larger while that from the pots with RS collected in May did not differ statistically compared with the total CH4 emission from the pots without RS. These results suggested that there was an overall decrease in the amount of organic constituents in RS based on the large differences in T-C content and similar composition of organic constituents between the fresh RS and RS collected in May. Significant effect of RS continuously applied during the previous cropping period on the increase in CH4 emission was discussed. 相似文献
6.
有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮 总被引:27,自引:6,他引:27
土壤微生物量碳、氮和可溶性有机碳、氮是土壤碳、氮库中最活跃的组分,是反应土壤被干扰程度的重要灵敏性指标,通过设置相同有机碳施用量下不同有机物料处理的田间试验,研究了有机物料添加下土壤微生物量碳(soil microbial biomass carbon,MBC)、氮(soil microbial biomass nitrogen,MBN)和可溶性有机碳(dissolved organic carbon,DOC)、氮(dissolved organic nitrogen,DON)的变化特征及相互关系。结果表明化肥和生物碳、玉米秸秆、鲜牛粪或松针配施下土壤微生物量碳、氮和可溶性有机碳、氮显著大于不施肥处理(no fertilization,CK)和单施化肥处理,分别比不施肥处理和单施化肥平均高23.52%和12.66%(MBC)、42.68%和24.02%(MBN)、14.70%和9.99%(DOC)、22.32%和21.79%(DON)。化肥和有机物料配施处理中,化肥+鲜牛粪处理的微生物量碳、氮和可溶性有机碳、氮最高,比CK高26.20%(MBC)、49.54%(MBN)、19.29%(DOC)和32.81%(DON),其次是化肥+生物碳或化肥+玉米秸秆处理,而化肥+松针处理最低。土壤可溶性有机碳质量分数(308.87 mg/kg)小于微生物量碳(474.71 mg/kg),而可溶性有机氮质量分数(53.07 mg/kg)要大于微生物量氮(34.79 mg/kg)。与不施肥处理相比,化肥和有机物料配施显著降低MBC/MBN和DOC/DON,降低率分别为24.57%和7.71%。MBC和DOC、MBN和DON随着土壤有机碳(soil organic carbon,SOC)、全氮(total nitrogen,TN)的增加呈显著线性增加。MBC、MBN、DOC、DON、DOC+MBC和DON+MBN之间呈极显著正相关(P<0.01)。从相关程度看,DOC+MBC和DON+MBN较MBC、DOC、MBN、DON更能反映土壤中活性有机碳和氮库的变化,成为评价土壤肥力及质量的更有效指标。结果可为提高洱海流域农田土壤肥力,增强土壤固氮效果,减少土壤中氮素流失,保护洱海水质安全提供科学依据。 相似文献
7.
Yan Jian Mouliang Xiao Hongzhao Yuan Jiurong Wang 《Archives of Agronomy and Soil Science》2016,62(12):1678-1685
Similar to higher plants, microbial autotrophs possess photosynthetic systems that enable them to fix CO2. To measure the activity of microbial autotrophs in assimilating atmospheric CO2, five paddy soils were incubated with 14C-labeled CO2 for 45 days to determine the amount of 14C-labeled organic C being synthesized. The results showed that a significant amount of 14C-labeled CO2 incorporated into microbial biomass was soil specific, accounting for 0.37%–1.18% of soil organic carbon (14C-labeled organic C range: 81.6–156.9 mg C kg?1 of the soil after 45 days). Consequently, high amounts of C-labeled organic C were synthesized (the synthesis rates ranged from 86 to 166 mg C m?2 d?1). The amount of atmospheric 14CO2 incorporated into microbial biomass (14C-labeled microbial biomass) was significantly correlated with organic C components (14C-labeled organic C) in the soil (r = 0.80, p < 0.0001). Our results indicate that the microbial assimilation of atmospheric CO2 is an important process for the sequestration and cycling of terrestrial C. Our results showed that microbial assimilation of atmospheric CO2 has been underestimated by researchers globally, and that it should be accounted for in global terrestrial carbon cycle models. 相似文献
8.
Yoshinori Miura Akira Watanabe Jun Murase Makoto Kimura 《Soil Science and Plant Nutrition》2013,59(4):673-679
Abstract Oxidation of methane and total water soluble organic carbon (TOC) in the subsoil, which percolated from the plow layer, was investigated in a column experiment. The amounts of both methane and TOC in the leachate decreased by percolation in the subsoil. Fe2+ percolated from the plow layer was nearly completely retained in the subsoil. The decomposition of methane and TOC in the subsoil was considered to result in the coupling with the formation of Fe2+. Methane was estimated to contribute ca. 19–21% to the total amount of Fe2+ formed in the subsoil by the organic materials in the leachate. 相似文献
9.
