首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy application of ammonium nitrogen to plant roots results in the conversion of ammonium nitrogen to the nitrogen of amides, glutamine, and asparagine, which are stored in roots or translocated to shoot. Since the net synthesis of such amides requires the supply of corresponding carbon skeletons, the carbon metabolism in amide synthesis in response to ammonium supply was investigated in tomato and wheat roots. The content of major primary amino acids was determined in tomato and wheat roots during a 4-d period of ammonium nutrition after 1-d culture in nitrogen-free nutrient solution. Ammonium supply led to a continuous increase in the asparagine content in wheat roots, whereas in tomato roots, the glutamine content increased 1 d after ammonium supply and thereafter the glutamine content was higher than the asparagine content. The amounts of amino acids synthesized from glucose-14C increased while the amounts of organic acids decreased in tomato roots by the supply of ammonium nitrogen for 1 d, compared to the roots that did not receive nitrogen. In tomato roots, the proportion of labeled glutamine was higher than that of labeled asparagine and the C5 amino acids were more strongly labeled than the C4 amino acids. These findings were different from the previous ones in wheat roots where the proportion of asparagine was found to be extremely high (Koga and Ikeda 2000: J. Fac. Agr. Kyushu Univ45, 7–13). To examine the in vivo asparagine synthesis, aspartate-'4C was fed to the roots. The labeling of asparagine, which was the most strongly labeled amino acid among the free amino acids, was remarkably strong in wheat roots whereas the labeling of glutamine was also pronounced in tomato roots. These results indicate that the ability to replenish carbon skeletons for amide synthesis in ammonium nutrition is different between tomato and wheat roots.  相似文献   

2.
过量施氮对旱地土壤碳、氮及供氮能力的影响   总被引:6,自引:8,他引:6  
【目的】过量施氮会影响土壤有机碳、氮的组成与数量,进而改变土壤供氮能力,但关于西北旱地长期过量施用氮肥后土壤有机碳、氮及土壤供氮能力变化的研究尚缺乏。本文在长期定位试验的基础上,通过分析不同氮肥水平特别是过量施氮条件下土壤硝态氮,有机碳、氮和微生物量碳、氮的变化,探讨长期过量施氮对土壤有机碳、氮及供氮能力的影响。【方法】长期定位试验位于陕西杨凌西北农林科技大学农作一站。在施磷(P2O5)100kg/hm2的基础上,设5个氮水平,施氮量分别为N 0、80、160、240、320 kg/hm2。重复4次,小区面积40 m2,完全随机区组排列。种植冬小麦品种为小堰22。本文选取其中3处理,以不施氮为对照(N0)、施氮量N 160 kg/hm2为正常施氮(N160),施氮量N 320 kg/hm2为过量施氮(N320),分别于2012年6月小麦收获后和10月下季小麦播前采集土壤样品,进行测定分析。【结果】过量施氮导致下季小麦播前0—300 cm各土层硝态氮含量显著增加,平均由对照的2.8 mg/kg增加到15.5 mg/kg;同时,0—60 cm和0—300 cm土层的硝态氮累积量分别由对照的47.2和108.9 kg/hm2增加到76.5和727.7 kg/hm2。过量施氮也增加了夏闲期间0—300 cm土层土壤有机氮矿化量,由对照的72.4 kg/hm2增加到130.7 kg/hm2。但过量施氮未显著增加土壤的有机碳含量,却显著增加了土壤有机氮含量,过量施氮0—20、20—40 cm土层土壤有机碳分别为9.24和5.39 g/kg,有机氮分别为1.05和0.71 g/kg,较对照增加52.2%和54.3%。同样,过量施氮未显著影响0—20、20—40 cm土层土壤微生物量碳含量,其平均含量分别为253和205 mg/kg,却显著提高了0—20、20—40 cm土层土壤微生物量氮含量,由对照的24.1和7.5 mg/kg提高到43.6和16.1 mg/kg。【结论】过量施氮可以显著增加旱地土壤剖面中的硝态氮累积量、夏闲期氮素矿化量、小麦播前土壤氮素供应量和土壤微生物量氮含量,但对土壤有机碳和微生物量碳没有显著性影响,同时过量施氮增加了土壤硝态氮淋溶风险,故在有机质含量低的黄土高原南部旱地冬小麦种植中不宜施用高量氮肥,以减少土壤氮素残留和农业投入,达到保护环境和培肥土壤的目的。  相似文献   

