共查询到19条相似文献,搜索用时 46 毫秒
1.
[目的]为构建带状套作种植下玉米全生育期叶面积指数光谱估测模型.[方法]基于玉米-大豆带状套作种植模式下的大田玉米氮素试验,测定带状套作玉米不同生育时期的冠层光谱反射率及叶面积指数,比较多种植被指数及小波系数与叶面积指数之间的关系,构建并筛选出最佳叶面积指数估测模型.[结果]带状套作玉米叶面积指数随施氮水平增加而增加,... 相似文献
2.
[目的]通过将原始光谱数据经过不同的数据变换方式,分析其与枣冠层LAI的相关关系,建立基于高光谱的阿克苏市枣冠层LAI的估测模型,为快速、精确、无损伤、大范围的适时、动态监测植被LAI提供有效途径.[方法]基于原始光谱数据的不同数据变换方式,采用相关性分析和逐步回归分析方法.[结果]不同数据变换后的冠层光谱反射率与枣LAI具有较好的相关性,微分变换后的相关性较原始相关性有所提升.所建模型经过精度评价发现,原始光谱数据经倒数一阶微分变换后估测模型拟合度和预测精度都最高,一阶微分、对数一阶微分、归一化一阶微分次之.[结论]不同数据变换方式后的光谱数据与塔里木盆地枣LAI有显著的相关性,可以用微分、对数微分、归一化微分、倒数微分变换后的数据建立较理想的塔里木盆地枣LAI的估测模型. 相似文献
3.
LAI是作物长势监测的一个重要指标,实时、无损和准确地估测冬小麦LAI具有重要的实践意义。通过对冬小麦进行不同的灌溉处理试验,研究LAI与冠层光谱反射率的关系,计算350~2 450 nm不同波段组合的原始光谱指数和导数光谱指数,筛选最优波段组合光谱指数,并建立LAI的监测模型。结果表明,冬小麦LAI与冠层光谱反射率和不同波段组合光谱指数相关性较好;冬小麦LAI监测的最优光谱指数为DVI(435,447),以此为自变量建立的指数模型y=10.669e~(-701.9x)表现最优,模型最稳定。 相似文献
4.
基于高光谱的冬小麦叶面积指数估算方法 总被引:3,自引:0,他引:3
【目的】冬小麦叶面积指数是评价其长势和预测产量的重要农学参数,高光谱技术监测叶面积指数的方法能够实现快速无损的监测管理。本文旨在将田间监测和高光谱遥感相结合,探索研究中国南方江汉平原地区冬小麦的最佳波段、光谱参数及监测模型。【方法】研究选取江汉平原的湖北省潜江市后湖管理区,利用ASD地物光谱仪和SunScan冠层分析系统在田间对冬小麦的冠层光谱及叶面积指数的变化进行监测,并探讨高光谱植被指数与冬小麦叶面积指数之间的定量关系。通过相关性分析、回归分析等方法构建6种植被指数与冬小麦叶面积指数的反演模型。【结果】冬小麦冠层光谱反射率中近红外波段870 nm,红光波谷670 nm,绿光波峰550 nm,蓝光450 nm波段对叶面积指数变化最为敏感,通过构建植被指数与叶面积指数模型,相关性均较好,决定系数(R2)为0.675-0.757,其中NDVI反演模型的R2最高为0.757。【结论】经模型精度检验,NDVI植被指数反演模型的精度较其它模型好,较适合对研究样区的冬小麦进行叶面积指数反演。 相似文献
5.
