首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 909 毫秒
1.
We estimated the carbon (C) sequestration potential of organic matter application in Japanese arable soils at a country scale by applying the Rothamsted carbon (RothC) model at a 1-km resolution. After establishing the baseline soil organic carbon (SOC) content for 1990, a 25-year simulation was run for four management scenarios: A (minimum organic matter application), B (farmyard manure application), C (double cropping for paddy fields) and D (both B and C). The total SOC decreased during the simulation in all four scenarios because the C input in all four scenarios was lower than that required to maintain the baseline 1990 SOC level. Scenario A resulted in the greatest depletion, reflecting the effects of increased organic matter application in the other scenarios. The 25-year difference in SOC accumulation between scenario A and scenarios B, C and D was 32.3, 11.1 and 43.4 Mt C, respectively. The annual SOC accumulation per unit area was similar to a previous estimate, and the 25-year averages were 0.30, 0.10 and 0.41 t C ha−1 year−1 for scenarios B, C and D, respectively. The system we developed in the present study, that is, linking the RothC model and soil spatial data, can be useful for estimating the potential C sequestration resulting from an increase in organic matter input to Japanese arable soils, although more feasible scenarios need to be developed to enable more realistic estimation.  相似文献   

2.
The aim of this study was to assess the changes in soil organic carbon (SOC) stock in relation to the carbon (C) input from nine wheat-based cropping systems and untilled grass. The SOC pool ranged from 32.1 to 49.4 Mg ha?1 at 0–20 cm and from 94 to 171 Mg ha?1 at 0–100 cm for the arable soil, while in untilled grassland, it was higher (54 and 185 Mg C ha?1, respectively). SOC stock was observed to be lower at the unfertilized 2-year rotation and higher at the 4-year rotation with manure and mineral fertilization. The study showed a winter wheat yield decrease of 176.8 kg ha?1 for a 1- Mg ha?1 SOC stock change in the 0–20-cm soil depth. The estimated C input for SOC stock maintenance was from 266 to 340 g C m?2 year?1 for winter wheat and rotations, respectively. Additional C input did not increase the SOC pool, suggesting that arable plots had a limited ability to increase SOC. These results provide guidance for the selection of management practices to improve C sequestration.  相似文献   

3.
ABSTRACT

A meta-analysis of 297 treatment data from the Vezaiciai Branch of the Lithuanian Research Centre for Agriculture and Forestry long-term field experiment published from 2006 to 2015 was used to characterize the changes in SOC under different fertilization treatments and residue management practices in Lithuania’s acid soil. A meta-analysis was performed to quantify the relative annual change (RAC) of SOC content and the average RAC rate of SOC under four fertilization modes (farmyard manure (FYM) (40?t?ha?1)); alternative organic fertilizers (in the manure background (40?t?ha?1)); FYM (60?t?ha?1); alternative organic fertilizers (in the manure background (60?t?ha?1)) in two soil backgrounds (naturally acid and limed soil). The average RAC under four fertilization modes was 1.46 g?kg?1?yr?1, indicating that long-term fertilization had considerable SOC sequestration potential. Incorporation of alternative organic fertilizers in unlimed soil showed negative effects (?0.39 and ?0.66 g?kg?1?yr?1) in the observed long-term experiment. The RAC in the limed soil with incorporated organic fertilizers (FYM and alternative organic fertilizers), compared to the control, and varied from 0.25 g?kg?1?yr?1 in the treatment with incorporated alternative organic fertilizers (in the manure background (40?t?ha?1)) to 0.71 g?kg?1?yr?1 in the soil with FYM (60?t?ha?1). In this study, the average RAC rate of SOC under organic fertilization treatments in limed soil (5.07–6.54%) was longer than organic fertilization in unlimed soil (2.11–3.49%), which might be attributed to the application of organic manure that would result in a slow release of fertilizer efficiency. Our results indicate that the application of manure (40 or 60?t?ha?1) showed the greatest potential for C sequestration in agricultural soil and produced the longest SOC sequestration duration.  相似文献   