3.
N. KUDO  H. FUJIYAMA 《土壤圈》2010,20(3):311-317
Salt-affected soils are agricultural and environmental problems on a global scale. Plants suffer from saline stresses in these soils and show nitrogen (N) deficiency symptoms. However, halophytes grow soundly under saline conditions. In order to clarify the N nutrition of the halophyte Salicornia bigelovii, it was grown at several N levels (1, 2, 3, and 4 mmol L-1), supplied in the form of NO3- or ammonium (NH4+), under high NaCl conditions (200 mmol L-1). NH4+-fed plants showed better growth than NO3--fed plants at 1-3 mmol L-1 N, and plants in both treatments showed the same growth at 4 mmol L-1 N. Nitrogen contents in NO3--fed plants increased with the N concentrations in solution; competitive inhibition of NO3- absorption by Cl- was observed under lower N conditions. In addition, shoot dry weight was significantly correlated only with shoot N content. Therefore, growth of NO3--fed plants was regulated by N absorption. Inc ontrast, N contents of shoots in NH4+-fed plants did not change with N concentration. Shoot Na content decreased with increasing N concentration, while K content increased. Dry weight was highly correlated only with K content in NH4+-fed plants. These observations indicated that growth of NH4+-fed plants was mainly regulated by K absorption.  相似文献   

4.
Phosphorus (P) is essential macronutrient for soybean [Glycine max (L.) Merr.] growth and function. The objective of this study was to determine effect of phosphorus nutrition (including phosphorus nutrition level and interruption of phosphorus supply) on nitrogen accumulation, nodule nitrogen fixation and yield of soybean plants by 15N labeling with sand culture. The results showed that they all presented a single peak curve with improvement of phosphorus nutrition level, when phosphorus concentration of nutrient solution was about 31 mg/L, they all reached the maximum and effect of phosphorus nutrition level on nodule nitrogen fixation was lower than that on yield formation level. Interruption of phosphorus supply during soybean growth period, nitrogen accumulation and nodule nitrogen fixation were seriously inhibited, and yield was decreased significantly when interruption of phosphorus supply during V3-R1 and R1-R5 period, while interruption of phosphorus supply during R5-R7 period had no significant effect on nitrogen accumulation, nodule nitrogen fixation and yield. So soybean nitrogen metabolism and yield were sensitive to phosphorus nutrition in the V3-R5 period, those were not sensitive to phosphorus nutrition after R5 period.  相似文献   

