首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sunflower lines RHA‐274, HA‐61 and RHA‐325 were studied for their resistance to race 330 of downy mildew (Plasmopara halstedii). The same inbred line, with normal (HA‐89) or sterile cytoplasm (cmsHA‐89) was used in all the crosses as susceptible parent, and, in each cross, only one genotype of the resistant parent was studied. The resistant‐to‐susceptible ratios obtained in the BC1 and F2 progenies from the crosses of the lines RHA‐274 and HA‐61 to cmsHA‐89 and HA‐89, respectively, suggested that, in each resistant line, two dominant genes are responsible for resistance to this downy mildew race. One of the genes (A) is epistatic to the other (B), and the recessive allele b in homozygosity is also epistatic to aa, with plants carrying aabb genotypes being resistant. Resistance to race 330 seemed to be controlled by two complementary genes in the sunflower inbred line RHA‐325, the dominant allele of one of them being present in cmsHA‐89. In the genotypes HA‐89 or cmsHA‐89, the existence of genes that modify the expected segregations following the crosses with resistant parents is proposed. It is concluded that, although major genes have been described as responsible for monogenic resistance to downy mildew, other types of regulation of this character, such as complementarity and epistatic relationships, do occur.  相似文献   

2.
The cytoplasmic male‐sterility (CMS)/fertility‐restoration system is important for hybrid sunflower (Helianthus annuus L.) seed production. The objective of this study was to characterize two novel alloplasmic CMSs, designated CMS GRO1 and CMS MAX3, with defective anthers, narrow disc florets with no swollen corolla, and short, narrow ray flowers derived from two tetraploid amphiploids (AMPs). Among 26 tested lines, only AMP Helianthus cusickii/P 21 and HA 410 failed to restore male‐fertility. Segregation of CMS, male‐fertile plants and plants with reduced male‐fertility was observed both in the testcross progeny of a six line half‐diallel cross of F1s with CMS MAX3 and in an F2 population of CMS GRO1 × RHA 274. Male‐fertility restoration was controlled by at least two dominant genes. Detailed analysis of the mitochondrial genes may provide insight into the differences between these CMSs and other CMS lines. The new CMSs will facilitate the studies of the incompatibility between cytoplasmic and nuclear genes, especially for the alloplasmic CMS involving perennial species, and also provide unique ornamental flower types and CMS sources for hybrid sunflower breeding.  相似文献   

3.
M. Rahim    C. C. Jan  T. J. Gulya 《Plant Breeding》2002,121(1):57-60
Sunflower downy mildew (SDM) caused by Plasmopara halstedii, is a major disease of sunflower. Eleven resistance genes have been identified, but allelic relationships among these genes are not clear. This study examined the inheritance and allelic relationships of genes conferring resistance to SDM races 1, 2 and 3 (virulence phenotypes 100, 300 and 700, respectively) and confirmed a twelfth resistance gene. Three USDA Plant Introductions, AMES 3235, PI 497250, and PI 497938, and three released lines, RHA 266, RHA 274 and DM‐2 were studied. RHA 266 has only the Pl1 gene for race 1 resistance. Digenic inheritance of resistance was found in AMES 3235, PI 497250, and RHA 274. These lines have the Pl1 and Pl12 genes, conferring resistance to race 1, and the Pl2 and Pl11 genes, conferring resistance to race 2. DM‐2 and PI 497938 have Pl12 (but not Pl1 for resistance to race 1, the Pl12 gene (but not the Pl2) for resistance to race 2, and Pl5 for resistance to race 3. These resistance genes will serve as a foundation for future gene designations and genetic diversity studies of resistance to SDM.  相似文献   