氮肥、土壤湿度和温度对稻田土壤甲烷氧化的影响 总被引:2,自引:0,他引:2
Effects of nitrogen fertilizer,soil mosture and temperature and temperature on methane oxidation in paddy soil were investigated under laboratory conditions.Addition of 0.05 g N kg^-1 soil as NH4Cl strongly inhibited methane oxidation and addition of the same rate of KCl also inhibited the oxidation but with more slight effect,suggesting that the inhibitory effect was partly caused by increase in osmotic potential in microorganism cell,Not only NH4^ but also NO3^- greatly affected methane oxidation.Urea did not affect methane oxidation in paddy soil in the first two days of incubation,but strong inhibitory effect was observed afterwards.Methane was oxidized in the treated soil with an optimum moisture of 280 g kg^-1 ,and air-drying inhibited methane oxidation entirely.The optimum temperature of methane oxidation was about 30℃ in paddy soil.while no methane oxidation was observed at 5℃or 50℃。 相似文献
10.
Tillage effect on organic carbon in a purple paddy soil 总被引:18,自引:0,他引:18
The distribution and storage of soil organic carbon (SOC) based on a long-term experiment with various tillage systems were studied in a paddy soil derived from purple soil in Chongqing, China. Organic carbon storage in the 0-20 and 0-40 cm soil layers under different tillage systems were in an order: ridge tillage with rice-rape rotation (RT-rr) 〉 conventional tillage with rice only (CT-r) 〉 ridge tillage with rice only (RT-r) 〉 conventional tillage with rice-rape rotation (CT-rr). The RT-rr system had significantly higher levels of soil organic carbon in the 0-40 cm topsoil, while the proportion of the total remaining organic carbon in the total soil organic carbon in the 0-10 cm layer was greatest in the RT-rr system. This was the reason why the RT-rr system enhanced soil organic carbon storage. These showed that tillage system type was crucial for carbon storage. Carbon levels in soil humus and crop-yield results showed that the RT-rr system enhanced soil fertility and crop productivity. Adoption of this tillage system would be beneficial both for environmental protection and economic development. 相似文献
11.
长期有机养分循环利用对红壤稻田土壤供氮能力的影响 总被引:2,自引:1,他引:2
通过15年的田间定位试验结合盆栽试验,研究了长期有机养分循环利用和不同化肥配施对红壤稻田土壤供氮能力的影响。结果表明,土壤有机碳、全氮、微生物生物量氮(MB-N)和土壤氮的矿化量与生物吸氮量有极显著的正相关关系,是良好的土壤供氮能力指标。长期有机养分循环利用或配合化肥施用能显著提高土壤有机碳、全氮含量和氮的矿化量,提高幅度分别为20.1%4~0.9%、0.460~.60.g/kg和55.0%(6周);明显提高土壤MB-N含量,提高幅度平均为70.3%。长期纯化肥处理对土壤碳、氮库的积累和氮的矿化量的提高作用甚微。盆栽试验表明,长期施用氮肥和氮、磷、钾肥土壤供氮量提高量极小,与长期不施肥相比提高幅度分别为2.1%和6.2%,而有机养分循环利用能显著提高土壤供氮量,提高幅度为33.7%8~9.0%。随着有机养分循环利用和NPK肥配合程度的提高,土壤供氮量提高幅度呈上升的趋势。 相似文献
12.
Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy 总被引:1,自引:0,他引:1
Seul Bi Lee Chang Hoon Lee Ki Yuol Jung Ki Do Park Dokyoung Lee Pil Joo Kim 《Soil & Tillage Research》2009,104(2):227-232
Soil organic carbon (SOC) has an important role in improving soil quality and sustainable production. A long-term fertilization study was conducted to investigate changes in SOC and its relation to soil physical properties in a rice paddy soil. The paddy soils analyzed were subjected to different fertilization practices: continuous application of inorganic fertilizers (NPK, N–P–K = 120–34.9–66.7 kg ha−1 yr−1 during 1967–1972 and 150–43.7–83.3 kg ha−1 yr−1 from 1973 to 2007), straw based compost (Compost, 10 Mg ha−1 yr−1), a combination of NPK + Compost, and no fertilization (control). Soil physical properties were investigated at rice harvesting stage in the 41st year for analyzing the relationship with SOC fraction. Continuous compost application increased the total SOC concentration in plough layers and improved soil physical properties. In contrast, inorganic or no fertilization markedly decreased SOC concentration resulting to a deterioration of soil physical health. Most of the SOC was the organo-mineral fraction (<0.053 mm size), accounting for over 70% of total SOC. Macro-aggregate SOC fraction (2–0.25 mm size), which is used as an indicator of soil quality rather than total SOC, covered 8–17% of total SOC. These two SOC fractions accumulated with the same tendency as the total SOC changes. Comparatively, micro-aggregate SOC (0.25–0.053 mm size), which has high correlation with physical properties, significantly decreased with time, irrespective of the inorganic fertilizers or compost application, but the mechanism of decrease is not clear. Conclusively, compost increased total SOC content and effective SOC fraction, thereby improving soil physical properties and sustaining production. 相似文献
13.