5.
玉米根系对局部氮磷供应响应的基因型差异   总被引:4,自引:2,他引:2  
【目的】土壤养分具有异质性,揭示不同基因型玉米根系对于养分异质性的响应规律,对提高不同玉米品种氮、磷利用效率具有重要意义。 【方法】本试验在水培条件下,利用分根系统研究3个玉米杂交种苗期根系对氮、磷两种养分局部供应响应的基因型差异。 【结果】根系对局部供氮的响应存在基因型差异,浚单20和中农玉99侧根生长对局部供氮的响应较敏感,显著提高了局部供氮(+N)一侧的侧根长,增幅达到79%、50%,而NE15无显著响应;浚单20和中农玉99主要提高了+N一侧直径大于0.12 mm的侧根长度。根系生长对于局部供磷(+P)的反应同样存在基因型差异,NE15显著提高+P一侧根系生物量和轴根长,增幅达到38%和24%,中农玉99显著提高+P一侧的侧根长达到35%;在+P侧,浚单20主要增加了直径大于0.12 mm的侧根长度,NE15主要增加直径介于0.12~0.24 mm的侧根长度,而中农玉99主要增加直径小于0.12 mm的极细侧根长度。局部供氮对3个品种侧根生长的促进作用强于局部供磷,而对缺氮一侧根系生长的抑制作用均大于缺磷一侧。不同玉米基因型苗期根系生物量、侧根长(尤其是直径>0.12 mm的侧根)对于局部供应氮、磷存在显著的互作效应,局部供氮对浚单20的侧根生长(尤其是直径>0.12 mm的侧根)的促进作用显著高于局部供磷,而NE15的根系生长(尤其是根系生物量)对局部供磷的响应强度大于局部供氮。 【结论】对于不同养分特性的玉米杂交种,苗期根系对局部供应不同种类养分的响应存在显著的基因型差异,在生产中可以针对品种特性采取不同的施肥措施,以便发挥其生物学潜力。  相似文献   

6.
为了探讨不同种植模式对红壤水稳性团聚体粒径分布以及不同粒级团聚体中有机碳、氮含量,土壤微生物量碳、氮含量的影响,选择大豆、萝卜与玉米间作及3种作物的单作进行田间试验,在作物成熟期采样,进行样品测定。结果表明:在玉米-大豆(玉//豆)、玉米-萝卜(玉//萝)、玉米单作(玉单)、大豆单作(豆单)、萝卜单作(萝单)处理中,大团聚体(> 0.25 mm)的百分含量明显高于微团聚体(<0.25 mm),其中以大团聚体中粒径为0.25~2 mm的百分含量最高且显著高于其余两种粒径,大团聚体百分含量表现为:玉//豆>玉//萝>玉单>萝单>豆单,微团聚体则与其相反。团聚体粒径中的有机碳含量表现为0.25~2 mm粒径最高、<0.25 mm粒径次之、>2 mm粒径含量最少、玉米大豆间作含量最高、玉米单作含量最低。团聚体粒级中全氮含量与有机碳分布一致,但单作的全氮含量高于间作。有机碳与全氮的C/N为间作高于单作,>2 mm粒径C/N高于其余两种粒径。微生物量碳、氮在团聚体粒径中的分布趋势一致,都表现为间作模式高于单作模式,大团聚体中的含量高于微团聚体。微生物量碳、氮的C/N为单作模式高于间作模式,微团聚体大于大团聚体。与单作相比,间作能提高土壤中水稳性大团聚体的含量,增加大团聚体粒径内的有机碳、氮及微生物量碳、氮的含量。  相似文献   

7.
Improving manure management to benefit both agricultural production and the environment requires a thorough understanding of the long‐term effects of applied manure on soil properties. This paper examines the effect of 25 annual solid cattle manure applications on soil organic carbon (OC), total N (TN), and KCl‐extractable NO3‐N and NH4‐N under both non‐irrigated and irrigated conditions. After 25 annual manure applications, OC and TN contents increased significantly with the rate of manure application at the top two sampling depths (0–15 cm and 15–30 cm), and the increases were not affected by the irrigation treatment. The NO3 content increased at all sampling depths with greater increases observed under non‐irrigated conditions, while NH4 content was not affected by manure application rates or the irrigation treatment. The changes in OC and TN at the surface (0–15 cm) and 15–30 cm depth were dependent on the cumulative weight of manure added over the years. The relationships between cumulative manure OC added and soil OC content and between cumulative manure TN added and soil TN content were linear and not affected by the irrigation treatment. For every ton of manure OC added, soil OC increased by 0.181 g kg–1 in the topsoil (0–15 cm). Similarly, for every ton of manure TN added, surface soil TN increased by 0.192 g kg–1. The linear relationship between manure C added and soil C content suggests that the soil had a high capacity for short‐term C sequestration. However, the total amount of NO3‐N in the soil profile (0–150 cm) was affected by both the manure application rates and the irrigation treatment. A large amount of NO3 accumulated in the soil, especially under non‐irrigated conditions. The extremely high level of NO3 in the soil increases the potential risk of surface and groundwater pollution and losses to atmosphere as N2O.  相似文献   

