首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为快速准确识别自然环境下的番茄叶片病害,提出一种基于改进YOLOv4算法的轻量化番茄叶部病害识别方法。该方法根据番茄病害特征采用K均值聚类算法调整先验框的维度,并使用宽度因子为0.25的MobileNetv1代替YOLOv4原有的主干网络CSPDarknet53进行特征提取,并在特征融合网络PANet中引入深度可分离卷积代替原有的3×3标准卷积,同时在主干网络的2个输出特征层和空间金字塔池化输出层分别嵌入卷积块注意力模块(CBAM),提高模型识别精度。试验结果表明,改进后的模型对8类番茄叶片整体检测精准性(mAP)为98.76%,参数量为12.64 M,传输帧数为1 s 101.76帧,相较于原YOLOv4模型,模型参数量减少80%,每秒传输帧数比原始YOLOv4模型提高了130%。  相似文献   

2.
针对自然环境中,人工目视解译苹果叶部病害耗时耗力、人为主观因素强的问题。本研究提出了一种融合自注意力机制和Transformer模块的目标检测算法——BCE-YOLOv5,实现对自然环境下对苹果叶片病虫害的自动识别与检测。该算法首先使用BotNet、ConvNeXt模块分别替换Backbone网络和Neck网络的CSP结构,增加自注意力机制对目标的特征提取能力。通过将改进的CBAM引入YOLOv5的特征融合网络之后,使注意力机制对特征融合信息更加地关注。最后,用α-IoU损失函数替换IoU损失函数,使得网络在模型训练过程中收敛的更加稳定。BCE-YOLOv5算法在传统算法YOLOv5基础上平均精准率均值提升了2.9百分点,并且改进后的算法的模型大小和计算量较传统算法分别减小了0.2 M和0.9 GFLOPs。平均精度均值比YOLOv4s、YOLOv6s、YOLOx-s和YOLOv7模型分别高2.5、1.3、3.5、2.2百分点。该方法能快速准确识别苹果叶部病害,为苹果种植过程中提供智能化管理做参考。  相似文献   

3.
【目的】提出了一种改进的YOLOv4模型,为自然环境下3种常见茶叶病害(茶白星病、茶云纹叶枯病和茶轮斑病)的快速精准识别提供支持。【方法】使用MobileNetv2和深度可分离卷积来降低YOLOv4模型的参数量,并引入卷积注意力模块对YOLOv4模型进行识别精度改进。采用平均精度、平均精度均值、图像检测速度和模型大小作为模型性能评价指标,在相同的茶叶病害数据集和试验平台中,对改进YOLOv4模型与原始YOLOv4模型、其他目标检测模型(YOLOv3、SSD和Faster R CNN)的病害识别效果进行对比试验。【结果】与原始YOLOv4模型相比,改进YOLOv4模型的大小减少了83.2%,对茶白星病、茶云纹叶枯病和茶轮斑病识别的平均精度分别提高了6.2%,1.7%和1.6%,平均精度均值达到93.85%,图像检测速度为26.6帧/s。与YOLOv3、SSD和Faster R-CNN模型相比,改进YOLOv4模型的平均精度均值分别提高了6.0%,13.7%和3.4%,图像检测速度分别提高了5.5,7.3和11.7帧/s。【结论】对YOLOv4模型所使用的改进方法具备有效性,所提出的改进YOLOv4模型可以实现对自然环境下3种常见茶叶病害的快速精准识别。  相似文献   

4.
针对现有的卷积神经网络模型过于依赖设备的计算和存储能力、水稻病虫害形状大小不一、遮挡造成的病害特征显著性弱、漏检率高等问题,采用轻量化、易部署的YOLOv4-tiny模型检测和识别水稻病虫害。首先收集831张4种不同的水稻病害叶片图像样本,为了使模型具有更好的泛化能力,对已有数据进行数据增强,将样本数量扩增到了5 320张。然后构建YOLOv4-tiny轻量化模型,与经典的YOLOv4算法模型相比,其主干特征提取网络CSPDarkNet53模块替换为CSPDarkNet53_tiny,使用CPSnet进行通道的分割,实现了网络模型的压缩并提高了训练速度;添加了FPN结构,对有效特征层进行特征融合;依据模型评价指标,通过试验将YOLOv4-tiny轻量化网络与经典的YOLOv4网络、Faster-RCNN网络、YOLOv4-MobileNet系列轻量化网络、YOLOv4-GhostNet轻量化网络和SSD轻量化网络进行对比。结果表明,YOLOv4-tiny的平均准确率可以达到81.79%,检测速度可以达到90.03帧/s,模型权重大小为22.4 MB,能够比较精准地识别水稻胡麻斑病、白叶...  相似文献   