依托湖北武汉、重庆北碚、湖南望城、湖南祁阳、江西南昌、浙江杭州6个水稻土壤肥力长期定位试验历史样品及数据,分析和讨论了土壤有机质含量变化趋势及对施化肥和有机肥的响应差异。施有机肥提升土壤有机质含量显著高于施化肥的效果。施化肥NPK处理,6个试验点土壤有机质含量都呈现提升趋势;但是,有机质平均年增量、有机质累计增量与累计有机肥施用量的比值都是逐年下降的,固定施肥方法提高土壤有机质含量是有限的,最高达到平衡点,施化肥的有机质含量的平衡点低于施有机肥的,土壤有机质含量提升不仅对施有机肥有响应,而且与累积产量也有一定的相关关系。 相似文献
14.
Abstract A column experiment was conducted to analyse the composition of organic materials in the leachate from the plow layer and their fate in the subsoil. Water-soluble organic materials in the leachate were fractionated by insoluble polyvinylpyrrolidone (PVP) and ion exchange resins. The content of total organic carbon (TOC) in the leachate increased by the addition of rice straw (RS) to the plow layer soil sample. The leachate contained a constant amount of PVP-adsorbed Fraction, while that of the PVP-non-adsorbed Fraction changed during the 45 day incubation period. In the fractionation using ion exchange resins, the fraction adsorbed onto the anion exchange resin was the major one. By the connection of a subsoil column to the plow layer soil column with RS, the TOC content in the leachate decreased by percolation into the subsoil sample. In the Anjo soil sample (Yellow Soil), the decrease occurred throughout the incubation period, and about 90% of the PVP-adsorbed Fraction in the leachate decreased by percolation into the subsoil sample. In the Fukushima soil sample (Gray Lowland Soil), the TOC content decreased in the early and middle periods of incubation, while in the late period the decrease was negligible. This decrease of the TOC content by percolation into the subsoil sample was mainly due to retention in the subsoil sample of the Anjo soil, while in the Fukushima soil sample it was due to decomposition and retention. It was considered that easily decomposable organic materials like organic acids were decomposed in the early to middle periods of incubation, while in the late period the contents of such substances in the leachate from the plow layer soil sample with RS were small and the decrease of TOC was negligible. 相似文献
15.
16.
上海地区水稻土氮素矿化模拟 总被引:1,自引:0,他引:1
Three types of paddy soils, derived from granite, Quaternary red clay and basalt, respectively, were selected to study the effects of Fe and Mn in paddy soils on methane production and emission through pot and incubation experiments. The results indicated that the difference of Fe and Mn in paddy soils was one of the important factors causing obvious differences in methane emission from different soil types. Soil Fe and Mn affecting methane emission from the paddy soils was likely through affecting soil Eh and forming Fe and Mn plaques on rice roots. Different rates and valences of added Fe and Mn significantly affected methane production from paddy soils. Therefore, this study enhanced understanding of processes controlling methane emission from paddy soils and may help to improve modeling and estimating regional and global methane emission from paddy soils. 相似文献
17.
Torsten Vor Jens Dyckmans Norman Loftfield Friedrich Beese Heiner Flessa 《植物养料与土壤学杂志》2003,166(1):39-45
The availability of O2 is one of the most important factors controlling the chemical and biological reactions in soils. In this study, the effects of different aeration conditions on the dynamics of the emission of trace gases (CO2, N2O, CH4) and the leachate composition (NO3‐, DOC, Mn, Fe) were determined. The experiment was conducted with naturally structured soil columns (silty clay, Vertisol) from a well aerated forest site. The soil monoliths were incubated in a microcosm system at different O2 concentrations (0, 0.001, 0.005, 0.01, 0.05, and 0.205 m3 m‐3 in the air flow through the headspace of the microcosms) for 85 days. Reduced O2 availability resulted in a decreased CO2 release but in increased N2O emission rates. The greatest cumulative N2O emissions (= 1.6 g N2O‐N m‐2) were observed at intermediate O2 concentrations (0.005 and 0.01 m3 m‐3) when both nitrification and denitrification occurred simultaneously in the soil. Cumulative N2O emissions were smallest (= 0.05 g N2O‐N m‐2) for the aeration with ambient air (O2 concentration: 0.205 m3 m‐3), although nitrate availability was greatest in this treatment. The emission of CH4 and leaching of Mn and Fe were restricted to the soil columns incubated under completely anoxic conditions. The sequence of the reduction processes under completely anoxic conditions complied with the thermodynamic theory: soil nitrate was reduced first, followed by the reduction of Mn(IV) and Fe(III) and finally CO2 was reduced to CH4. The re‐aeration of the soil columns after 85 days of anoxic incubation terminated the production of CH4 and dissolved Fe and Mn in the soil but strongly increased the emission rates of CO2 and N2O and the leaching of NO3‐ probably because of the accumulation of DOC and NH4+ during the previous anoxic period. 相似文献
18.
