首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We examined the effects of manure + fertilizer application and fertilizer-only application on nitrous oxide (N2O) and methane (CH4) fluxes from a volcanic grassland soil in Nasu, Japan. In the manure + fertilizer applied plot (manure plot), the sum of N mineralized from the manure and N applied as ammonium sulfate was adjusted to 210 kg N ha?1 year?1. In the fertilizer-only applied plot (fertilizer plot), 210 kg N ha?1 year?1 was applied as ammonium sulfate. The manure was applied to the manure plot in November and the fertilizer was applied to both plots in March, May, July and September. From November 2004 to November 2006, we regularly measured N2O and CH4 fluxes using closed chambers. Annual N2O emissions from the manure and fertilizer plots ranged from 7.0 to 11.0 and from 4.7 to 9.1 kg N ha?1, respectively. Annual N2O emissions were greater from the manure plot than from the fertilizer plot (P < 0.05). This difference could be attributed to N2O emissions following manure application. N2O fluxes were correlated with soil temperature (R = 0.70, P < 0.001), NH+ 4 concentration in the soil (R = 0.67, P < 0.001), soil pH (R = –0.46, P < 0.001) and NO? 3 concentration in the soil (R = 0.40, P < 0.001). When included in the multiple regression model (R = 0.72, P < 0.001), however, the following variables were significant: NH+ 4 concentration in the soil (β = 0.52, P < 0.001), soil temperature (β = 0.36, P < 0.001) and soil moisture content (β = 0.26, P < 0.001). Annual CH4 emissions from the manure and fertilizer plots ranged from –0.74 to –0.16 and from –0.84 to –0.52 kg C ha?1, respectively. No significant difference was observed in annual CH4 emissions between the plots. During the third grass-growing period from July to September, however, cumulative CH4 emissions were greater from the manure plot than from the fertilizer plot (P < 0.05). CH4 fluxes were correlated with NH+ 4 concentration in the soil (R = 0.21, P < 0.05) and soil moisture content (R = 0.20, P < 0.05). When included in the multiple regression model (R = 0.29, P < 0.05), both NH+ 4 concentration in the soil (β = 0.20, P < 0.05) and soil moisture content (β = 0.20, P < 0.05) were significant.  相似文献   

2.
Abstract

Nitrous oxide (N2O) emissions were measured monthly over 1 year in three ecosystems on tropical peatland of Sarawak, Malaysia, using a closed-chamber technique. The three ecosystems investigated were mixed peat swamp forest, sago (Metroxylon sagu) and oil palm (Elaeis guineensis) plantations. The highest annual N2O emissions were observed in the sago ecosystem with a production rate of 3.3 kg N ha?1 year?1, followed by the oil palm ecosystem at 1.2 kg N ha?1 year?1 and the forest ecosystem at 0.7 kg N ha?1 year?1. The N2O emissions ranged from –3.4 to 19.7 µg N m?2 h?1 for the forest ecosystem, from 1.0 to 176.3 µg N m?2 h?1 for the sago ecosystem and from 0.9 to 58.4 µg N m?2 h?1 for the oil palm ecosystem. Multiple regression analysis showed that N2O production in each ecosystem was regulated by different variables. The key factors influencing N2O emissions in the forest ecosystem were the water table and the NH+ 4 concentration at 25–50 cm, soil temperature at 5 cm and nitrate concentration at 0–25 cm in the sago ecosystem, and water-filled pore space, soil temperature at 5 cm and NH+ 4 concentrations at 0–25 cm in the oil palm ecosystem. R2 values for the above regression equations were 0.57, 0.63 and 0.48 for forest, sago and oil palm, respectively. The results suggest that the conversion of tropical peat swamp forest to agricultural crops, which causes substantial changes to the environment and soil properties, will significantly affect the exchange of N2O between the tropical peatland and the atmosphere. Thus, the estimation of net N2O production from tropical peatland for the global N2O budget should take into consideration ecosystem type.  相似文献   