棉花叶面积指数冠层反射率光谱响应及其反演 总被引:8,自引:1,他引:8
【目的】研究棉花冠层光谱对不同叶面积指数(LAI)的响应,建立棉花LAI光谱反演模型。【方法】利用2003~2004年采集的棉花光谱与LAI的246组数据,分析LAI与冠层反射率光谱和反射率一阶微分光谱间的定量关系。【结果】当LAI大于2.5后不同LAI棉花群体光谱反射率在可见光波段趋于饱和;LAI与可见光波段和短波红外波段(水分吸收带除外)光谱反射率呈显著负相关,与近红外波段高光谱反射率呈显著正相关;LAI与棉花反射率一阶微分光谱主要在蓝边(523~531 nm)、黄边(570~576 nm)、红边(700~755 nm)形成3个相关系数高台区,均达极显著水平,其中红边区的相关性最高。棉花红边位置固定,分别在718 nm和723 nm,且以 723 nm处对LAI更敏感。在反演棉花LAI的高光谱参数中VI (660、800)、VI (550、800)、VI (500、800)、VI (670、800)、Sdy (570~573 nm)、SDr (714~755 nm)、D723、Dr 估算LAI相对误差低于30%,RSME小于0.6,其中VI (600、800)、VI(550、800)两个参数估算水平最高,相对误差分别为21.7%与21.0%,RMSE分别为0.416与0.419;利用SDr与SDr/SDb分别对LAI大于1.0 与小于1.0 的棉花群体反演,能显著提高LAI的估算水平。【结论】应用高光谱分析方法能够提取棉花冠层特征光谱信息,构建LAI高光谱反演参数,建立估算模型,并且利用包含不同光谱参数的分段模型可以进一步提高LAI反演精度。 相似文献
6.
高光谱遥感技术能够快捷、准确、无损坏地估测森林LAI,从而有效地监测森林长势,估测森林生物量,评价森林病虫害等。以黑龙江凉水自然保护区为例,利用高光谱遥感技术和GPS测量技术,结合地面实测LAI数据,采用从CASI图像提取的NDVI、SR、MSAVI 3种植被指数,与地面实测的LAI建立统计回归模型,然后再从众多的统计模型中根据相关系数,筛选出由CASI反演LAI的最佳植被指数和回归模型。 相似文献
7.
大豆叶面积的高光谱模型 总被引:4,自引:0,他引:4
以ASD FieldSpec-Vnir光谱仪实测不同生长季大豆的冠层反射率,同期采集对应大豆LAI,然后逐波段分析冠层光谱反射率、导数光谱与大豆LAI的相关关系;并采用单变量线性回归逐波段分析了冠层光谱反射率、导数光谱与大豆LAI确定性系数随波长的变化趋势,建立了以近红外与可见光波段冠层光谱反射率的比值植被指数RVI与大豆LAI的高光谱遥感估算模型。结果表明,冠层光谱反射率在350 ̄680nm、760 ̄1050nm波谱区与大豆LAI相关性较大,而在红边区680 ̄760nm的相关性变化较大;导数光谱在红边区与大豆LAI相关程度高。通RVI方式建立的遥感估算模型能较为准确估算大豆LAI,通过对红外与蓝波段建立的RVI指数与大豆LAI的回归模型,表明其预测大豆LAI的能力较好,有进一步研究的必要;通过对比发现,神经网络模型可以大大提升高光谱反演大豆LAI的水平,模型的确定系数R2为0.9661,而总均方根误差RMSE仅为0.446m2.m-2。 相似文献
8.
冬小麦冠层水平叶绿素含量的高光谱估测 总被引:1,自引:0,他引:1
【目的】利用高光谱数据对抽穗期冬小麦冠层叶绿素含量进行估测,旨在为叶绿素含量快速准确估测提供参考。【方法】利用ASD便携式野外光谱仪和SPAD-502叶绿素仪实测了冬小麦抽穗期冠层光谱反射率及叶绿素含量,并对原始光谱反射率及其一阶导数光谱与叶绿素相对含量进行了相关分析,建立了基于敏感波段、红边位置、原始光谱峰度和偏度、一阶导数光谱峰度和偏度的叶绿素估算模型,并进行检验,从中筛选出精度最高的模型。【结果】冬小麦冠层光谱曲线特征与叶绿素含量之间有着密切联系。基于原始光谱一阶导数偏度和峰度的冬小麦(抽穗期)叶绿素含量估算模型拟合精度优于其他4种估算模型,决定系数R2分别为0.847和0.572,均方根误差RMSE分别为0.397和0.697,相对误差RE分别为61.0%和119.0%,拟合精度优于其他4种估算模型。【结论】原始光谱一阶导数的偏度和峰度作为自变量能很好地估测抽穗期小麦冠层叶绿素含量。 相似文献
9.