4.
Organic manure application is a feasible approach to alleviate the deterioration of soil erosion on soil organic carbon (SOC). However, to what extent manure application can restore carbon contents in SOC fractions in the eroded Phaeozems remains unknown. A 5-year field experiment was conducted in an artificially eroded Phaeozem with up to 30 cm of topsoil being removed. Chemical fertiliser, or chemical fertiliser plus cattle manure was applied. The contents of SOC were 23.6, 21.6 and 15.1 g C kg?1 soil for non-soil removal control, 10 and 30 cm of topsoil removal, respectively. Compared with the chemical fertiliser-only treatment, the chemical fertiliser plus manure application markedly increased SOC contents by 30–45% and C sequestration rates by 7.1–9.0-fold, especially in the fraction of 53–250 μm particulate organic carbon. However, with manure applied, SOC content in the fraction of mineral associated organic carbon in the 30 cm topsoil-removed soil was 2.9 g kg?1, 14.7% less than control (3.4 g kg?1). The combination of chemical fertliser and manure application effectively restored SOC in the eroded Phaeozems mainly through increasing the size of 53–250 μm particulate organic C fraction, but did not improve the SOC stability in severely eroded Phaeozems.  相似文献   

5.
The objective of this study was to investigate differences in organic matter fractions, such as dissolved organic carbon and humic substances, in soils under different land uses. Soil samples were collected from the upper layer of arable lands and grasslands. Humic substances (HS) were chemically fractionated into fulvic acids (FA), humic acids (HA) and humins (HUM), and based on the separated fractions, the humification index (HI) and the degree of HS transformation (DT) were calculated. Dissolved organic carbon (DOC) was determined by cold (CWE) and hot water (HWE) extractions. Regardless of land use, the results indicated significant differences in soil organic carbon (SOC) and HS composition, with HA and HUM as the dominant fractions. Total SOC was higher in grassland (median = 17.51 g kg?1) than arable soils (median = 9.98 g kg?1); the HI and DT indices did not differ significantly between land uses (HI = 0.3–10.3 and DT = 0.2–6.2 for grasslands, > 0.05; HI = 0.3–3.9 and DT = 0.2–20.1 for arable lands, > 0.05). This indicates the relatively high stability of organic carbon and efficient humification processes in both land uses. Additionally, in arable soils lower CWE‐C (0.75 g kg?1) and higher HWE‐C (2.59 g kg?1) than in grasslands (CWE‐C = 1.13 g kg?1, HWE‐C = 1.60 g kg?1) can be related to farming practice and application of soil amendments. The results showed that both labile and humified organic matter are better protected in grassland soils and are consequently less vulnerable to mineralization.  相似文献   

6.
No-tillage and manure application effect on soil organic carbon (SOC) and total nitrogen (N) concentrations were studied under a 27-year-old 4-year rotation consisting corn (Zea mays L.)-soybean (Glycine max L.)-wheat (Triticum aestivum L.)-field pea (Pisum sativum L.). Under each crop, four applied N treatments were control, annual urea-N applications at the rate of 45 and 89 kg N ha?1, and composted beef cattle feedlot manure-N at the rate 179 kg N ha?1 applied once every four year. For each fertilizer treatment, no-till (NT) and conventional till (CT) were compared for basic soil properties, SOC, and total N within 0–15 cm soil. Manure application significantly reduced soil bulk density and increased SOC and total N over urea-N. Particulate organic matter, mineralizable N, and permanganate-oxidizable C fractions significantly related with SOC. Long-term manure additions and no-tillage had potential to improve soil compaction and maintain SOC over chemical fertilizer N and CT.  相似文献   