3.
Abstract

To determine the means and variations in CH4 uptake and N2O emission in the dominant soil and vegetation types to enable estimation of annual gases fluxes in the forest land of Japan, we measured monthly fluxes of both gases using a closed-chamber technique at 26 sites throughout Japan over 2 years. No clear seasonal changes in CH4 uptake rates were observed at most sites. N2O emission was mostly low throughout the year, but was higher in summer at most sites. The annual mean rates of CH4 uptake and N2O emission (all sites combined) were 66 (2.9–175) µg CH4-C m?2 h?1 and 1.88 (0.17–12.5) µg N2O-N m?2 h?1, respectively. Annual changes in these fluxes over the 2 years were small. Significant differences in CH4 uptake were found among soil types (P < 0.05). The mean CH4 uptake rates (µg CH4-C m?2 h?1) were as follows: Black soil (95 ± 39, mean ± standard deviation [SD]) > Brown forest soil (60 ± 27) ≥ other soils (20 ± 24). N2O emission rates differed significantly among vegetation types (P < 0.05). The mean N2O emission rates (µg N2O-N m?2 h?1) were as follows: Japanese cedar (4.0 ± 2.3) ≥ Japanese cypress (2.6 ± 3.4) > hardwoods (0.8 ± 2.2) = other conifers (0.7 ± 1.4). The CH4 uptake rates in Japanese temperate forests were relatively higher than those in Europe and the USA (11–43 µg CH4-C m?2 h?1), and the N2O emission rates in Japan were lower than those reported for temperate forests (0.23–252 µg N2O-N m?2 h?1). Using land area data of vegetation cover and soil distribution, the amount of annual CH4 uptake and N2O emission in the Japanese forest land was estimated to be 124 Gg CH4-C year?1 with 39% uncertainty and 3.3 Gg N2O-N year?1 with 76% uncertainty, respectively.  相似文献   

4.
Abstract

We studied the effect of crop residues with various C:N ratios on N2O emissions from soil. We set up five experimental plots with four types of crop residues, onion leaf (OL), soybean stem and leaf (SSL), rice straw (RS) and wheat straw (WS), and no residue (NR) on Gray Lowland soil in Mikasa, Hokkaido, Japan. The C:N ratios of these crop residues were 11.6, 14.5, 62.3, and 110, respectively. Based on the results of a questionnaire survey of farmer practices, we determined appropriate application rates: 108, 168, 110, 141 and 0 g C m?2 and 9.3, 11.6, 1.76, 1.28 and 0 g N m?2, respectively. We measured N2O, CO2 and NO fluxes using a closed chamber method. At the same time, we measured soil temperature at a depth of 5 cm, water-filled pore space (WFPS), and the concentrations of soil NH+ 4-N, NO? 3-N and water-soluble organic carbon (WSOC). Significant peaks of N2O and CO2 emissions came from OL and SSL just after application, but there were no emissions from RS, WS or NR. There was a significant relationship between N2O and CO2 emissions in each treatment except WS, and correlations between CO2 flux and temperature in RS, soil NH+ 4-N and N2O flux in SSL and NR, soil NH+ 4-N and CO2 flux in SSL, and WSOC and CO2 flux in WS. The ratio of N2O-N/NO-N increased to approximately 100 in OL and SSL as N2O emissions increased. Cumulative N2O and CO2 emissions increased as the C:N ratio decreased, but not significantly. The ratio of N2O emission to applied N ranged from ?0.43% to 0.86%, and was significantly correlated with C:N ratio (y = ?0.59 ln [x] + 2.30, r 2 = 0.99, P < 0.01). The ratio of CO2 emissions to applied C ranged from ?5.8% to 45% and was also correlated with C:N ratio, but not significantly (r 2 = 0.78, P = 0.11).  相似文献   

5.
Abstract

Denitrification products nitrous oxide ((N2O) and nitrogen (N2)) were measured in three flooded soils (paddy soil from Vietnam, PV; mangrove soil from Vietnam, MV; paddy soil from Japan, PJ) with different nitrate (NO3) concentrations. Closed incubation experiments were conducted in 100-mL bottles for 7 d at 25°C. Each bottle contained 2 g of air-dried soil and 25 mL solution with NO3 (concentration 0, 5 or 10 mg N L?1) with or without acetylene (C2H2). The N2O + N2 emissions were estimated by the C2H2 inhibition method. Results showed that N2O + N2 emissions for 7 d were positively correlated with those of NO3 removal from solution with C2H2 (R2 = 0.9872), indicating that most removed NO3 was transformed to N2O and N2 by denitrification. In PJ soil, N2O and N2 emissions were increased significantly (P < 0.05) by the addition of greater NO3 concentrations. However, N2O and N2 emissions from PV and MV soils were increased by the addition of 0 to 5 mg N L?1, but not by 5 to 10 mg N L?1. At 10 mg N L?1, N2 emissions for 7 d were greater in PJ soil (pH 7.0) than in PV (pH 5.8) or MV (pH 4.3) soils, while N2O emissions were higher in PV and MV soils than in PJ soil. In MV soil, N2O was the main product throughout the experiment. In conclusion, NO3 concentration and soil pH affected N2O and N2 emissions from three flooded soils.  相似文献   

