首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coastal floodplains are highly vulnerable to inundation with saline water and the likelihood of inundation will increase with sea level rise. Sediment samples from floodplains containing coastal lowland acid sulfate soils (CLASS) in eastern Australia were subjected to increasing seawater concentration to examine the probable effects of sea level rise on acidity and metal desorption. Ten soils were mixed with synthetic seawater concentrations varying from 0% to 100% at a solid:solution ratio of 1:10 for 4 h. There was a slight decrease in pH (≈ 0.5 units) with increasing seawater concentration following treatment, yet, calculated acidity increased significantly. In most soil treatments, Al was the dominant component of the calculated acidity pool. Al dominated the exchange complex in the CLASS and, correspondingly, was the major metal ion desorbed. In general, concentrations of soluble and exchangeable Al, Fe2+, Ni, Mn and Zn in all soil extracts increased with increasing salinity. Increasing trace metal concentrations with increasing seawater concentration is attributed to the combined effects of exchange processes and acidity. The increasing ionic strength of the seawater treatments displaces trace metals and protons adsorbed on sediments, causing an initial decrease in pH. Hydrolysis of desorbed acidic metal cations can further contribute to acidity and increase mobilisation of trace metals. These findings imply that saline inundation of CLASS environments, even by relatively brackish water may cause rapid, shorter-term water quality changes and a pulse release of acidity due to desorption of acidic metal cations.  相似文献   

2.
Response of soil and soil water of podzols in the Kola Peninsula to acid deposition was estimated under both field and laboratory conditions. A significant increasing trend of exchangeable acidity in organic (O) horizons and exchangeable Al in podzolic (E) horizons of podzols with distance from the nickel smelter was observed. The simulated rain at pH 4.5 did not alter chemical properties of soils and soil solutions. As much as 95–99% of the applied H+ ions were retained by soils and appeared in the percolates after a treatment period that depended on acid load and soil thickness. Ca and Mg in soil solutions were highly sensitive to acid loading. Simulated acid rain enhanced the leaching of exchangeable base cations out of root zone. Acid inputs resulted in decreased pH, amount of exchangeable base cations and base saturation, in elevated exchangeable acidity and it's Al fraction in soil solid phase. The most significant changes occurred in O and E horizons. Substantial amounts of both Ca and Mg can be lost from the root zone of podzols in the north-western Kola, subjected to acid deposition, thus leading to forest productivity damage.  相似文献   

3.
Forms of aluminium in pseudogley soils under deciduous and coniferous forests In pseudogleys under a near-natural oak-hornbeam forest and under three spruce stands of different age (5, 15 and about 70 years) several fractions of aluminium were extracted by a concentrated HCl/HNO3-mixture, 0,2 M NH4-oxalate/oxalic acid (pH 3,0), M NH4Cl and water resp. The selected sites are situated close to each other and allow the assumption of an originally uniform state of the soils. The pH-values of the soils tend to be the lower the older the spruce stands are. The pH-values are correlated positively with acid soluble Al, negatively with oxalate soluble Al and NH4Cl-exchangeable Al. The highest contents of water soluble Al were found in the soil of the oldest spruce stand. Compared with the soil under deciduous forest the acidification of the soils under spruce is connected with accelerated weathering of clay minerals, reduction of exchange capacity, displacement of exchangeable Ca by Al ions and finally with Al-toxicity. The high interception of acids by the spruce stands being situated at the lee side of the industrial district of Nordrhein-Westfalen, is discussed as a cause of the accelerated soil degradation.  相似文献   

4.
Abstract

Better understanding of soil aluminum has had dramatic effects on the interpretation of many aspects of soil chemistry. Aluminum is a Group III element, metallic in nature, and exhibits both ionic and cuvaient bonding. It is the most plentiful of all metallic cations of the earth's crust. It is released from octahedral coordination with oxygen in minerals by weathering processes. Once released, the trivalent Al ion assumes octahedral coordination with six OH2 groups each of which dissociates a H ion in sequence as pH increases. The resulting hydroxy‐Al ions are absorbed to the cation exchange capacity of the soil. Here they polymerize on charged surfaces and in the interlayers of the clay minerals obstructing both the contraction of the clay lattice and the exchange of cations. Soluble Al is toxic to most plants, and reacts readily with soluble phosphates converting them to relatively insoluble and plant‐unavailable forms. Adsorbed and polymerized aluminum affects actual lime requirements of soils by its acidic nature and indicated lime requirements by its effect on the buffers of the lime requirement test. The level of exchangeable Al has been suggested as an Index of lime requirement of acid soils, but this may be an adequate Index for liming only on highly weathered soils.  相似文献   