8.
《Soil Use and Management》2018,34(3):335-342
This study investigates the effect of different crop rotation systems on carbon (C) and nitrogen (N) in root biomass as well as on soil organic carbon (SOC ). Soils under spring barley and spring barley/pea mixture were sampled both in organic and conventional crop rotations. The amounts of root biomass and SOC in fine (250–253 μ m), medium (425–250 μ m) and coarse (>425 μ m) soil particulate organic matter (POM ) were determined. Grain dry matter (DM ) and the amount of N in harvested grain were also quantified. Organic systems with varying use of manure and catch crops had lower spring barley grain DM yield compared to those in conventional systems, whereas barley/pea showed no differences. The largest benefits were observed for grain N yields and grain DM yields for spring barley, where grain N yield was positively correlated with root N. The inclusion of catch crops in organic rotations resulted in higher root N and SOC (g C/m2) in fine POM in soils under barley/pea. Our results suggest that manure application and inclusion of catch crops improve crop N supply and reduce the yield gap between conventional and organic rotations. The observed positive correlation between root N and grain N imply that management practices aimed at increasing grain N could also increase root N and thus enhance N supply for subsequent crops.  相似文献   

9.
Low nitrogen (N) supply may change assimilate partitioning between plant organs. We measured the effect of N supply on partitioning of recently assimilated 13C and recently absorbed 15N between generative and vegetative plant organs of two maize genotypes (Zea mays L.) 14 d after silking, i.e., during the lag phase of kernel growth. Furthermore, net partitioning of dry matter and N were assessed during grain filling. Plants were grown in a greenhouse in large containers. Our hypothesis was that N deficiency reduces grain set due to low partitioning of carbon (C) and N to the grains during the lag phase and reduces grain yield also because of excessive remobilization of N from the leaves during grain filling. During the lag phase, low N supply increased partitioning of recently assimilated photosynthates towards stem and roots at the expense of partitioning towards reproductive organs. However, despite of diminished sink strength of the reproductive organs for photosynthates, sugar concentrations in the grains of N‐deficient plants were increased, indicating that kernel set and potential kernel weight were not limited by low C supply at the end of the lag phase. In contrast to C, partitioning of recently absorbed N towards the reproductive organs was increased at low N supply at the expense of partitioning towards the roots. This indicates different mechanisms for the regulation of C and N distribution within the plant. During grain filling, biomass partitioning between plant organs was more affected by genotype than by rate of N supply. Nitrogen accumulation in the grains substantially exceeded total N uptake in the plant after flowering. Excess N accumulation in the grains was covered mainly by depletion of stem N at high N supply and by depletion of leaf N at low N supply. However, high concentrations of nonstructural carbohydrates in the stem at maturity indicated that grain yield of N‐deficient plants was not limited by low source strength of N‐depleted leaves.  相似文献   