6.
Abstract

To investigate the effects of renovation (ploughing and resowing) on nitrous oxide (N2O) emissions from grassland soil, we measured N2O fluxes from renovated and unrenovated (control) grassland plots. On 22 August in both 2005 and 2006 we harvested the sward, ploughed the surface soil and then mixed roots and stubble into the surface soil with a rotovator. Next, we compacted the soil surface with a land roller, spread fertilizer at 40 kg N ha?1 on the soil surface and sowed orchardgrass (Dactylis glomerata L., Natsumidori). In the control plot, we just harvested the sward and spread fertilizer. We determined N2O fluxes for 2 months after the renovation using a vented closed chamber. During the first 2 weeks, the renovated plot produced much more N2O than the control plot, suggesting that N was quickly mineralized from the incorporated roots and stubble. Even after 2 weeks, however, large N2O emissions from the renovated plot were recorded after rainfall, when the soil surface was warmed by sunshine and the soil temperature rose 2.7–3.0°C more than that of the control plot. In 2005, during the 67-day period from 19 August to 26 October, the renovated and control plots emitted 5.3 ± 1.4 and 2.8 ± 0.7 kg N2O-N ha?1, with maximum fluxes of 3,659 and 1,322 µg N2O-N m?2 h?1, respectively. In 2006, during the 65-day period from 21 August to 26 October, the renovated and control plots emitted 2.1 ± 0.6 and 0.96 ± 0.42 kg N2O-N ha?1, with maximum fluxes of 706 and 175 µg N2O-N m?2 h?1, respectively. The cumulative N2O emissions from plots in 2005 were greater than those in 2006, presumably because rainfall just after renovation was greater in 2005 than in 2006. These results suggest that incorporated roots and stubble may enlarge the anaerobic microsites in the soil in its decomposing process and increase the N2O production derived from the residues and the fertilizer. In addition, rainfall and soil moisture and temperature conditions during and after renovation may control the cumulative N2O emission.  相似文献   

7.
Abstract

To understand the influence of basal application of N fertilizer on nitrification potential and N2O and NO emissions, four soil samples were collected from an upland Andisol field just before (sample 1) and 4 (sample 2), 36 (sample 3) and 72 (sample 4) days after the basal application of N fertilizer during the Chinese cabbage growing season from 12 September to 30 November 2005. The potentials of N2O production and nitrification of the soils were determined using a 15N tracer technique and the soils were incubated for 25 days at 25°C and 60% water-filled pore space (WFPS). The results revealed that as much as 84–97% N2O and almost all NO were produced by nitrification. The 15N2O emission peak occurred approximately 350 h after the beginning of incubation for samples 1 and 2, but just 48 h later in samples 3 and 4. Total 15N2O emission during the 25-day incubation of samples 3 and 4 ranged from 190 to 198 µg N kg?1 soil, which was significantly higher than the 99–108 µg N kg?1 soil recorded in samples 1 and 2. Basal application of N fertilizer did not immediately increase the nitrification potential and the ratio of N2O to N added, but did dramatically increase the nitrification potential and the ratio of N2O to N added as (15NH4)2SO4 36–72 days after the basal N fertilizer was added. In contrast, NO emission was negatively correlated with nitrification potential and total N2O emission. As a result, a trade-off relationship between total NO and N2O emissions was identified. The results indicated that there was a time-lagged induction of the change of N turnover in the soil, which was possibly caused by slow population growth of the nitrifiers and/or a slow shift in the microbial community in the soil.  相似文献   