5.
The impacts of simulated acid rain on leachability of major plant nutrients, toxic element [aluminum (Al)], and acidity development in highly weathered tropical soils of Thailand were studied. Leaching experiments were conducted on soil columns with acidic solutions of pH 5.0, 4.0, 3.0, 2.0, and with water of pH 7.0 as a control treatment. Leaching losses of base cations from all soils increased with the decrease in pH associated with simulated acid rain (SAR) additions, and were found to be quite high under SAR with pH 2.0. The leaching removal of these cations was lesser at pH 3.0, 4.0, and 5.0 but greater than that in pH 7.0. The leaching of base cation from the soils depended not only on acid rain pH but also on soil properties, especially cation exchange capacity, soil texture, and initial base content. The significant losses of major plant nutrients [such as potassium (K+), calcium (Ca2+), and magnesium (Mg2+)] from the plant root zone over extended periods could cause nutrient imbalance and lower soil productivity.  相似文献   

6.
澳大利亚东部地区一些酸性硫酸盐土壤磷的特征   总被引:1,自引:0,他引:1  
C. LIN 《土壤圈》2002,12(3):229-234
Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1-extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH < 4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of Pin these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil. The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.54.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.  相似文献   

7.
The liming of soils in the lower part of an upland catchment was found to have a major effect on both soil properties and the chemistry of drainage waters. Exchangeable Al was closely correlated with soil pH and showed a very steep rise from 2.6-4.8 meq 1−1 over the pH range 5.5-4.5. As streams flowed from unimproved through improved land there was an increase in pH and the concentration of all major anions and basic cations. The greatest increase was in Ca (approximately 3.5-fold). The concentrations of all dissolved Al species decreased, with inorganic monomeric Al falling to near zero. Leachates were examined from soils representative of the most acidic and the least acidic. Calcium concentrations differed by almost tenfold. Aluminium was present in leachates from the limed soil, but most was unreactive and none was inorganic monomeric. Most of the Al leached from the acid soil was monomeric.
A model of soil acidification is proposed in which soil Ca is depleted at a rate of 8% of the exchangeable Ca per annum. The model predicts that liming a soil to neutrality would be likely to influence drainage water chemistry for 30-40 years and that the most acidic soils of the catchment show no net loss of Ca to drainage.  相似文献   

8.
Abstract

This study was undertaken to determine the effect of previous water and acid‐washing soil treatment on soil pH, Delta pH and Zero Point of Charge of soil surface samples of three Hawaii soils, Molokai (Typic Torrox), Wahiawa (Tropeptic Eutrustox), and Hilo (Typic Hydrandept).

The acid‐washing treatment lowered the soil pH and shifted the Zero Point of Charge to lower pH values. The effect was greater in the Wahiawa and Molokai soils that are dominated by oxidic materials. Whereas the acid‐washing treatment did not change the magnitude of the negative charge in the Wahiawa and Molokai soils, it overestimated the magnitude of the positive charge in the Hilo soil. This phenomena probably was enhanced by the dominance of variable charge clay minerals in the Hilo soil. The results indicated that the acid‐washing treatment changed the nature of the charge characteristics of the soils, hence it should not be recommended in the characterization of the net charge in variable charge soils.  相似文献   

9.
During heavy storm events in January 1993 in the coastal areas of south-western Norway, a sea salt episode created extreme acidification in the afforested Svela catchment. Stream-water chloride increased sharply to eight times the normal concentration and the non-marine Na concentration was calculated to ?208 μeq L?1. Negative values indicate that Na was retained in the soil profile. By ion-exchange processes this was largely compensated by an increase in stream-concentrations of Al and H+. Concentrations of inorganic monomeric Al increased from about 20 to 200 μeq L?1 and pH decreased from 4.90 to 4.45. Due to the low pH and the dramatic increase in inorganic monomeric Al the water toxicity for aquatic organisms increased. Acidification associated with the storm was also observed in a forested and a non-forested catchment, but never reached the levels of the afforested catchment. The extra vulnerability of afforested catchments may be due to their ability to intercept larger amounts of sea salts than areas less dominated by dense tree stands. Although both pH and Al went back to normal levels for the area after 3–4 months the Na/Cl-relationship in cumulated transport values indicated a longlasting effect (> 2 years) on the soil profile. Reloading the soil profile with Al and H+ back to prestorm values will affect the catchments ability to mobilize these ions during future sea salt episodes. More frequent episodes will probably result in less acid and Al-rich stream-water during the episodes than documented here due to incomplete reacidification of the soils.  相似文献   