7.
Abstract. Many former estimates of regional scale C sequestration potential have made use of linear regressions based on long-term experimental data, whilst some have used dynamic soil organic matter (SOM) models linked to spatial databases. Few studies have compared the two methods. We present a case study in which the potential of different land management practices to sequester carbon in soil in arable land is estimated by different methods. Two dynamic SOM models were chosen for this study, RothC (a soil process model) and CENTURY (a whole ecosystem model with a SOM module). RothC and CENTURY are the two most widely used and validated SOM models worldwide. A Geographic Information System (GIS) containing soil, land use and climate layers, was assembled for a case study in central Hungary. GIS interfaces were developed for the RothC and CENTURY models, thus linking them to the spatial datasets at the regional level. This allowed a comparison of estimates of the C sequestration potential of different land management practices obtained using the two models and using regression based approaches. Although estimates obtained by the different approaches were of the same order of magnitude, differences were observed. Some of the land management scenarios studied here showed sufficient C mitigation potential to meet Hungarian CO2 reduction commitments. For example, afforestation of 12% current arable land could sequester 0.042–0.092 Tg yr–1 in the soil alone, or 0.285–0.588 Tg C yr–1 in both soil and biomass; 1990 level CO2 emissions for the study area were 4.7 Tg C with a corresponding reduction commitment of 0.282 Tg C. It is not, however, suggested that this is the only, or the most favourable way, in which to meet the commitments.  相似文献   

8.
Recently, soil carbon sequestration in agro-ecosystems has been attracting significant interest as soil organic carbon (SOC) can potentially offset some atmospheric carbon dioxide. The objectives of this study were to use the RothC model to simulate soil carbon sequestration and determine the proportion of pasture production as carbon input for SOC sequestration under different pasture types and pasture management in a long term experiment established in 1992. There were two types of pastures, annual and perennial pastures, with or without application of limestone. Simulation results showed that with an initial setting for the stubble retention factor of 0.65 and root/shoot ratio of 0.5 for annual pasture and 1.0 for perennial pasture, RothC can adequately simulate SOC for both pasture types, especially annual pasture. Using an inverse modelling technique, the root/shoot ratio was determined as 0.49 and 0.57 for annual pasture and 0.72 and 0.76 for perennial pasture with and without limestone application, respectively. There was a large improvement in model performance for perennial pasture with and without limestone application. The root mean squared errors (RMSE) reduced from 3.19 and 2.99 t C ha−1 in the initial settings to 2.09 and 2.10 t C ha−1, while performance efficiency (PE) increased from 0.89 and 0.91 to the same value of 0.95 when the root/shoot ratio of 0.72 and 0.76 were used for limed and unlimed perennial pastures. However, there was little improvement for annual pasture as RMSE had little change and PE was the same. As the stubble retention factor and root/shoot ratio can be combined into one factor that measures an equivalent amount of total above-ground pasture production allocated for soil carbon input, the modelled results can be summarised as 1.2 times and 1.4 times the above-ground dry matter for annual and for perennial pasture, respectively, regardless of liming. Our results provide useful information for simulation of soil carbon sequestration under continuous pasture systems.  相似文献   

9.
Assembled results from 20 European long-term experiments (LTE), mainly from the first decade of the twenty-first century, are presented. The included LTEs from 17 sites are the responsibility of institutional members of the International Working Group of Long-term Experiments in the IUSS. Between the sites, average annual temperatures differ between 8.1 and 15.3°C, annual precipitation between 450 and 1400 mm, and soil clay contents between 3 and 31%. On average of 350 yield comparisons, combined mineral and organic fertilization resulted in a 6% yield benefit compared with mineral fertilization alone; in the case of winter wheat, the smallest effect was 3%, the largest effect, seen with potatoes, was 9%. All unfertilized treatments are depleted in soil organic carbon (SOC), varying between 0.36 and 2.06% SOC. The differences in SOC in unfertilized plots compared with the respective plots with combined mineral (NPK) and organic (10 t ha?1 farmyard manure) fertilization range between 0.11 and 0.72%, with an average of 0.3% (corresponding to ~15 t ha?1). Consequently, the use of arable soils for carbon sequestration is limited and of low relevance and merely depleted soils can temporarily accumulate carbon up to their optimum C content.  相似文献   