8.
Biochar application can reduce global warming via carbon (C) sequestration in soils. However, there are few studies investigating its effects on greenhouse gases in rice (Oryza sativa L.) paddy fields throughout the year. In this study, a year-round field experiment was performed in rice paddy fields to investigate the effects of biochar application on methane (CH4) and nitrous oxide (N2O) emissions and C budget. The study was conducted on three rice paddy fields in Ehime prefecture, Japan, for 2 years. Control (Co) and biochar (B) treatments, in which 2-cm size bamboo biochar (2 Mg ha?1) was applied, were set up in the first year. CH4 and N2O emissions and heterotrophic respiration (Rh) were measured using a closed-chamber method. In the fallow season, the mean N2O emission during the experimental period was significantly lower in B (67 g N ha?1) than Co (147 g N ha?1). However, the mean CH4 emission was slightly higher in B (2.3 kg C ha?1) than Co (1.2 kg C ha?1) in fallow season. The water-filled pore space increased more during the fallow season in B than Co. In B, soil was reduced more than in Co due to increasing soil moisture, which decreased N2O and increased CH4 emissions in the fallow season. In the rice-growing season, the mean N2O emission tended to be lower in B (?104 g N ha?1) than Co (?13 g N ha?1), while mean CH4 emission was similar between B (183 kg C ha?1) and Co (173 kg C ha?1). Due to the C release from applied biochar and soil organic C in the first year, Rh in B was higher than that in Co. The net greenhouse gas emission for 2 years considering biochar C, plant residue C, CH4 and N2O emissions, and Rh was lower in B (5.53 Mg CO2eq ha?1) than Co (11.1 Mg CO2eq ha?1). Biochar application worked for C accumulation, increasing plant residue C input, and mitigating N2O emission by improving soil environmental conditions. This suggests that bamboo biochar application in paddy fields could aid in mitigating global warming.  相似文献   

9.
Abstract

Nitrous oxide (N2O) contributes to global climate change, and its emission from soil–crop systems depend on soil, environmental, and anthropogenic factors. Thus, we evaluated the variability of N2O emissions measured by microchambers (cross section: 184 cm2) from a groundnut–fallow–maize–fallow cropping system of the humid tropics. The crops received inorganic nitrogen (N) plus crop residues (NC), inorganic N alone as ammonium sulfate (RN), and half of the inorganic N along with crop residues and chicken manure (N1/2CM), amounting for the crop rotation to 322, 180, and 400 kg N ha?1 yr?1, respectively. The N2O fluxes during the groundnut–maize crop rotation were log‐normally distributed, and the frequency distributions were positively skewed. Daytime changes in N2O fluxes were inconsistent, and the 50% of total N2O emission during the 12 h measurement periods was attained earlier under maize (~11∶00 h) than groundnut covers (~13∶00 h). Spatial variability in each treatment with eight gas chambers was large but smaller during the cropping periods than the fallow, indicating masking efficiency of crop covers for the soil heterogeneity that was accelerated presumably by antecedent climatic variables. The temporal variability of N2O emissions was also large (coefficients of variation, CV, ranged from 60 to 81%), involving both input differences between treatments and measurement periods. As such, the relative deviation from the annual mean of total N2O emission was high during the period after a large N application with a maximum of +480%, due to addition of chicken manure. The seasonal contribution of summer and monsoon to N2O emissions was insignificant. However, intensive rainfall negatively (?0.65**) and the amount of added N from either source positively (0.83***) correlated with the integrated N2O emissions, and those were exponential. Results suggest that around noon (12∶00 h) gas collection could represent well the daily N2O fluxes, increasing the number or size of the gas chambers could minimize the large variability, and mainly the rainfall and N inputs regulated its emissions in the humid tropics of Malaysia.  相似文献   