10.
11.
树冠微域环境对茶树碳氮代谢的影响   总被引:1,自引:0,他引:1  
【目的】树冠微域环境对植物的生长有着显著影响,改善植物树冠环境可提升收获对象的品质。因此茶树的生长特别是其碳氮代谢及茶叶品质可能会受到树冠微域环境影响,本文拟通过覆盖遮荫的方式人为改变茶树树冠微域环境,以探明树冠微域环境对茶树碳氮代谢等的影响。【方法】采用田间小区试验,通过在茶树树冠面上分别覆盖光热透过性能不同的三种遮荫材料,人为改变茶树树冠面的微域环境,以不覆盖为对照,比较不同树冠微域环境条件下树冠面空气温度、空气湿度、光照等环境因子的变化及光合速率等的差异,并通过氨基酸组分分析及高效液相色谱等方法对不同季节茶树新梢中碳氮初级代谢产物进行分析,以比较树冠微域环境变化对茶树碳氮代谢及茶鲜叶品质等的影响。【结果】茶树树冠面经三种光热透过性能不同的遮阳网在蓬面直接覆盖后,茶树新梢的生长小环境及碳氮代谢均发生了变化: 1)树冠面的光照强度、空气温度及叶片温度均得到了不同程度的降低,空气相对湿度得到了不同程度的提高。其中覆盖隔热网的降温效果最好,降温幅度最高可达3.1℃;覆盖银色网在早晚有较好的降温效果,降温幅度可达1.6℃,但在12时、14时和16时未有明显的降温效果。而覆盖黑网后早晨的树冠面空气温度与叶片温度却显著高于其他各处理,且随着外界温度的升高,黑网下的两种温度与不覆盖比表现出了波动现象。2)茶树被覆盖后,其净光合速率表现出显著的降低趋势,其中黑网覆盖处理与不覆盖处理均在中午12点左右出现一个低谷,出现了午睡现象,而银色网与隔热网覆盖处理没有表现出午睡现象;覆盖后茶树叶片胞间CO2浓度较不覆盖表现出升高趋势,其中以隔热网处理为最高。3)在高温强光季节对茶树进行适度遮荫覆盖,能在一定程度上促进茶树氮代谢,减弱茶树碳代谢,改善各季茶树新梢的品质。主要表现为茶新梢的叶绿素含量、氮磷钾等养分含量、游离氨基酸总量显著增加;氨基酸组分如茶氨酸、谷氨酸、天冬氨酸等也均表现出显著增加趋势;茶新梢中总碳含量及茶多酚等碳水化合物含量降低;总碳、C/N、茶多酚含量等显著降低,儿茶素组分降低但儿茶素品质指数增加、苦涩味指数降低;三种茶树微域环境中,隔热网覆盖的树冠环境对茶叶品质提升方面效果最明显。4)与不覆盖相比,茶树新梢产量表现出了降低的趋势。【结论】通过遮荫覆盖等方式调控茶树树冠微域环境会影响茶树碳氮代谢等生理活动、提高茶鲜叶品质,但茶鲜叶的产量表现出降低的趋势。  相似文献   

12.
The root-borne C- and N-flux in the plant/soil system was studied by determining the 14C- or 15N-balances in pot trials with soil as a substrate (14CO2- or 15NH3-application to the shoots, comparison of sterile and nonsterile treatments for quantification of root-borne substances). The following results were obtained: 1. The amount of (primary) root-borne carbon compounds released into soil was (besides root respiration) 11—20% of net-CO2-assimilation or 13—32% of the 14C incorporated into the plants (= 1 t C · ha—1). 5—6% of 15N assimilated by the plants were released as root-borne N compounds (= 15 kg N · ha—1). 2. A considerable portion of the root-borne C (about 6% = 600 kg C · ha—1) was found in the rooted soil zone at the end of the experiments (rhizodeposition). 3. (Primary) root-borne C and N compounds found in immediate vicinity of the roots (about 60—80%) were mainly water soluble, whereas most of the C and N compounds found in a greater distance were water insoluble. The water soluble exudates consisted mainly of neutral (carbohydrates) and acid fractions (organic acids). The basic fraction (amino acids) made up a small portion only. 4. The root-borne C and N compounds influenced the nutrient balance of soil and plant directly and/or indirectly via microbes (depending on species, variety and nutritional status of plants). 5. Microbes stimulated the release of C- and N-compounds, but rapidly respired 65—85% of the root-borne C-compounds, thereby putting a burden on the C-budget of the “host” plant. 6. It could be shown by the example of hup+ Rhizobium meliloti strains (tested by 3H2-incorporation) and the wheat-Serratia-association, that energy efficient microbenplant systems can improve plant performance.  相似文献   