4.
Z. Quresh    C. C. Jan  T. J. Gulya 《Plant Breeding》1993,110(4):297-306
Resistance to the prevailing races of sunflower rust, Puccinia hehanthi Schw., is lacking in the commercial hybrids (Helianthus annuus L.). The objective of this study was to identify new sources of resistance to the four North American rust races in wild Helianthus species, and to determine their mode of inheritance. Seventy-eight accessions of H. annuus L., H. argophyllus Torrey and Gray, and H. petiolans Nutt. were evaluated in the greenhouse. Resistance to races 1, 2, 3, and 4 was observed in 25, 28, 15, and 26% of the plants, respectively, and 10% of the plants were resistant to all four races. Seven accessions that had a high percentage of resistant plants to all the four races were selected and one resistant plant from each accession was crossed with susceptible inbred line HA89. Three to four F1 plants resistant to all four races from each cross were backcrossed with HA89. F1 plants from PI-413118 × HA89 and PI 413175 × HA89 were resistant to all four races. The PI 413023 × HA89 F1 plants were 100 % resistant to races 3 and 4 and segregated in a 3: 1 resistant (R) to susceptible (S) ratio to races 1 and 2. The other four F1 combinations segregated 3R: IS ratios to all four races. Bc1F1 progenies revealed that plants from PI 413048, PI 413037, PI 413038, and PI 413171 used in the crosses possessed two dominant genes in heterozygous condition for resistance to each of the four races, whereas plants from PI 413023 possessed two dominant genes in heterozygous condition for resistance to each of races 1 and 2, and one dominant resistance gene in homozygous condition for each of races 3 and 4. Plants from PI 413118 and PI 413175 carried a single dominant gene in homozygous condition for resistance against each of the four races.  相似文献   

5.
Sunflower downy mildew caused by Plasmopara halstedii is an important disease of sunflower capable of causing losses of more than 80% of production. Races 100, 300, 310, 330, 710, 703, 730 and770 of the fungus have been identified in Spain. Race 703, of high virulence, has been identified frequently in the northeast, while race 310 seems to occur over the south, the main sunflower growing region of the country. Oil sunflower lines RHA-274 and DM4 were studied for their resistance to races 310(RHA-274 and DM4) and 703 (DM4). In each cross, only one plant of the resistant parent was crossed to the inbred susceptible line HA-89 (or cmsHA-89).Plants from F2 and backcross(BC1F1 to susceptible parent)generations were evaluated for fungal sporulation on true leaves and/or cotyledons. The resistant-to-susceptible ratios obtained in the F2 and BC1F1 progenies from the crosses cmsHA-89 × RHA-274 and HA-89 × DM4suggested that one major gene in each line is responsible for resistance to race 703.The segregations of the progenies of the cross HA-89 × DM4 inoculated with race 703also fitted the ratios 1:1 and 3:1 (for BC1F1 and F2, respectively)corresponding to control of resistance by a single dominant gene. In RHA-274, the gene for resistance to race 310 was designated Pl 9, whereas Pl v is tentatively proposed to designate the gene in DM4 responsible for resistance to races310 and 703. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A backcrossing programme was carried out both to assess the stability of a cytoplasmic male‐sterility (CMS) source from Helianthus resinosus, designated RES1, and to incorporate it into inbred sunflower lines (HA89, RHA271, RHA801). All the progenies, grown in different environments, were completely male‐sterile. This suggests that the expression of this cytoplasm is stable. Female‐fertility of lines HA89, RHA271 and RHA801 carrying CMS RES1 were compared with those of the corresponding fertile inbred lines. There were no differences in the number of seeds per head. This indicates that female‐fertility is not affected by RES1 cytoplasm. Cytological studies showed that meiosis proceeds normally until the tetrad stage; consequently, the absence of pollen is caused by alterations that take place during postmeiotic stages. With the aim of identifying male‐fertility restorer genotypes, crosses were made between HA89 (CMS RES1) plants and different annual diploid and perennial hexaploid Helianthus species. All the diploid germplasm evaluated behaved as a CMS RES1 maintainer. However, the hexaploid species, H. resinosus, H. x laetiflorus, H. pauciflorus and H. tuberosus, restored pollen fertility in CMS RES1 plants.  相似文献   

