共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
3.
Quick and accurate assessment of fish freshness is of great significance for intelligent quality monitoring and ensuring the safety of consumers. In the current fish freshness evaluation method based on visual images, the study of fish gills needs to remove the gill cover, which is invasive to the fish body, and the analysis of other parts has a low evaluation accuracy. To solve the above problems, a fish freshness classification method based on color histogram & grey-level co-occurrence matrix-linear discriminant analysis (CHG-LDA) was proposed. Firstly, preprocessing operations such as labeling, image zooming and color space conversion were performed on the collected fish images. Secondly, the extracted color histogram features and grey-level co-occurrence matrix (GLCM) features were fused to constitute the features, and the feature dimension was reduced by LDA. Finally, K-nearest neighbor (KNN) algorithm was used to classify fish freshness. The CHG-LDA method proposed solved the problem of poor classification performance caused by the low quality of the extracted fish image features. The experiment was carried out on a real crucian data set, and the index values of precision, recall, F1-score and accuracy were all 1. Compared with color histogram features, color moment, GLCM features, etc., this method improved the performance of each evaluation index on KNN, RF, ANN, and LightGBM classifiers. Among them, the evaluation time of KNN was the best, which was 0.01s. Experimental results showed that this method can achieve accurate and non-destructive evaluation of fish freshness, and it was feasible for actual production monitoring. 相似文献
4.
基于BP神经网络的鲜鸡蛋货架期预测模型 总被引:3,自引:0,他引:3
为研究不同温度范围内鸡蛋的品质变化及货架期,通过实验室模拟,检测了鲜鸡蛋在5、25、35℃条件下的哈夫单位值、蛋黄系数等理化指标,分别构建了同等实验条件下的鲜鸡蛋货架期动力学预测模型和BP神经网络预测模型,并选取5、25、35℃温度下共6组数据进行模型验证。结果表明,基于BP神经网络的鲜鸡蛋货架期模型预测精度达到95.93%,动力学模型预测精度为90.79%,BP神经网络能更精确地预测鲜鸡蛋在5~35℃贮藏温度范围内的货架期。 相似文献
5.
6.
7.
8.
9.
10.
11.
柑橘成熟度多重分形无损检测 总被引:2,自引:0,他引:2
为无损检测柑橘成熟度,将柑橘主要色调分布范围30°~ 120°进行了等分,形成3幅色调图,分析每幅色调图标度不变域及多重分形谱,以多重分形谱高度和宽度表征柑橘果皮色泽特征,并以此作为BP神经网络的输入,可溶性总固形物含量为输出,建立柑橘成熟度模型,映射柑橘成熟度.试验的平均正确识别率为82%,表明通过柑橘果皮色调的多重分形谱能无损检测柑橘成熟度. 相似文献
12.
13.
基于BP神经网络的汽车发动机故障诊断方法研究 总被引:1,自引:0,他引:1
介绍了BP神经网络学习算法,建立了汽车发动机振动测试系统,在对发动机振动数据进行分析处理的基础上,获取了学习样本的输入向量与目标向量,应用BP网络学习算法对新构的网络进行训练,建立了一种发动机机械故障诊断的新方法,实例分析结果表明,这种新方法是可行的。 相似文献
14.
15.
16.
17.
18.
鲜枣品种和可溶性固形物含量近红外光谱检 总被引:4,自引:3,他引:4
采用近红外光谱分析技术无损鉴别鲜枣品种和测定其可溶性固形物含量.对3个不同品种的鲜枣进行光谱分析,各获取30个样本数据.采用平滑法和多元散射校正方法对样本数据进行预处理,再用主成分分析法对光谱数据进行聚类分析并获得各主成分数据.将样本随机分成75个建模样本和15个预测样本,将建模样本的主成分数据作为BP神经网络的输入变量,鲜枣品种和可溶性固形物含量作为输出变量,建立3层人工神经网络鉴别模型,并用该模型对15个预测样本进行预测.结果表明,在阈值设定为±0.17的情况下该模型对预测集样本品种鉴别准确率达到100%,可溶性固形物含量预测值与实测值相对偏差小于10%. 相似文献
19.
基于BP神经网络的土壤氮素运移模型 总被引:1,自引:0,他引:1
随着淡水资源的日益紧缺,再生水灌溉已成为人们日益瞩目的研究方向,而再生水灌溉条件下土壤氮素运移规律与模拟成为这个研究的关键环节之一.以往对土壤氮素运移的模拟主要聚焦在数值模拟上,鉴于数值模拟在应用上的复杂性,为了寻找一种简便实用的模拟方法,尝试引入人工神经网络技术对土壤氮素运移进行模拟,经模拟计算得出,拓扑结构为10:12:7的BP网络模型可以较精确地模拟再生水灌溉条件下的土壤氮素运移,此研究为土壤氮素运移的研究开辟了新方向. 相似文献