13.
14CO2 was assimilated during 10 min in leaf of rice and soybean under 21 kPa O2 (21% O2 treatment) and 2 kPa O2 (2% O2 treatment) at the vegetative growth stage and flowering stage. The 14C distribution ratio to respired CO2 and crude chemical components (sugars, polysaccharides, amino acids, organic acids, and proteins) was determined. In this paper, since emphasis was placed on the 14C distribution mechanism to carbon compounds and nitrogen compounds, the terms carbon metabolism pool (C-pool) composed of sugars and polysaccharides, and nitrogen metabolism pool (N-pool) composed of organic acids, amino acids and proteins were used. The results obtained were as follows.

14C distribution ratio to N-pool at 0 min after 14C assimilation was higher in soybean than in rice regardless of the treatments and stages, and that at 30 min after 14C assimilation under light condition markedly decreased both in rice and soybean. Therefore, especially in soybean, a large amount of photosynthesized 14C was once distributed to the N-pool, then 14C compounds in the N-pool were reconstructed into the C-pool. During this reconstruction process, 14C compounds in the N-pool were actively respired.

14C distribution to N-pool at 0 min after 14C assimilation changed slightly or did not change by the N treatment. 14C distribution to N-pool in the - N treatment of soybean (13–29 mg N g-1 content in leaves) was higher than that in the + N treatment of rice (31–48 mg N g-1 content in leaves). Photosynthesized carbon distribution to N-pool in rice decreased with growth, while it remained constant in soybean. Accordingly, in soybean, photosynthesized carbon was predominantly distributed to the N-pool through photorespiration and/or Calvin cycle (supplying triose-P), which was less affected by nitrogen nutrient and aging. Thus, the mechanism of photosynthesized carbon distribution to carbon and nitrogen compounds was basically regulated by inherited characters of each plant more than by the nitrogen status of leaves.

By the 2% O2 treatment, 14C distribution to N-pool decreased in both crops regardless of N treatment, indicating that photorespiration plays an important role in the supply of the preliminarily photosynthesized carbon compounds to N-pool. In the 2% O2 treatment, 14C distribution to N-pool was higher in soybean than in rice, indicating that triose-P transported from chloroplast was preferentially distributed to N-pool in the case of soybean.  相似文献   

14.
相同碳氮比有机物料对烤烟生长发育及碳氮代谢的影响   总被引:3,自引:0,他引:3  
烤烟碳氮代谢是重要的代谢过程,有机物料是作物所需养分的重要来源,直接影响烤烟的碳氮循环.通过盆栽试验,将玉米秸秆、猪粪和生物炭调节碳氮比为25∶1,分析不同有机物料在相同碳氮比下,对烤烟和植烟土壤主要碳氮组分和酶活性的影响.结果表明:添加生物炭与猪粪,能够显著提高烤烟的农艺性状,添加玉米秸秆,则会降低烤烟的农艺性状.添加生物炭能够显著增强烟叶碳氮关键酶活性;其中,硝酸还原酶活性、淀粉酶活性和转化酶活性最大分别达到33.3μg/(g·h)、14.42 mg/(g·min)和5.08 mg/(g·h).与对照(不施有机物料)相比,添加有机物料能够显著增加烟叶氮、磷、钾质量分数.植烟土壤添加猪粪,可以提高土壤脲酶活性(最大值1.78 mg/kg),但土壤蔗糖酶活性却基本不受有机物料种类的影响;同时,有机物料能够显著增加土壤有机质质量分数,土壤氮质量分数显著提升.特别是猪粪处理中,土壤全氮和碱解氮质量分数显著高于其他处理.有机物料的施用,促进土壤硝化作用,提高硝态氮质量分数.因此,添加生物炭能够提高烤烟碳氮代谢,协调烟叶化学成分,提高烤烟品质;添加猪粪更有利于提高土壤活性营养元素质量分数.  相似文献   