7.
K. Murai 《Plant Breeding》2002,121(4):363-365
A ‘two‐line system’ using photoperiod‐sensitive cytoplasmic male sterility (PCMS) caused by Aegilops crassa cytoplasm under a long‐day photoperiod ( 15 h) has been proposed as a new means of producing hybrid varieties in common wheat. The PCMS line is maintained by self‐pollination under short‐day conditions, and hybrid seeds can be produced through outcrossing of the PCMS line with a pollinator under long‐day conditions. Two kinds of fertility restoration systems against the PCMS are known. One is involved with a set of multiple fertility‐restoring (Rf) genes in the wheat cultivar ‘Norin 61’ located on (at least) chromosomes 4A, 1D, 3D and 5D. The other is controlled by a single dominant major Rf gene, Rfd1, located on the long arm of chromosome 7B in the wheat cultivar ‘Chinese Spring’. To examine the degree of fertility restoration by these two systems, nine PCMS lines were crossed with ‘Norin 61’ and ‘Chinese Spring’ as the restorer lines, and the F1 hybrids were investigated. The degree of fertility restoration was estimated by comparing the seed set rates in the F1 hybrids having the Ae. crassa cytoplasm and those with normal cytoplasm. The results revealed that the fertility restoration ability of a set of multiple Rf genes in ‘Norin 61’ was higher than that of the Rfd1 gene in ‘Chinese Spring’.  相似文献   

8.
Sunflower (Helianthus annuus L.) productions reliance on a single source of cytoplasmic male sterility, PET1, derived from H. petiolaris Nutt., makes the crop genetically vulnerable. Twenty diverse cytoplasmic substitution lines from annual and perennial wild species were compared with the inbred line HA89 over four environments. Pairwise comparisons of alloplasmic male fertile (MF) with euplasmic MF lines suggested that cytoplasm of perennial H. angustifolius increased lodging while perennial cytoplasms of H. mollis, H. grosseserratus, and H. divaricatus reduced head size and consequently reduced yield and will need to be used with caution. Lines having annual species, cytoplasms had no effects on agronomic traits. Comparisons of CMS HA 89 with 10 CMS lines suggested yield‐reducing cytoplasmic effects of perennial H. maximiliani and annual H. annuus PI 413178 and PI 413024. Cytoplasmic effects on oil percentage and fatty acid composition were minimal and should not be of concern for sunflower breeders. In general, most cytoplasms of wild annual Helianthus species accommodate cultivated nuclear genes without drastic adverse interactions, and are potential sources of cytoplasmic diversity for sunflower breeding.  相似文献   

9.
Summary Fertility restoration in the cross between a cytoplasmic male sterile line, 2 cm 183, and the restorer line, BCZ 111, (both obtained from France) was dominant in F1 and segregated in a 9:7 ratio in the F2 generation and thus suggested the action of two independent, complementary dominant genes controlling restoration. The behaviour of F3 families broadly confirmed the F2 ratio. The reasons underlying this pattern of inheritance has been discussed and the genetic symbols rf 1 rf 1 rf2 rf2and Rf 1 Rf 1 Rf 2 Rf 2 have been suggested for the male sterile and the restorer parents respectively.  相似文献   

10.
Summary Ten cytoplasmic male sterile (CMS) sunflower (Helianthus annuus L.) lines were crossed with nine maintainer or male fertility restorer lines in a diallel crossing scheme. Based on fertility restoration of the F1 generation, CMS lines were divided into four groups. At least two new sources of CMS, CMS PET2 and CMS GIG1, were found to be potentially useful for commercial production of hybrids. Environment had an influence on fertility restoration of one CMS line, CMS MAX1. Effective restoration of male fertility for CMS RIG1, CMS ANN2, and CMS ANN3 was not found.  相似文献   

11.
Summary Fertility restoration genes in Triticum aestivum L. in Texas Restorer Composite (TRC), D6301, and four CIMMYT restorer lines were studied, and selection was made for higher fertility in TRC. Mean-while, outcrossing percentages of seed set for 27 spring habit cytoplasmic male sterile (cms) varieties were evaluated for 3 to 5 years at Davis. The winter-habit TRC material did not restore reasonably good fertility, and the response to selection for higher fertility seemed to be slow. This poor fertility could be partly due to its late winter growth habit causing flowering at a period of high temperature and low humidity at Davis. The highest F1 fertility was 46.6% in the cross cms Ramona x TRC-6, and its F2 segregated into the ratio of 15 fertile to 1 sterile, with fertility ranging from 3.2 to 100%. Suggested for its improvement was intensive selection in the original TRC material and in the segre-gating F2 population, followed by intercrossing. D6301 has 2 fertility restoration genes with different strengths which restore fertility up to 45.2% when both genes are heterozygous. D6301 is quite likely heterogeneous for these genes. Four CIMMYT restorer lines, D7464, D7465, D7466, and D7467, had satisfactory F1 fertility restoration after crossing with cms Ramona 50. In 1975, the fertilities of the F1's ranged from 71 to 85% and were over 90% in 1976. The F2 population of the cross cms Ramona 50 × D7464 segregated into a ratio of 3 fertile to 1 sterile, indicating that D7464 has a single dominant gene for fertility restoration. The F2's of crosses cms Ramona 50 × D7465, cms Ramona 50 × D7466, and cms Ramona 50 × D7467 gave a ratio of 15 fertile to 1 sterile, indicating that two gene pairs in these three lines were responsible for the fertility restoration. The best of this group was D7467 which restored fertility fully after being crossed with cms Ramona 50 (T. timopheevi cytoplasm).The early-flowering cms male-sterile varieties had higher outcrossing rates (16 to 38%) than late varieties (6 to 30%) over a 5-year period. This was due to hot and dry weather during the late growing season as well as to the rarity of windborne pollen. In 1970, 1971, 1972, and 1976, the variation among varieties was rather great. Some of them such as Roque 66 and Bajio 67, had consistently high outcrossing rates. This outcrossing ability seemed to be inherited and probably associated with the open-flowering characteristics of each variety.  相似文献   