10.
Abstract

Microbial nitrification and denitrification are responsible for the majority of soil nitrous (N2O) emissions. In this study, N2O emissions were measured and the abundance of ammonium oxidizers and denitrifiers were quantified in purple soil in a long-term fertilization experiment to explore their relationships. The average N2O fluxes and abundance of the amoAgene in ammonia-oxidizing bacteria during the observed dry season were highest when treated with mixed nitrogen, phosphorus and potassium fertilizer (NPK) and a single N treatment (N) using NH4HCO3as the sole N source; lower values were obtained using organic manure with pig slurry and added NPK at a ratio of 40%:60% (OMNPK),organic manure with pig slurry (OM) and returning crop straw residue plus synthetic NH4HCO3fertilizer at a ratio of 15%:85% (SRNPK). The lowest N2O fluxes were observed in the treatment that used crop straw residue(SR) and in the control with no fertilizer (CK). Soil NH4+provides the substrate for nitrification generating N2O as a byproduct. The N2O flux was significantly correlated with the abundance of the amoA gene in ammonia-oxidizing bacteria (r = 0.984, p < 0.001), which was the main driver of nitrification. During the wet season, soil nitrate (NO3?) and soil organic matter (SOC) were found positively correlated with N2O emissions (r = 0.774, p = 0.041 and r = 0.827, p = 0.015, respectively). The nirS gene showed a similar trend with N2O fluxes. These results show the relationship between the abundance of soil microbes and N2O emissions and suggest that N2O emissions during the dry season were due to nitrification, whereas in wet season, denitrification might dominate N2O emission.  相似文献   

11.
Abstract

Two experiments were conducted to evaluate the inhibitory effects of 2-chloro-6 (trichloromethyl) pyridine (nitrapyrin) and dicyandiamide on nitrous oxide (N2O), a greenhouse gas, emission from soils amended with ammonium sulfate. In the two experiments, samples of an Andosol and a Gray Lowland soil were kept in glass vessels sealed with a butyl rubber cap and incubated at 25°C. In the first experiment, nitrapyrin (1 µg g?1 dry soil) and dicyandiamide (10 µg g?1 dry soil) were applied to samples of a water-saturated Andosol and a Gray Lowland soil to which ammonium sulfate had been applied at a rate of 0.1 mg N g?1 dry soil. Nitrapyrin decreased N2O emissions from the Andosol and the Gray Lowland soil by 71% and 24%, respectively. Dicyandiamide decreased N2O emissions from the Andosol and Gray Lowland soil by 31% and 18%, respectively. In the second experiment, nitrapyrin (1 µg g?1 dry soil) was applied to samples of an Andosol at 51% water-filled pore space to which ammonium sulfate had been applied at rates of 0.01, 0.1 and 0.5 mg N g?1 dry soil. Nitrapyrin decreased N2O emissions by 62%, 83% and 74%, respectively. Changes in the NH+ 4 and NO? 2 + NO? 3 concentrations in soil showed that nitrapyrin and dicyandiamide slowed down the nitrification process, but did not completely stop the process at any time. The results reveal the potential of nitrification inhibitors to decrease N2O emission from fertilized soil in a wide range of moisture conditions and nitrogen levels.  相似文献   

12.
Our previous research showed large amounts of nitrous oxide (N2O) emission (>200?kg?N?ha?1?year?1) from agricultural peat soil. In this study, we investigated the factors influencing relatively large N2O fluxes and the source of nitrogen (N) substrate for N2O in a tropical peatland in central Kalimantan, Indonesia. Using a static chamber method, N2O and carbon dioxide (CO2) fluxes were measured in three conventionally cultivated croplands (conventional), an unplanted and unfertilized bare treatment (bare) in each cropland, and unfertilized grassland over a three-year period. Based on the difference in N2O emission from two treatments, contribution of the N source for N2O was calculated. Nitrous oxide concentrations at five depths (5–80?cm) were also measured for calculating net N2O production in soil. Annual N fertilizer application rates in the croplands ranged from 472 to 1607?kg?N?ha?1?year?1. There were no significant differences in between N2O fluxes in the two treatments at each site. Annual N2O emission in conventional and bare treatments varied from 10.9 to 698 and 6.55 to 858?kg?N?ha?1?year?1, respectively. However, there was also no significant difference between annual N2O emissions in the two treatments at each site. This suggests most of the emitted N2O was derived from the decomposition of peat. There were significant positive correlations between N2O and CO2 fluxes in bare treatment in two croplands where N2O flux was higher than at another cropland. Nitrous oxide concentration distribution in soil measured in the conventional treatment showed that N2O was mainly produced in the surface soil down to 15?cm in the soil. The logarithmic value of the ratio of N2O flux and nitrate concentration was positively correlated with water filled pore space (WEPS). These results suggest that large N2O emission in agricultural tropical peatland was caused by denitrification with high decomposition of peat. In addition, N2O was mainly produced by denitrification at high range of WFPS in surface soil.  相似文献   