15.
Abstract

Insufficient nitrogen applications may contribute to yield gaps in low rainfall environments of Western Australia (WA). This study tested a nitrogen nutrition index (NNI) for wheat tailored for low rainfall regions, which is based on rainfall-scaled dilution curves. We analyzed yield, shoot biomass, and nitrogen concentration from 32 field trials in WA. An empirical rainfall threshold of 400?mm (summer?+?growing season rainfall) returned two parallel dilution curves accounting for the reduction of critical N in drier and lower yielding conditions. Scatterplots of relative yield and rainfall-adjusted NNI returned a robust boundary function that may lead to greater adoption by growers. The NNI defined in this research study can be applied and further tested by growers in WA, but may also apply to other low rainfall environments, to close nitrogen related yield gaps.  相似文献   

16.
Abstract

Grassland degradation not only results in soil degradation and severe decreases in land productivity, but also can promote the emission of soil carbon and nitrogen compounds as greenhouse gases into the atmosphere. The primary objective of this study was to characterize the impact of grassland degradation on carbon and nitrogen budgets in Inner Mongolia, China. We investigated the changes of total carbon, organic carbon, inorganic carbon and total nitrogen that occur in a grassland ecosystem (including vegetation and top 30 cm soil layer) in the course of grassland degradation. Total carbon stored in the grassland ecosystem was reduced by up to 14%, depending on the severity of the degradation. Total nitrogen storage was reduced by almost 10% under severe degradation, but was slightly increased at light and intermediate degradation, indicating that grazing exclusion would not lead to an increase in nitrogen storage in the ecosystem. Over 98% of the total carbon and nitrogen stored in the grassland ecosystem was bound in the soil which provides the dominant and most stable carbon and nitrogen pool in the ecosystem. Most of the soil carbon and nitrogen storage was present in soil water-stable aggregates and was released as soil water-stable aggregates break in the course of grassland degradation. In conclusion, the carbon sequestration capacity of the vegetation decreased significantly, and substantial proportions of soil carbon and nitrogen were lost in the course of grassland degradation, resulting in unbalanced carbon and nitrogen budgets. Strategies to restore degraded grassland must be designed to increase the carbon and nitrogen storage potential of grassland ecosystems.  相似文献   

17.
Time course of changes in extractable root phosphoenolpyruvate carboxylase (PEP C) activity was investigated in wheat, barley, and tomato plants fed with different nitrogen sources. Ammonium-fed plants exhibited a 2–2.5-fold higher PEPC activity than nitrate-fed plants at 7 d after the onset of nitrogen supply. Western blot analysis revealed that the amounts of PEPC subunit proteins increased gradually as reflected in the extractable PEPC activity. These results suggest that the increase in PEPC activity may be due to de novo protein synthesis. PEPC was SO-fold purified from tomato roots after several chromatographic steps. Metabolite effects on the partially purified enzyme were also investigated under optimal or suboptimal conditions in terms of pH and concentrations of phosphoenolpyruvate. Organic acids and acidic amino acids inhibited the enzyme activity, while hexose phosphates stimulated it. Glutamine and asparagine produced in the course of ammonium assimilation hardly affected the activity.  相似文献   

18.
Abstract

The study was designed to investigate nitrogen and carbon contents, nitrogen use efficiency, and antioxidants of a tolerant accession PI231578 (TOL) and a susceptible PI306292 (SUS) of perennial ryegrass subjected to 7.5?mM N (control) and 0.75?mM N (low) for 6, 12, and 20 d in a growth chamber. The SUS had decreased plant height, dry matter, shoot carbon content and showed more reductions in leaf chlorophyll and shoot N content at 6, 12 d or 20 d of low N. An increased N use efficiency was greater in the shoots of SUS during the low N treatments and in the roots of TOL at 20 d. Shoot soluble protein content (TSP) was unaffected in TOL but decreased in SUS at 20 d of low N, whereas shoot catalase activity decreased in SUS. Root superoxide dismutase and peroxidase activities increased in TOL at 20 d of low N.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号