12.
The objective of the present research was to study the inheritance of reduced plant height in the sunflower line Dw 89. Plants of the cytoplasmic male sterile version of this line, cmsDw 89 (mean plant height of 47.4 cm) were crossed with plants of the restorer line RHA 271 (mean of 120.9 cm). F1 plants averaged 120.4 cm, which indicated dominance of standard over reduced plant height. F2 plants followed a segregation pattern of 1 : 15 (reduced : normal height), suggesting that reduced plant height in Dw 89 is controlled by alleles at two loci, designated Dw1 and Dw2. Class assignment in the F2 was confirmed through the evaluation of the F3 generation. Backcrosses to Dw 89 segregated with 1 : 3 (reduced : normal height) ratios, which confirmed the digenic inheritance of the trait. The evaluation of plant height distributions in F3 families suggested possible genetic interaction between the Dw1 and Dw2 loci.  相似文献   

13.
Fertility restoration by dominant nuclear genes is essential for hybrid breeding based on cytoplasmic male sterility (CMS) to obtain heterotic effects and high seed yields. In sunflower, only the PET1 sterility inducing cytoplasm has been used in commercial hybrid breeding until now. This particular male sterility was derived from an interspecific hybrid Helianthus petiolaris × H. annuus. For the recent work we used the segregating population RHA325(CMS) × HA342, based on the PET1 cytoplasm. Molecular markers were mapped within 1.1 cM around the restoration locus Rf1. At the distal side, the marker OP-K13_454 mapped at a distance of 0.9 cM and E32M36-155R at 0.7 cM from Rf1. At the proximal side the markers E44M70-275A, E42M76-125A and E33M61-136R were mapped at 0.1, 0.2, and 0.3 cM from the restorer locus, respectively. These markers provide an excellent basis for a map based cloning approach and for marker-assisted sunflower breeding.  相似文献   

14.
Summary Sunflower lines breeding true for very high oleic acid content in their oil (average levels higher than 85%) were crossed with standard sunflower lines with mean oleic acid levels of 30%. Analysis of the oil of F1 seeds indicated dominance for high oleic levels and control of the genotype of the embryo. Segregating generations were obtained selfing heterozygous high oleic BCnF1 plants from several generations of a backcrossing program to incorporate the high oleic character to standard inbred lines and testcrossing these plants to low oleic material. Analysis of F2 and testcrossed seeds showed three kind of segregations, in both F2 and testcrossed populations, with different proportions of low, intermediate and high oleic types. Genetic analysis of these data supported the hypothesis, that the high oleic character is controlled by three dominant complementary genes OL1, OL2 and OL3. Additional data showing F1 seeds with intermediate oleic content and segregations for high oleic in progenies of intermediate types, suggest the presence of major factors modifying high oleic acid content.  相似文献   