【目的】 研究基于PROSAIL模型监测天然草地的动态变化,掌握草地的质量与数量。【方法】 研究使用地物光谱仪连续3年在天山北坡中段的2个山地草原样区采集光谱数据和配套数据,基于PROSAIL模型进行冠层LAI的高光谱反演,重点研究应用不同代价函数、植被种类变化对反演精度的影响。【结果】 多数代价函数反演LAI的决定系数(R2)在0.54~0.55,均方根误差(RMSE)在0.23~0.25,归一化均方根误差(NRMSE)在17~19。在9个来自不同统计类型的代价函数中,常用的RMSE代价函数的反演精度相对不高。将获取的427个样方数据依据种类数分成组,然后用PROSAIL进行LAI反演。种类数越多,RMSE在增大,R2在减少,反演精度越差。但精度的下降幅度不是均匀的,种类数≤2的组和种类数≤3的组之间精度差异最大。【结论】 在利用物理模型反演天然草地的叶面积指数时,不同代价函数获得的反演精度差别比较大;随着植被种类数量的增多,反演的精度是下降的。 相似文献
10.
[目的]为利用高光谱技术实现作物氮素营养状况无损快速监测提供途径.[方法]通过不同品种小麦不同氮素水平试验,分析小麦不同氮素营养状况下,叶片叶绿素含量与叶面积指数、冠层光谱角的关系,定量分析光谱角指数,并建立相关模型对小麦氮素营养状况进行实时监测.[结果]冠层光谱角指数与差值叶绿素含量和差值叶面积指数的相关性最高为0.919 7,两者之间建立的模型决定系数为0.739 2,0.617 8,具有很好的拟合效果.[结论]利用光谱角可以监测小麦叶片叶绿素及叶面积差异,在此基础上进行小麦氮素营养监测是可行的. 相似文献
11.
毛竹林生态系统健康评价技术研究 总被引:1,自引:0,他引:1
在探讨森林生态系统健康评价的基础上,提出了毛竹林生态系统健康评价的指标体系和评价方法,并以此对不同密度毛竹林生态系统进行了健康评价,旨在为毛竹林生态系统健康的修复与维护提供依据,对于推进毛竹林健康经营,促进毛竹林生态系统服务功能发挥具有重要的现实意义。 相似文献
12.
13.
基于冠层参数连续监测,研究了毛竹砌订lostaehysedulis笋快速生长过程中冠层参数动态,并分2个阶段分析了叶绿素质量、叶面积指数和冠层郁闭度与冠层上方光合有效辐射的关系。结果表明:①单位面积叶绿素质量、叶面积指数和冠层郁闭度值在毛竹笋快速生长过程中呈增长趋势,相应增量分别为5.5μg·cm-2,1.0和0.6;(②放叶前母竹叶绿素与光合有效辐射的相关性高于展枝放叶后两者的相关性,相关系数由0.57(P=0.180)降为0.14(P=0.860),在一定程度上反映了放叶前母竹为竹笋快速生长提供更多的光合产物:③在新竹放叶过程中.叶面积指数和冠层郁闭度与光合有效辐射的关系呈正相关,复相关系数分别为0.7960(P=O.120)和0.9916(P=O.004).说明在这一阶段毛竹林冠层对光能的利用和分配增强.图6参24 相似文献
14.