10.
The long‐term sustainability of forest soils may be affected by the retention of exchangeable nutrient cations such as Ca2+ and the availability of potentially toxic cations such as Al3+. Many of our current concepts of cation exchange and base cation saturation are largely unchanged since the beginnings of soil chemistry over a century ago. Many of the same methods are still in use even though they were developed in a period when exchangeable aluminium (Al) and variable charge were not generally recognized. These concepts and methods are not easily applicable to acid, highly organic forest soils. The source of charge in these soils is primarily derived from organic matter (OM) but the retention of cations, especially Al species, cannot be described by simple exchange phenomena. In this review, we trace the development of modern cation exchange definitions and procedures, and focus on how these are challenged by recent research on the behaviour of acid forest soils. Although the effective cation exchange capacity (CECe) in an individual forest soil sample can be easily shown to vary with the addition of strong base or acid, it is difficult to find a pH effect in a population of different acid forest soil samples. In the very acidic pH range below ca 4.5, soils will generally have smaller concentrations of adsorbed Al3+. This can be ascribed to a reduced availability of weatherable Al‐containing minerals and a large amount of weak, organic acidity. Base cation saturation calculations in this pH range do not provide a useful metric and, in fact, pH is modelled better if Al3+ is considered to be a base cation. Measurement of exchangeable Al3+ with a neutral salt represents an ill‐defined but repeatable portion of organically complexed Al, affected by the pH of the extractant. Cation exchange in these soils can be modelled if assumptions are made as to the proportion of individual cations that are non‐specifically bound by soil OM. Future research should recognize these challenges and focus on redefining our concepts of cation retention in these important soils.  相似文献   

11.
On the determination of exchangeable cations in acid forest soils Different samples from acid forest soils were percolated with large amounts of H2O. Significant amounts of anions, especially sulfate, were found in the percolates mainly accompanied by Na. K, Ca and Mg (Mb-cations). The dissolution of Al-Sulfates and subsequent exchange of Mb-cations by Al as dominant mechanism is proposed. Thus the common method for determination of the cation exchange capacity (CEC) of acid forest soils, the percolation with NH4Cl may overestimate the CEC. The overestimation may be related to the sulfate content of the soil and also influences the calculation of relative CEC proportions of individual cations.  相似文献   

12.
袁晶晶  陈荣府  同延安  沈仁芳 《土壤》2011,43(4):611-616
通过在所研究的第四纪红黏土发育的红壤中混入CaCO3,研究在pH缓冲体系中外加低分子量有机酸对土壤中Al、Ca和Mg的影响。结果表明:无论加CaCO3与否,在pH 4.5的条件下外源草酸、柠檬酸、苹果酸的加入均使土壤可溶性Al显著提高,交换性Al显著下降和交换性Ca显著升高;加入CaCO3的情况下,3种有机酸处理的交换性Mg均显著提高。3种有机酸促进Al溶解能力的大小顺序为:柠檬酸>草酸>苹果酸,这一结果与有机酸和Al形成络合物的稳定常数大小一致。另一方面,3种有机酸处理下,CaCO3预处理均引起可溶性Al的显著升高和交换性Al的下降。双因素方差分析表明,有机酸通过络合作用或沉淀作用对可溶性和交换性Al、Ca和Mg均具有绝对的影响优势,CaCO3仅对可溶性和交换性Al、交换性Ca有显著影响,由于实验中pH缓冲体系的控制,这种影响主要通过Al与Ca、Mg的竞争交换作用实现。总体来说,外源低分子量有机酸的加入使土壤活性Al显著升高,活性Ca、Mg略有升高,有机酸在酸性土壤中的作用需从有机酸溶解阳离子的角度进一步评价。  相似文献   

13.
To determine the geological distribution of acid buffering capacity and exchangeable Al of forest soils in Japan, surface soils under forest vegetation were collected nationwide from a total of 1,034 sites. Generally, surface soils in Japanese forests are mostly acidic and low in both exchangeable cation content and exchangeable Al. The median of soil pH(H2O), total exchangeable cations, and exchangeable Al are 5.1, 76 mmol(+)Kg?1, and 19.6 mmol(+)kg?1, respectively. Acid buffering capacities of selected soils were determined using a soil column, which was comparable to the capacity that resulted from cation exchanges with protons. Soils with high buffering capacity and low exchangeable Al are widely distributed in Japan, and overlap with the areas of Andisol distribution. Volcanogenic materials seem to mask soil characteristics derived from underlying geology even though they are not Andisols. However, central to western Honshu Island, Shikoku Island, and northern Kyushu Island showed weak acid buffering capacities with high exchangeable Al potential in surface soils.  相似文献   