15.
Non‐pungent bell pepper (Capsicum annuum L.) lacks the cytoplasmic male sterility (CMS) nuclear restorer allele, Rf, and CMS cannot be employed in its F1 hybrid seed production. To demonstrate that the genic male sterility (GMS) system in non‐pungent bell pepper can be converted to the CMS male sterility system, the conversion of GMS to CMS for non‐pungent bell pepper line GC3 was conducted by introgression of S‐type cytoplasm and the Rf allele from tropical pungent donors. After morphological traits were evaluated, two lines from BC1F1 containing S‐type cytoplasm and four lines from BC2F2 containing Rf allele, phenotypically similar to GC3, were obtained and could be employed as CMS male sterile lines and restorer lines for non‐pungent bell pepper. Four molecular markers potentially linked to traits of interest were also evaluated in BC1F1 and BC1F2 populations. This is the first time that GMS has been successfully converted to CMS in bell pepper, a significant contribution for bell pepper hybrid seed production.  相似文献   

16.
In sunflower, the patterns of mitochondrially encoded proteins were compared in five cytoplasmic male sterile lines and the corresponding maintainer lines. The line RHA265 with the original fertile cytoplasm (N) showed a unique protein of 53 kDa that was not present in the male sterile isonuclear lines with the CMS-inducing cytoplasms GIG1, MAX1 and PET2. GIG1 and PET2 expressed an additional 12.4 kDa protein. In dependence of the nuclear background i.e. RHA265 or HA89, respectively, a nuclear encoded 24 kDa protein was present or absent in the mitochondrial protein patterns of GIG1, MAX1 and PET2.Nuclear and cytoplasmic differences in the total respiration of isolated mitochondria were detected using NADH, malate and succinate as substrates. For succinate oxidation in dependence of the nuclear background ANL1 and its maintainer RHA266 showed higher respiration rates than RHA265, ANL2, GIG1, MAX1 and PET2. For NADH total respiration of ANL2, GIG1 and PET2 was more than twice as high than for the isonuclear maintainer line RHA265. Also MAX1 showed an increased oxygen uptake even though not as high. The results demonstrated that considerable differences in the total respiration are possible without obvious relevance to the production of vital pollen. Regarding the engagement of the cytochrome oxidase and alternative pathway no differences were observed between CMS and maintainer lines. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The genetic relationship among three cytoplasmic male sterility (CMS) systems, consisting of WA, Dissi, and Gambiaca, was studied. The results showed that the maintainers of one CMS system can also maintain sterility in other cytoplasmic backgrounds. The F1 plants derived from crosses involving A and R lines of the respective cytoplasm and their cross-combination with other CMS systems showed similar pollen and spikelet fertility values, indicating that similar biological processes govern fertility restoration in these three CMS systems. The results from an inheritance study showed that the pollen fertility restoration in all three CMS systems was governed by two independent and dominant genes with classical duplicate gene action. Three F2 populations, generated from the crosses between the parents of good-performing rice hybrids, that possess WA, Dissi, and Gambiaca CMS cytoplasm, were used to map the Rf genes. For the WA-CMS system, Rf3 was located at a distance of 2.8 cM from RM490 on chromosome 1 and Rf4 was located at 1.6 cM from RM1108 on chromosome 10. For the Dissi-CMS system, Rf3 was located on chromosome 1 at 1.9 cM from RM7466 and Rf4 on chromosome 10 was located at 2.3 cM from RM6100. The effect of Rf3 on pollen fertility appeared to be stronger than the effect of Rf4. In the Gambiaca-CMS system, only one major locus was mapped on chromosome 1 at 2.1 cM from RM576. These studies have led to the development of marker-assisted selection (MAS) for selecting putative restorer lines, new approaches to alloplasmic line breeding, and the transfer of Rf genes into adapted cultivars through a backcrossing program in an active hybrid rice breeding program.  相似文献   