10.
Biochar addition can expand soil organic carbon (SOC) stock and has potential ability in mitigating climate change. Also, some incubation experiments have shown that biochar can increase soil inorganic carbon (SIC) contents. However, there is no direct evidence for this from the field experiment. In order to make up the sparseness of available data resulting from the long‐term effect of biochar amendment on soil carbon fractions, here we detected the contents and stocks of the bulk SIC and SOC fractions based on a 10‐year field experiment of consecutive biochar application in Shandong Province, China. There are three biochar treatments as no‐biochar (control), and biochar application at 4.5 Mg ha?1 year?1 (B4.5) and 9.0 Mg ha?1 year?1 (B9.0), respectively. The results showed that biochar application significantly enhanced SIC content (3.2%–24.3%), >53 μm particulate organic carbon content (POC, 38.2%–166.2%) and total soil organic carbon content (15.8%–82.2%), compared with the no‐biochar control. However, <53 μm silt–clay‐associated organic carbon (SCOC) content was significantly decreased (14%–27%) under the B9.0 treatment. Our study provides the direct field evidence that SIC contributed to carbon sequestration after the biochar application, and indicates that the applied biochar was allocated mainly in POC fraction. Further, the decreased SCOC and increased microbial biomass carbon contents observed in field suggest that the biochar application might exert a positive priming effect on native soil organic carbon.  相似文献   

11.
Disposal of ashes from agro-industrial waste has become an important issue that can cause serious environmental problems. These materials may be used in agriculture for soil fertility improvement and carbon sequestration. The effect of applying bagasse ash (BA), rice husk ash (RHA), and RHA mixed with fly ash (MA) to wheat was evaluated on soil organic carbon (SOC) and microbial activity in a loamy sand soil after four years of wheat-rice cropping. BA application resulted in C accrual at 525 kg ha?1 y?1 in soil, whereas RHA and MA did not have a significant effect. BA increased coarse particulate (cPOC) and mineral-associated organic matter (MinOC) and extractable C pools viz. hot water soluble, potassium permanganate (KMnO4)-oxidizable, easily oxidizable, non-oxidizable, and microbial biomass C. BA application also improved overall microbial and oxidative activity and stimulated fluorescein diacetate (FDA), dehydrogenase, and cellulase enzyme activities in soil. Application of RHA though did not lead to net C sequestration, yet it increased dehydrogenase and cellulase activities. Compared to unamended soil, MA application increased MinOC and FDA activity in soil. After 4 years of their application, none of the ashes adversely influenced soil biological activity expressed in terms of enzyme activities suggesting that these ashes can be disposed to agricultural soils. However, effects of their long-term application on soil biological processes need to be further investigated.  相似文献   

12.
The addition of organic matter via green manure rotation with rice is considered a smart agricultural practice to maintain soil productivity and support environmental sustainability. However, few studies have quantitatively assessed the impact of green manure rotation and application on the interactions between agronomic management practice, soil fertility, and crop production. In this study, 800 pairs of data from 108 studies conducted in the agricultural region of the Yangtze River, China were...  相似文献   