14.
Two adjacent soils with contrasting sulfate sorption were examined in terms of (i) water-soluble and ion-exchangeable Al, Fe, Ca, Mg, K, Mn and Zn, (ii), water- and bicarbonate-extractable sulfate, (iii) Truog-extractable P, (iv) dithionite-extractable Al, Mn and Fe and (v) treatment response to irrigation with simulated acid precipitation. The biomass of 8 year old black spruce saplings growing on the soils, and the distributions of Al, Fe, Ca, Mg, K, Mn, P and Zn within these plants, were also examined. The soils were well to moderately-well drained, with the mineral soil exposed by site preparation prior to planting. The exposed soil underneath individual saplings was treated with acid sulfate solutions (75 mm containing 2 to 50 mg L?1 H2SO4) applied during each of three consecutive growing seasons. The results indicate that Al, much like Fe, Ca, Mn and Zn, accumulated with time in the foliage, but K, Mg and P were highest in young plant tissues. Much of Al and Fe taken up remained in the fine roots. Aluminum uptake increased with the amount of dithionite-extractable Al (free Al oxide) in the soil. Growth of the black spruce saplings was not visibly affected by readily accessed Al in each soil, or by acid irrigation.Instead, growth was restricted by factors other than soil Al and acid irrigation in spite of (i) low soil pH, (ii) high levels of exchangeable Al, and (iii) high levels of Al in fine roots. Sulfate retention across and within the two soils was positively correlated with free Al oxide. The two soils responded to acid irrigation by accelerated silicate weathering and enhanced ion leaching. Sulfate sorption reduced these effects.  相似文献   

15.
The concentration of cationic monomeric aluminium (A13+) was determined in streams draining areas in different land use. Relationships between the concentrations of A13+ and companion ions were examined both for streams and for eluates from soil leached in the laboratory with simulated rainwater that ranged in pH and salt concentration. The concentrations of A13+ were consistently greater in streams draining Sitka spruce woodland than in streams in adjacent catchments draining rough grazing. In no case was the A13+ concentration governed by the solubility product of gibbsite. The concentrations of A13+ were very closely correlated with excess anions (total inorganic anions minus basic cations) both for stream water and for eluates from soil leached with simulated rainwater at a constant pH equal to that of the soil (3.8). Exchangeable A1 was the source of A13+ in leachates from soil in the laboratory and the displacement of exchangeable Al was the dominant process accounting for the levels of A13+ in acidic streams. Hydrogen ions were much more important than basic cations in displacing exchangeable Al from the acidic soil used in the laboratory experiments and probably from soils in the field. The greater excess of inorganic anions in streams from Sitka spruce woodland probably resulted from a greater anion excess in the input water (acid rain) together with a greater NO, production in the soil. All three major anions, CI, SO4 and NO3 contributed to the greater anion excess.  相似文献   

16.
Natural and anthropogenic components of soil acidification   总被引:2,自引:0,他引:2  
The following 8 theses are theoretically founded and experimentally quantified. 1. Rocks contain only bases and no acid precursors. Therefore, with the exception of sulfide containing rocks, soils cannot acidify as a result of atmospheric rock weathering. 2. A consumption of protons in rocks and soils results in a decrease of their acid neutralizing capacity (ANC) and can result in the buildup of a base neutralizing capacity (BNC). Strong soil acidification leads to the formation of stronger acids from weaker acids in the solid phase; this may be connected with a decrease in the BNC. 3. Weak acids (carbonic acid) lead in geological times to the depletion of bases without a larger accumulation of labile cation acids. Strong acids (HNO3, organic acids, H2SO4) can lead within a few decades to soil acidification, i.e. to leaching of nutrient cations and the accumulation of labile cation acids. 4. The acid input caused by the natural emission of SO2 and NOx can be buffered by silicate weathering even in soils low in silicates. 5. The cause of soil impoverishment and soil acidification is a decoupling of the ion cycle in the ecosystem. 6. Acid deposition in forest ecosystems which persists over decades leads to soil acidification. 7. Formation and deposition of strong acids with conservative anions (SO4, NO3) shifts soil chemistry into the Al or Al/Fe buffer range up to great soil depth. In such soils eluvial conditions prevail throughout the solum and even in upper part of the C horizon: in connection with the decomposition of clay minerals, Al and eventually Fe are being eluviated. The present soil classification does not include this soil forming process. 8. In the long run, soil acidification by acid deposition results in the retraction of the root system of acid tolerant tree species from the mineral soil, and in water acidification.  相似文献   