18.
Cytoplasmic male sterility (CMS)/restorer-of-fertility (Rf) is an economical and efficient system to produce F1 hybrid seeds. Although the CMS/Rf system has been used to produce hybrid seeds of hot peppers, this system has never been used for sweet pepper seed production, presumably due to the inability to select stable restorer lines during the breeding process. To test the feasibility of the CMS/Rf system in sweet pepper breeding, we investigated the distribution of haplotypes of previously developed, CMS-associated markers (orf456, ψ atp6-2, CRF-SCAR, OPP13-CAPS, PR-CAPS, and PR-SNP) in 27 commercial sweet pepper F1 hybrids and 12 breeding lines. When CMS-associated cytoplasmic markers orf456 and ψ atp6-2 were applied, male sterile cytoplasm was not detected in commercial sweet pepper cultivars. When nuclear haplotype markers linked to Rf were applied, all sweet pepper cultivars showed haplotype 3, haplotype 1, and the rf genotype for OPP13-CAPS, PR-CAPS, and CRF-SCAR, respectively. In contrast, we were able to detect male sterile cytoplasm in some breeding lines, and we were also able to detect polymorphisms for PR-CAPS between stable and unstable maintainer lines. The 17T7-SNP also showed polymorphisms between unstable and stable maintainer (or restorer) lines. In conclusion, we expect that it will be possible to develop stable A, B, and C sweet pepper lines using CMS-associated markers and that this will eventually lead to successful implementation of the CMS/Rf system to produce F1 hybrid sweet pepper seeds.  相似文献   

19.
The present study was carried out with the objective to validate the molecular markers, which have been previously reported to be linked to fertility restorer (Rf) gene(s) for WA-CMS lines of rice. Two mapping populations involving fertility restorer lines for WA-cytoplasm, viz., (i) an F2 population derived from the cross IR58025A/KMR3R consisting of 347 plants and (ii) a BC1F1 population derived from the cross IR62829A/IR10198R//IR62829A consisting of 130 plants were analyzed. Nine SSR and three CAPS markers reported to be linked to Rf genes along with two previously unreported SSR markers were analyzed in the mapping populations. In both the populations studied, the trait of fertility restoration was observed to be under digenic control. Eight SSR markers (RM6100, RM228, RM171, RM216, RM474, RM311, MRG4456 and pRf1&2) showed polymorphism between the parents of the F2 population, while the SSR markers RM6100 and RM474 showed polymorphism between the parents of both the F2 and BC1F1 populations. Only one CAPS marker, RG146FL/RL was polymorphic between the parents of the BC1F1 population. RM6100 was observed to be closely segregating with fertility restoration in both the mapping populations and was located at a distance of ~1.2 cM. The largest phenotypic variation was accounted for the region located between RM311 and RM6100. Using the marker-trait segregation data derived from analysis of both the mapping populations, a local linkage map of the genomic region around Rf-4, a major fertility restoration locus on Chromosome 10 was constructed, and RM6100 was observed to be very close to the gene at a distance of 1.2 cM. The accuracy of the marker RM6100 in predicting fertility restoration was validated in 21 restorers and 18 maintainers. RM6100 amplified the Rf-4 linked allele in a majority of the restorers with a selection accuracy of 94.87%. Through the present study, we have established the usefulness of the marker RM6100 in marker-assisted selection for fertility restoration in segregating populations and identification of restorers while screening rice germplasm for their fertility restoration ability.  相似文献   

20.
H. Ghiasi  K. A. Lucken 《Euphytica》1982,31(1):253-259
Summary Many conventional hard red spring wheat (Triticum aestivum L. em Thell) lines, including several North Dakota cultivars, carry a gene (or genes) which restore partial male fertility to male sterile plants with Triticum timopheevi Zhuk. cytoplasm. Since this gene has no fertility restoration function in T. aestivum cytoplasm, the postulation can be made that it is being retained in conventional lines because of pleiotropic effects, favorable linkages or chance. The research reported in this paper examined these possibilities. Forty F6 lines, derived from a single F2 plant which was heterozygous for a gene (or genes) for partial fertility restoration, were evaluated for two years in a yield trial planted at Fargo, North Dakota. The 40 lines were testcrossed to a male sterile line having T. timopheevi cytoplasm, and the mean seed set of testcrosses was used as a measure of a line's fertility restoration potential. Twenty-seven lines had the gene for partial fertility, and 13 lines apparently lacked this gene. The 40 lines differed for heading date, anther extrusion, plant height, grain yield, 200-kernel weight, test weight, and grain protein percentage. However, comparisons of lines having the restorer gene with those lacking the gene did not provide any obvious explanation for the retention of the partial fertility restorer gene in the breeding stocks of the North Dakota conventional hard red spring wheat breeding program. The possibility that the restorer gene was linked with genes for resistance to stem rust or leaf rust also was evaluated by testing lines for their reaction to several races of rust. No conclusive association was found.Contribution from the Agric. Exp. Sta., North Dakota State University, Fargo, ND 58105, Journal Article no.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号