13.
Management practices can have significant implications for both soil quality and carbon (C) sequestration potential in agricultural soils. Data from two long‐term trials (one at field scale and the other at lysimeter scale), underway in north‐eastern Italy, were used to evaluate the dynamics of soil organic carbon (SOC) and estimate the impact of recommended management practices (RMPs) on soil carbon sequestration. Potential SOC sequestration was calculated as the differences between the change in SOC of treatments differing only for the specified RMP for a period of at least 25 years. The trials compared the following situations: (a) improved crop rotations versus monoculture; (b) grass versus improved crop rotations; (c) residue incorporation versus residue removal; (d) high versus low rates of inorganic fertilizers; (e) integrated nutrient management/organic manures versus inorganic fertilizers. At the lysimeter scale, some of these treatments were evaluated in different soils. A general decrease in SOC (1.1 t C ha?1 year?1) was observed after the introduction of intensive soil tillage, evidencing both the worsening of soil quality and the contribution towards global CO2 emissions. Initial SOC content was maintained only in permanent grassland, complex rotations and/or with the use of large quantities of livestock manure. SOC sequestration reached a maximum rate of 0.4 t C ha?1 year?1 comparing permanent grassland with an improved crop rotation. Crop residue incorporation and rates of inorganic fertilizer had less effect on SOC sequestration (0.10 and 0.038 t C ha?1 year?1, respectively). The lysimeter experiment highlighted also the interaction between RMPs and soil type. Peaty soil tended to be a source of C independent of the amount and quality of C input, whereas a proper choice of tillage practices and organic manures enhanced SOC sequestration in a sandy soil. The most promising RMPs in the Veneto region are, therefore, conversion to grassland and use of organic manures. Although some of these RMPs are already supported by the Veneto Region Rural Development Plan, their more intensive and widespread implementation requires additional incentives to become economically feasible.  相似文献   

14.
The Kyoto Protocol explicitly allows the storage of carbon (C) in ecosystems resulting from afforestation to be offset against a nation's carbon emissions and paves the way for carbon storage in soils to be eligible as carbon offsets in the future. More information is required about how afforestation affects carbon storage, especially in the soil. We report a study in which soil carbon storage in first‐rotation Mediterranean Pinus radiata plantations, established on former cereal fields and vineyards, was measured and modelled. Measurements were made on plantations of several ages, as well as repeat measurements at the same site after 5 years. We tested the ability of two widely used soil organic matter models (RothC and Century) to predict carbon sequestration in Mediterranean forest soils. Increases in the top 5 cm of soil of about 10 g C m?2 year?1 were observed after afforestation of former vineyards, but nitrogen (N) either remained the same or decreased slightly. During afforestation, most organic matter accumulated in the ectorganic layers at a rate of 19 g C m?2 year?1 in former vineyards and 41 g C m?2 year?1 in former cereal fields. The RothC and Century models were sensitive to previous land use and estimated a carbon sequestration potential over 20 years of 950 and 700 g C m?2, respectively. The accurate simulation of the dynamics of soil organic matter by RothC, together with measured above‐ground inputs, allowed us to calculate below‐ground inputs during afforestation. The Century model simulated total C and N, including the ectorganic horizons, well. Simulations showed a depletion of N in the below‐ground fractions during afforestation, with N limitation in the former vineyard but not on former cereal land. The approach demonstrates the potential of models to enhance our understanding of the processes leading to carbon sequestration in soils.  相似文献   

15.
Substantial losses of soil organic carbon (SOC) from the plough layer of intensively managed arable soils in western Europe have recently been reported, but these estimates are associated with very large uncertainties. Following soil surveys in 1952 and 1990 of arable soils in West Flanders (Belgium), we resampled 116 sites in 2003 and thus obtained three paired measurements of the OC stocks in these soils. Ten soils were selected for detailed physical fractionation to obtain possible further explanations for changes in SOC stocks. Between 1990 and 2003, the SOC stocks decreased at an average rate of ?0.19 t OC ha?1 year?1. This loss is significant but is still less than half the rate of SOC decrease that was estimated previously for the whole region of Flanders, which includes the study area. Variation in SOC stocks or in the magnitude of SOC stock losses could not be related to soil texture, to changes in ploughing depth, or to recent land‐use changes. A good relationship, however, was found between the SOC losses and organic matter (OM) inputs. The results of the physical fractionation also suggested management to be the predominant factor determining variation in SOC stocks because no correlation was found between soil texture and the absolute amounts of OC present in the largest OM fractions, that is, the OC in free particulate organic matter (POM), and OC associated with the silt + clay size fraction. The proportion of OC in free POM was up to 40% of the total OC, which indicates the important impact of management on SOC and also indicates that a substantial part of the SOC still present, may in the future be lost at a time scale of years to decades assuming that the intensive management continues.  相似文献   