17.
Increased atmospheric deposition of strong acids and deposition of potentially acidifying compounds (e.g. ammonium) has caused a decline in pH and exchangeable base cations in forest soils in Sweden. In recent years, attention has been paid to liming of forest soil as a method to counteract the effects of acid deposition. Experiments with liming, fertilization and woodash treatment of acid forest soils started in 1984. The aim of this study was to determine the effects of low doses of lime (500 to 1500 kg ha?1) in combination with N fertilizers on tree growth, nutritional status of trees as well as soil, and runoff chemistry. This paper describes the short term effects of liming and fertilization on runoff from ten small catchments in two regions in south Sweden. The effects of liming were small in both areas. In the catchments fertilized with N (NH4NO3), a substantial leakage of various N species appeared in runoff after treatment. The increased N output was dominated by nitrate. The excess leakage of N during 2 yr after fertilization was 25 and 13% as an average of the applied N in the two study areas. The mobile nitrate increased the base cations output via runoff with 10 to 100% during 1 yr after N treatment. The runoff of Al increased with 60 to 100% the first year in the fertilized catchments. Mobilization of cations was also influenced by ammonium, especially K that was exchanged by ammonium on the surface of the soil particles. The effects of woodash-treatment were small, however, sulfate in the ash leaked out following application and about 100% of the added sulfate was found in runoff during the first year.  相似文献   

18.
Seven soils were examined for their contents of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids, p-hydroxybenzaldehyde and vanillin. Water-soluble forms, both “free” and “bound” of the phenolic compounds accounted for less than 0.7% of the total amount of each acid or aldehyde as determined by extraction of the soil with 2 M NaOH. In most instances, more than 50% of the water-soluble compounds were in the bound form, which was estimated after conversion to the free form by treatment of the water extract with NaOH. Water-soluble forms, both free and bound, of each compound also occurred in roots associated with six of the soils, and in beech litter associated with the seventh.  相似文献   

19.
Increased atmospheric deposition of strong acids and deposition of potentially acidifying compounds (e.g. ammonium) has caused a decline in pH and exchangeable base cations in forest soils in Sweden. In recent years, attention has been paid to liming of forest soil as a method to counteract the effects of acid deposition. Experiments with liming, fertilization and woodash treatment of acid forest soils started in 1984. The aim of this study was to determine the effects of low doses of lime (500 to 1500 kg ha–1) in combination with N fertilizers on tree growth, nutritional status of trees as well as soil, and runoff chemistry. This paper describes the short term effects of liming and fertilization on runoff from ten small catchments in two regions in south Sweden. The effects of liming were small in both areas. In the catchments fertilized with N (NH4NO3), a substantial leakage of various N species appeared in runoff after treatment. The increased N output was dominated by nitrate. The excess leakage of N during 2 yr after fertilization was 25 and 13% as an average of the applied N in the two study areas. The mobile nitrate increased the base cations output via runoff with 10 to 100% during 1 yr after N treatment. The runoff of Al increased with 60 to 1009, the first year in the fertilized catchments. Mobilization of cations was also influenced by ammonium, especially K that was exchanged by ammonium on the surface of the soil particles. The effects of woodash-treatment were small, however, sulfate in the ash leaked out following application and about 100% of the added sulfate was found in runoff during the first year.  相似文献   

20.
In acid forest soils pores draining under conditions of low water tension contain a solution usually differing in composition from the equilibrium solution of the bulk soil. For tree nutrition, the former was described as comparable to the bulk soil solution or less favourable. Our recent work on solution quality contradicted the universal validity of these findings. It turned out that the methods usually recommended tend to consistently reproduce the pattern of more advanced acidification of coarse pores. We applied our combination of methods to a range of soils to find out whether our previous finding of more favourable solution conditions in undisturbed soil samples as compared to the bulk soil is common or rather an exception. Undisturbed cores and bulk soil were sampled from four forested sites differing in pH and base saturation. We used an iterative procedure to adjust the equilibrium soil solution of disturbed soil and a water extraction with a soil:solution ratio of 1:2. To extract solution from undisturbed soil cores only small volumes of water were added, and we distinguished analytically between total (by ICP) and ionic (by CE) concentrations of cations. We calculated Ca/Al molar ratios and the fraction of (Al3+ + H+) on total cationic charge in solution as criteria for solution quality. Whereas with total concentrations, there always appeared to be less favourable conditions in the soil pore solution, free ionic concentrations allowed a differentiation between the soils. In view of plant nutrition, the quality of the soil solution from undisturbed samples was better, equal to, or worse than that of the bulk soil, suggesting that forest sites represent a continuum with respect to these chemical gradients. Even in soils where gradients are not observed it is not necessary to assume an equilibrium achieved by internal processes to exist between coarse pores and the bulk soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号