13.
A field experiment was conducted to evaluate the combined or individual effects of biochar and nitrapyrin (a nitrification inhibitor) on N2O and NO emissions from a sandy loam soil cropped to maize. The study included nine treatments: addition of urea alone or combined with nitrapyrin to soils that had been amended with biochar at 0, 3, 6, and 12 t ha?1 in the preceding year, and a control without the addition of N fertilizer. Peaks in N2O and NO flux occurred simultaneously following fertilizer application and intense rainfall events, and the peak of NO flux was much higher than that of N2O following application of basal fertilizer. Mean emission ratios of NO/N2O ranged from 1.11 to 1.72, suggesting that N2O was primarily derived from nitrification. Cumulative N2O and NO emissions were 1.00 kg N2O-N ha?1 and 1.39 kg NO-N ha?1 in the N treatment, respectively, decreasing to 0.81–0.85 kg N2O-N ha?1 and 1.31–1.35 kg NO-N ha?1 in the biochar amended soils, respectively, while there was no significant difference among the treatments. NO emissions were significantly lower in the nitrapyrin treatments than in the N fertilization-alone treatments (P?<?0.05), but there was no effect on N2O emissions. Neither biochar nor nitrapyrin amendment affected maize yield or N uptake. Overall, our results showed that biochar amendment in the preceding year had little effect on N2O and NO emissions in the following year, while the nitrapyrin decreased NO, but not N2O emissions, probably due to suppression of denitrification caused by the low soil moisture content.  相似文献   

14.
Abstract

Nitrous oxide (N2O) and methane (CH4) fluxes from a fertilized timothy (Phleum pratense L.) sward on the northern island of Japan were measured over 2?years using a randomized block design in the field. The objectives of the present study were to obtain annual N2O and CH4 emission rates and to elucidate the effect of the applied material (control [no nitrogen], anaerobically digested cattle slurry [ADCS] or chemical fertilizer [CF]) and the application season (autumn or spring) on the annual N2O emission, fertilizer-induced N2O emission factor (EF) and the annual CH4 absorption. Ammonium sulfate was applied to the CF plots at the same application rate of NH4-N to the ADCS plots. A three-way ANOVA was used to examine the significance of the factors (the applied material, the application season and the year). The ANOVA for the annual N2O emission rates showed a significant effect with regard to the applied material (P?=?0.042). The annual N2O emission rate from the control plots (0.398?kg N2O-N ha?1?year?1) was significantly lower than that from the ADCS plots (0.708?kg N2O-N ha?1?year?1) and the CF plots (0.636?kg N2O-N ha?1?year?1). There was no significant difference in the annual N2O emission rate between the ADCS and CF plots. The ANOVA for the EFs showed insignificance of all factors (P?>?0.05). The total mean?±?standard error of the EFs (fertilizer-induced N2O-N emission/total applied N) was 0.0024?±?0.0007 (kg N2O-N [kg N]?1), which is similar to the reported EF (0.0032?±?0.0013) for well-drained uplands in Japan. The CH4 absorption rates differed significantly between years (P?=?0.014). The CH4 absorption rate in the first year (3.28?kg CH4?ha?1?year?1) was higher than that in the second year (2.31?kg CH4?ha?1?year?1), probably as a result of lower precipitation in the first year. In conclusion, under the same application rate of NH4-N, differences in the applied materials (ADCS or CF) and the application season (autumn or spring) led to no significant differences in N2O emission, fertilizer-induced N2O EF and CH4 absorption.  相似文献   