16.
Abstract. Predictive, regional use of soil organic matter (SOM) models requires evaluation of the performance of models with datasets from long‐term experiments relevant to the scenarios of interest to the regional scale study, and relevant to the climate of the study region. Datasets from six long‐term experiments were used to evaluate the performance of RothC and CENTURY, two of the most widely used and tested SOM models. Three types of model run were completed for each site: (1) CENTURY model alone; (2) RothC model run to fit measured SOC values, by iteratively adjusting C inputs to soil; and (3) RothC model run using C inputs derived from CENTURY runs. In general, the performance of both models was good across all datasets. The runs using RothC (iteratively changing C inputs to fit measured SOC values) tended to have the best fit to model data, since this method involved direct fitting to observed data. Carbon inputs estimated by RothC were, in general, lower than those estimated by CENTURY, since SOC in CENTURY tends to turn over faster than SOC in RothC. The runs using RothC with CENTURY C inputs tended to have the poorest fit of all, since CENTURY predicted greater C inputs than were required by RothC to maintain the same SOC content. A plausible model fit to measured SOC data may be obtained with widely differing C input values, due to differences in predicted decomposition rates between models. It remains unclear which, if either, modelling approach most closely represents reality since both C inputs to soil and decomposition rates for bulk SOM are difficult to determine experimentally. Further progress in SOM modelling can only be the result of research leading to better process understanding, both of net C inputs to soil and of SOM decomposition rates. The use of default methods for estimating initial SOC pools in RothC and CENTURY may not always be appropriate and may require adjustment for specific sites. The simulations presented here also suggest details of SOC dynamics not shown by available measured data, especially trends between sampling intervals, and this emphasizes the importance of archived soil samples in long‐term experiments.  相似文献   

17.
ABSTRACT

Organic amendments in the soil perform better than synthetic fertilizers in regards to soil fertility and sustainable crop productivity. Experiments were conducted to compare the effects of organic and synthetic fertilizers on soil fertility and wheat (Triticum aestivum L.) productivity. Soil fertility and protein contents of wheat grains (13.2% and 13.3% during 2005–06 and 2006–07, respectively) were improved by organic amendments. However, synthetic fertilizer (at the rate of 150, 100, and 60 kg ha?1 N, P2O5, and K2O, respectively) applications resulted in the maximum grain yield (4.05 and 4.46 t ha?1 during 2005–06 and 2006–07, respectively). The observed and simulated soil organic carbon (SOC) reasonably agreed during RothC model validation (R 2 = 0.99). Economic analysis showed the maximum net profit and relative increase in income ($729 US ha?1 and 309%, respectively) from inorganic treatment. Application of synthetic fertilizers increased grain yield and farm profit while organic manure enhanced grain quality. The RothC model had potential for determining the SOC in organic farming under arid environment.  相似文献   

18.
Understanding the response of soil organic carbon (SOC) to environmental and management factors is necessary for estimating the potential of soils to sequester atmospheric carbon. Changes over time in the amount and distribution of SOC fractions with different turnover rates can be estimated by means of soil SOC models such as RothC, which typically consider two to five SOC pools. Ideally, these pools should correspond to measurable SOC fractions. The aim of this study was to test the relationship between SOC pools used in RothC and fractions separated through a fractionation procedure. A total of 123 topsoil samples from agricultural sites (arable land, grassland and alpine pasture) across Switzerland were used. A combination of physical and chemical methods resulted in two sensitive (particulate organic matter and dissolved organic carbon), two slow (carbon associated to clay and silt or stabilized in aggregates) and one passive (oxidation-resistant carbon) SOM fractions. These fractions were compared with the estimated equilibrium model pools when the corresponding soils were modelled with RothC. Analysis revealed strong correlations between SOC in measured fractions and modelled pools. Spearman's rank correlation coefficients varied between 0.82 for decomposable plant materials (DPM), 0.76 for resistant plant materials (RPM), 0.99 for humified organic matter (HUM) and biomass (BIO), and 0.73 for inert organic matter (IOM). The results show that the proposed fractionation procedure can be used with minor adaptations to identify measurable SOC fractions, which can be used to initialize and evaluate RothC for a wide range of site conditions.  相似文献   