毛竹向杉木林扩张后的群落物种多样性特征 总被引:1,自引:0,他引:1
《福建林学院学报》2019,(1)
以戴云山自然保护区毛竹向杉木林扩张过程中形成的3种林分:毛竹林、毛竹杉木混交林、杉木林为对象,研究毛竹扩张对立竹结构和物种多样性的影响。结果表明,毛竹杉木混交林中立竹高度>9 m以及胸径>9 cm的立竹比例显著高于毛竹林中的比例,混交林中毛竹通过增大立竹高度和立竹胸径获得更多的养分和光照等资源,从而促进毛竹的快速生长以及扩张。毛竹向杉木林扩张过程中,灌木层和草本层的物种数量呈增加趋势,当杉木林完全演替为毛竹林后,物种数量显著增加。毛竹扩张对灌木层物种分布均匀度无明显影响,但会增加草本层物种分布均匀度。研究结果可为毛竹林扩张控制的人工干扰提供理论依据。 相似文献
15.
16.
在地面调查的基础上,利用协同克里格插值法对研究区内毛竹Phyllostachys edulis林叶面积指数(LAI,leaf area index)和冠层郁闭度(CC,canopy closure)2个冠层参数进行空间分布估算研究,并与普通克里格插值法进行了比较。研究结果表明:①球状模型可以用来反映LAI和CC的空间变异,且两者具有强烈的空间自相关特征。②协同克里格插值得到的LAI预测值与实测值之间的决定系数R2为0.635 1,而CC的决定系数R2为0.428 5;与普通克里格法相比,基于协同克里格法的LAI和CC预测精度均得到改善,其中LAI预测精度提高了1.94%,均方根误差减少2.00%,平均标准误差减少0.18%,而CC预测精度提高了4.82%,均方根误差减少1.90%,平均标准误差减少1.30%。③安吉县毛竹林LAI和CC都具有从西南到东北逐渐递减空间分布格局,在一定程度上反映了安吉县不同区域毛竹林经营水平的差异。 相似文献
17.
对衰败毛竹林恢复期经营技术措施进行探讨,分析了强化留笋养竹、不同抚育方式、不同施肥方式对衰败毛竹低产林的改造效果.试验结果表明:衰败毛竹低产林恢复期强化留笋养竹、化学除草是良好的抚育方法,施肥方式应以伐桩施肥为主,调整竹林结构是衰败毛竹林恢复产量的可靠保证. 相似文献
18.
【目的】为利用遥感技术定量提取区域尺度的阔叶林叶面积指数前的大气校正模型选择提供科学依据.【方法】分别利用6S模型、FLAASH模型和ATCOR2模型对Landsat 8 OLI影像进行了大气校正,分析了3种模型下的阔叶林叶面积指数(LAI)与多种植被指数(VI)相关性,建立了LAI-VI的线性和非线性的回归模型,最后通过验证数据组LAI预测值(Y)与LAI实测值(X)的均方根误差(RMSE)及线性相关性大小对阔叶林LAI遥感估算结果进行了精度对比.【结果和结论】ATCOR2模型不适于阔叶林LAI-VI的回归建模;除比值植被指数(RVI)外,FLAASH模型与6S模型下的阔叶林LAI与增强型植被指数(EVI)、修正土壤调节植被指数(MSAVI)有较好的相关性,其中FLAASH模型下的阔叶林LAI-MSAVI幂函数模型拟合优度最佳;FLAASH模型的阔叶林LAI估算精度优于6S模型;借助遥感技术定量提取植被生理参数时,应慎重选择适宜的大气校正模型. 相似文献
19.
采用梯度格局法研究毛竹林下植物沿海拔梯度的分布与环境因子之间的关系,对毛竹林下植物的分布和各环境因子进行去趋势典范对应分析(DCCA)。结果表明,灌木层、层间层、草本层的DCCA排序axes1效果和总体效果均为显著,其DCCA前2个排序轴特征值分别占总特征值的65.1%、65.6%、62.6%,排序效果良好;结合环境因子间的相关关系和DCCA排序结果,海拔对毛竹林下植物分布起决定性作用,其次是坡向,而坡度和坡位与林下植物的分布规律间的关系不明显。 相似文献