15.
Since the development of effective N2O mitigation options is a key challenge for future agricultural practice, we studied the interactive effect of tillage systems on fertilizer-derived N2O emissions and the abundance of microbial communities involved in N2O production and reduction. Soil samples from 0–10 cm and 10–20 cm depth of reduced tillage and ploughed plots were incubated with dairy slurry (SL) and manure compost (MC) in comparison with calcium ammonium nitrate (CAN) and an unfertilized control (ZERO) for 42 days. N2O and CO2 fluxes, ammonium, nitrate, dissolved organic C, and functional gene abundances (16S rRNA gene, nirK, nirS, nosZ, bacterial and archaeal amoA) were regularly monitored. Averaged across all soil samples, N2O emissions decreased in the order CAN and SL (CAN?=?748.8?±?206.3, SL?=?489.4?±?107.2 μg kg?1) followed by MC (284.2?±?67.3 μg kg?1) and ZERO (29.1?±?5.9 μg kg?1). Highest cumulative N2O emissions were found in 10–20 cm of the reduced tilled soil in CAN and SL. N2O fluxes were assigned to ammonium as source in CAN and SL and correlated positively to bacterial amoA abundances. Additionally, nosZ abundances correlated negatively to N2O fluxes in the organic fertilizer treatments. Soils showed a gradient in soil organic C, 16S rRNA, nirK, and nosZ with greater amounts in the 0–10 than 10–20 cm layer. Abundances of bacterial and archaeal amoA were higher in reduced tilled soil compared to ploughed soils. The study highlights that tillage system induced biophysicochemical stratification impacts net N2O emissions within the soil profile according to N and C species added during fertilization.  相似文献   

16.
Abstract

Field experiments were designed to quantify N2O emissions from corn fields after the application of different types of nitrogen fertilizers. Plots were established in South Kalimantan, Indonesia, and given either urea (200 kg ha?1), urea (170 kg ha?1) + dicyandiamide ([DCD] 20 kg ha?1) or controlled-release fertilizer LP-30 (214 kg ha?1) prior to the plantation of corn seeds (variety BISI 2). Each fertilizer treatment was equivalent to 90 kg N ha?1. Plots without chemical N fertilizer were also prepared as a control. The field was designed to have three replicates for each treatment with a randomized block design. Nitrous oxide fluxes were measured at 4, 8, 12, 21, 31, 41, 51, 72 and 92 days after fertilizer application (DAFA). Total N2O emission was the highest from the urea plots, followed by the LP-30 plots. The emissions from the urea + DCD plots did not differ from those from the control plots. The N2O emission from the urea + DCD plots was approximately one thirtieth of that from the urea treatment. However, fertilizer type had no effect on grain yield. Thus, the use of urea + DCD is considered to be the best mitigation option among the tested fertilizer applications for N2O emission from corn fields in Kalimantan, Indonesia.  相似文献   

17.
The potential denitrification (PD) rate, NO, N2O, and N2 emission were determined after treatment with 50 mg NO3 ??N kg?1 soil using the acetylene inhibition method, and meanwhile abundance of four denitrifying genes (i.e., narG, nirK, norB, nosZ) was also investigated in subtropical soils of China. Soil samples were collected from conifer forest (C), shrub forest, and farmland. These soils were derived from Quaternary red earth and granite. The PD rate and N gas emissions significantly (p?<?0.05) differed between forest and farmland soils; abundance of denitrifying genes was also significantly affected by the land-use change. Correlation and multiple stepwise regression analyses showed that the PD rate was significantly (p?<?0.05) and positively correlated with soil pH but not with soil organic C and total N contents (p?>?0.05). The norB gene copies in farmland soils were significantly higher than in conifer and shrub forest soils (p?<?0.01). Both norB and nosZ gene copies were linearly correlated with soil pH, and the PD rate and N2 emission rate were significantly correlated with the abundance of norB (p?<?0.05). Probably, soil pH affected denitrifiers targeted by the norB gene, thus decreasing the reduction of NO and N2O.  相似文献   