19.
The maintenance and accumulation of soil organic carbon (SOC) in agricultural systems is critical to food security and climate change, but information about the dynamic trend and efficiency of SOC sequestration is still limited, particularly under long‐term fertilizations. In a typical Purpli‐Udic Cambosols soil under subtropical monsoon climate in southwestern China this study thus estimated the dynamic, trend and efficiency of SOC sequestration after 22‐year (1991–2013) long‐term inorganic and/or organic fertilizations. Nine fertilizations under a rice–wheat system were examined: control (no fertilization), N, NP, NK, PK, NPK, NPKM (NPK plus manure), NPKS (NPK plus straw), and 1.5NPKS (150% NPK plus straw). Averagely, after 22‐years SOC contents were significantly increased by 4.2–25.3% and 10.2–32.5% under these fertilizations than under control conditions with the greatest increase under NPKS. The simulation of SOC dynamic change with an exponential growth equation to maximum over the whole fertilization period predicted the SOC level in a steady state as 18.1 g kg?1 for NPKS, 17.4 g kg?1 for 1.5NPKS, and 14.5–14.9 g kg?1 for NK, NP, NPK, and NPKM, respectively. Either inorganic, organic or their combined fertilization significantly increased crop productivity and C inputs that were incorporated into soil ranging from 0.91 to 4.63 t (ha · y)?1. The C sequestration efficiency was lower under NPKM, NPKS, and 1.5NPKS (13.2%, 9.0%, and 10.1%) than under NP and NPK (17.0% and 14.4%). The increase of SOC was asymptotical to a maximum with increasing C inputs that were variedly enhanced by different fertilizations, indicating an existence of SOC saturation and a declined marginal efficiency of SOC sequestration. Taken all these results together, the combined NPK plus straw return is a suitable fertilizer management strategy to simultaneously achieve high crop productivity and soil C sequestration potential particularly in crop rotation systems.  相似文献   

20.
Agricultural soils play a very important role in regulating the carbon dioxide (CO2) content of the atmosphere, and can behave either as carbon sources or sinks. We have simulated the dynamics of carbon in the soil under different land uses and soil-management systems in a Mediterranean olive grove with the Rothamsted carbon (RothC) model. To this end we chose patches of native vegetation (NV) and two different olive grove soils (chromic calcisols and calcic vertisols) under different soil-management systems: conventional tillage (T), and mulching with shredded olive-pruning debris and residues from olive-fruit cleaning (PD + CR). We measured the clay content, bulk density, soil organic carbon (SOC) and total nitrogen (N) in each patch. The SOC and N values decreased by more than 30% as a result of a change in soil use from NV to T olive grove. After adding PD + CR these values rose once more, even to levels above NV. The RothC model performed well for covered soils (NV and PD + CR) but overestimated the SOC values after the soil use was changed from NV to T olive grove, probably due to high carbon losses caused by erosion, common to T soils in the Mediterranean basin. As a result of mulching the soil with only pruning debris, CO2 emitted to the atmosphere was reduced by >55% for both soils. Associated with this decrease in the emission rate, RothC estimated a potential carbon sequestration of 0.5 and 0.6 t C/ha/yr for chromic calcisols and calcic vertisols, respectively. The reuse of organic debris generated in the olive grove, such as pruning debris and residues from olive-fruit cleaning, is an efficient way of improving soil properties, diminishing CO2 emissions and increasing the soil’s capacity to store carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号