耕作措施对双季稻田CH4与N2O排放的影响 总被引:4,自引:8,他引:4
随着全球气温的不断升高,温室气体减排成为研究的热点。该文旨在研究不同耕作措施下双季稻田CH4及N2O排放特征及其消长关系,为稻田温室气体减排及土壤固碳潜力评价提供依据。试验在湖南省宁乡县进行,通过静态箱法测定翻耕秸秆还田(CT)、旋耕秸秆还田(RT)、免耕秸秆还田(NT)的稻田CH4及N2O排放。结果表明:CH4排放主要来自于晚稻田,翻耕、旋耕和免耕晚稻田CH4排放分别占研究时段CH4排放的69%,67%,73%;各处理冬闲季CH4排放均不到研究时段排放量1%,冬闲CH4排放量为RT>CT>NT,差异显著;N2O排放时间变异性较大,早稻稻田N2O排放量为RT>NT>CT,晚稻稻田N2O排放量为NT>RT>CT,冬闲期各处理稻田N2O均为负排放;从研究时段排放量分析,翻耕秸秆还田有利于减少N2O排放,免耕秸秆还田有利于减少CH4排放;CH4与N2O排放呈显著负相关,冬闲季稻田CH4与N2O排放相关性不显著。总之,NT减少了CH4排放,虽N2O排放略有增加,但CH4与N2O引发的综合温室效应有所减弱。 相似文献
19.
CH4是仅次于CO2的第二大温室气体,而稻田是CH4的主要排放源,但未来大气CO2浓度升高情景下(elevated CO2, eCO2),水稻土好氧甲烷氧化过程及其功能微生物群落适应规律尚不清楚。本研究依托中国FACE(Free Air CO2 Enrichment)水稻田试验平台,通过13C-CH4示踪的室内微宇宙培养实验,采用稳定性同位素核酸探针(DNA-SIP)和高通量测序技术,研究了未来大气CO2浓度升高对水稻土甲烷氧化活性及其功能微生物的影响规律。研究结果表明:与常规大气CO2浓度(ambient CO2, aCO2)相比,eCO2条件下的甲烷氧化活性显著增加,从243 nmol g-1 d.w.s h-1增加至302 mol g-1 d.w.s h-1,增幅高达24.3%,甲烷氧化菌数量则增加了1.1~1.2倍。通过超高速离心获得活性甲烷氧化菌同化13CH4后合成的13C-DNA,高通量测序发现,未来大气CO2升高情景下水稻土活性好氧甲烷氧化微生物群落极可能发生明显演替,与对照相比,类型I甲烷氧化菌甲基杆菌属Methylobacter的相对丰度增加16.2%~17.0%,而甲基八叠球菌属Methylosarcina的相对丰度下降4.7%-11.1%;同时刺激了食酸菌属Acidovorax和假单胞菌属Pseudomonas等非甲烷氧化菌的活性。这些研究结果表明:未来大气CO2升高情景下,水稻土好氧甲烷氧化微生物群落结构发生分异,促进了甲烷氧化通量,而甲烷氧化的代谢产物可能引发土壤中微生物食物网的级联反应,是土壤碳储存和周转的重要功能微生物群。 相似文献
20.
Satoko Watanabe Kimihito Nakamura Chan Seok Ryu Michihisa Iida Shigeto Kawashima 《Soil Science and Plant Nutrition》2013,59(2):224-237
Treatment of animal and food wastes using a methane fermentation technique is drawing considerable public attention as a suitable option for the utilization of biomass resources. The application of a fermentation byproduct (methane fermentation digested liquid) as an agricultural fertilizer has been investigated. Determining the appropriate timing required for applying digested liquid on a rice (Oryza sativa L.) paddy plot is important. The concentrations of soil nitrogen (N) components and rice yield should be considered because digested liquid contains both inorganic and organic N. This study compares the N transformation and the rice yield and growth at different application times over a period of 3 y. The effects of the timing of basal application on soil N were different and the timing that maximized the rice yield was different in each year. Days before ponding (DBP) affected soil N before mid-summer drainage, and rice growth rates at the panicle formation stage and the ear emergence stage. The effects of DBP disappeared before harvest. The results indicated that sufficient potentially mineralizable N existed regardless of DBP, and the effect of DBP lessened after the mid-summer drainage, which coincides with the period when N uptake is most active. 相似文献