18.
Abstract

To evaluate the hypothesis that plant-mediated oxygen supplies decrease methane (CH4) production and total global warming potential (GWP) in a tropical peatland, the authors compared the fluxes and dissolved concentrations of greenhouse gases [GHGs; CH4, carbon dioxide (CO2) and nitrous oxide (N2O)] and dissolved oxygen (DO) at multiple peatland ecosystems in Central Kalimantan, Indonesia. Study ecosystems included tropical peat swamp forest and degraded peatland areas that were burned and/or drained during the rainy season. CH4 fluxes were significantly influenced by land use and drainage, which were highest in the flooded burnt sites (5.75 ± 6.66 mg C m?2 h?1) followed by the flooded forest sites (1.37 ± 2.03 mg C m?2 h?1), the drained burnt site (0.220 ± 0.143 mg C m?2 h?1), and the drained forest site (0.0084 ± 0.0321 mg C m?2 h?1). Dissolved CH4 concentrations were also significantly affected by land use and drainage, which were highest in the flooded burnt sites (124 ± 84 μmol L?1) followed by the drained burnt site (45.2 ± 29.8 μmol L?1), the flooded forest sites (1.15 ± 1.38 μmol L?1) and the drained forest site (0.860 ± 0.819 μmol L?1). DO concentrations were influenced by land use only, which were significantly higher in the forest sites (6.9 ± 5.6 μmol L?1) compared to the burnt sites (4.0 ± 2.9 μmol L?1). These results suggest that CH4 produced in the peat might be oxidized by plant-mediated oxygen supply in the forest sites. CO2 fluxes were significantly higher in the drained forest site (340 ± 250 mg C m?2 h?1 with a water table level of ?20 to ?60 cm) than in the drained burnt site (108 ± 115 mg C m?2 h?1 with a water table level of ?15 to +10 cm). Dissolved CO2 concentrations were 0.6–3.5 mmol L?1, also highest in the drained forest site. These results suggested enhanced CO2 emission by aerobic peat decomposition and plant respiration in the drained forest site. N2O fluxes ranged from ?2.4 to ?8.7 μg N m?2 h?1 in the flooded sites and from 3.4 to 8.1 μg N m?2 h?1 in the drained sites. The negative N2O fluxes might be caused by N2O consumption by denitrification under flooded conditions. Dissolved N2O concentrations were 0.005–0.22 μmol L?1 but occurred at < 0.01 μmol L?1 in most cases. GWP was mainly determined by CO2 flux, with the highest levels in the drained forest site. Despite having almost the same CO2 flux, GWP in the flooded burnt sites was 20% higher than that in the flooded forest sites due to the large CH4 emission (not significant). N2O fluxes made little contribution to GWP.  相似文献   

19.
Increasing greenhouse gas emissions from anthropogenic activities continue to be a mounting problem worldwide. In the semi-natural Miscanthus sinensis Andersson; grasslands of Aso, Kumamoto, Japan, which have been managed for thousands of years, we measured soil methane (CH4) and nitrous oxide (N2O) emissions before and after annual controlled burns. We estimated annual soil carbon (C) accumulation, and CH4 and N2O emissions induced by biomass burning in 2009 and 2010, to determine the impacts of this ecosystem and its management on global warming. Environmental factors affecting soil CH4 and N2O fluxes were unknown, with no effect of annual burning observed on short-term soil CH4 and N2O emissions. However, deposition of charcoal during burning may have enhanced CH4 oxidation and N2O consumption at the study site, given that emissions (CH4: ?4.33 kg C ha?1 yr?1, N2O: 0.17 kg N ha?1 yr?1) were relatively lower than those measured in other land-use types. Despite significant emission of CH4 and N2O during yearly burning events in early spring, the M. sinensis semi-natural grassland had a large annual soil C accumulation, which resulted in a global warming potential of ?4.86 Mg CO2eq ha?1 yr?1. Consequently, our results indicate that long-term maintenance of semi-natural M. sinensis grasslands by annual burning can contribute to the mitigation of global warming.  相似文献   

20.
Wood ash has been used to alleviate nutrient deficiencies and acidification in boreal forest soils. However, ash and nitrogen (N) fertilization may affect microbial processes producing or consuming greenhouse gases: methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). Ash and N fertilization can stimulate nitrification and denitrification and, therefore, increase N2O emission and suppress CH4 uptake rate. Ash may also stimulate microbial respiration thereby enhancing CO2 emission. The fluxes of CH4, N2O and CO2 were measured in a boreal spruce forest soil treated with wood ash and/or N (ammonium nitrate) during three growing seasons. In addition to in situ measurements, CH4 oxidation potential, CO2 production, net nitrification and N2O production were studied in laboratory incubations. The mean in situ N2O emissions and in situ CO2 production from the untreated, N, ash and ash + N treatments were not significantly different, ranging from 11 to 17 μg N2O m?2 h?1 and from 533 to 611 mg CO2 m?2 h?1. However, ash increased the CH4 oxidation in a forest soil profile which could be seen both in the laboratory experiments and in the CH4 uptake rates in situ. The mean in situ CH4 uptake rate in the untreated, N, ash and ash + N plots were 153 ± 5, 123 ± 8, 188 ± 10 and 178 ± 18 μg m?2 h?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号