5.
为实现在自然环境下对柑橘果实的识别,提出一种基于YOLOv5改进模型的柑橘识别方法。通过引入CBAM(convolutional block attention module,卷积注意力模块)注意力机制模块来提高网络的特征提取能力,改善遮挡目标与小目标的漏检问题;采用α-IoU损失函数代替GIoU损失函数作为边界框回归损失函数,提高边界框定位精度。结果显示:本研究提出的模型平均精度AP值达到91.3%,在GPU上对单张柑橘果实图像的检测时间为16.7 ms,模型占用内存为14.5 Mb。结果表明,本研究基于YOLOv5的改进算法可实现在自然环境下快速准确地识别柑橘果实,满足实时目标检测的实际应用需求。  相似文献   

6.
【目的】针对果园多种苹果树皮病害实时检测的需求,设计基于 Android 的苹果树皮病害识别 APP 以便进行果园精准管理。【方法】通过网络查找和实地拍摄收集轮纹病、腐烂病、干腐病 3 种病害的图片 数据,经扩增和标注后按照 8 ∶ 2 比例进行训练集和测试集的划分。使用 YOLOv5s 算法训练苹果树皮病害识别 网络模型,对训练得到的轻量级网络模型进行 Android 端部署,并设计相应 APP 界面,实现对轮纹病、腐烂病、 干腐病的快速诊断。【结果】训练后得到的深度学习网络模型识别效果良好,准确率稳定在 88.7%,召回率稳 定在 85.8%,平均精度值稳定在 87.2%。其中腐烂病准确率为 93.5%,干腐病准确率为 88.2%,轮纹病准确率为 84.3%。将其在 Android 端部署后,每张病害图片处理时间均小于 1 s,检测置信度为 87.954%。该轻量级识别系 统不仅实现了 3 种病害的快速检测,也保证了较高的识别精度。【结论】YOLOv5s 网络权重模型小,能够轻松 实现 Android 端的部署,且基于 YOLOv5s 设计的 APP 操作简单、检测精度高、识别速度快,可以有效辅助果园 精准管理。  相似文献   

7.
苹果叶片病害的高效准确识别有助于合理使用杀虫剂、肥料等农业资源,进而保证苹果的产量与质量。为提高苹果叶片病害识别的准确率,提出一种残差网络与注意力机制结合的苹果叶片病害识别模型:P-D-ECA-ResNet101。首先构建苹果叶片病害数据集,然后使用常见的4种网络模型在构建的数据集上进行训练,选取训练效果最好的ResNet101为骨干网络模型,通过推迟下采样(delayed downsampling)、拆解大卷积层以及引入高效通道(efficient channel attention module, ECA)注意力模块对ResNet101网络模型进行优化,最后通过特征图可视化展示改进后网络模型的识别机制。试验结果表明,推迟下采样可以增强模型特征提取能力,拆解大卷积层可以有效减少模型的复杂度,引入ECA注意力模块可以削弱无效特征信息对模型的干扰。改进后的P-D-ECA-ResNet101模型在构建的苹果叶片病害测试集上的平均识别准确率达到96.20%,相较于原模型ResNet101提升了2.20百分点。特征图可视化分析表明改进后的P-D-ECA-ResNet101模型可以更好地聚焦于病...  相似文献   

8.
由于苹果树叶片病害图像背景复杂、病斑形态多样,苹果树叶片病害的检测一直是一项具有挑战性的任务。传统的苹果树叶片病害检测方法严重依赖于果农经验和特定领域的专家,步骤复杂且低效,并很容易导致病害的误判和漏判。为解决该问题,基于深度学习技术对苹果树叶片病害特征进行自适应学习和提取,提出一种基于集成学习的苹果树叶片病害检测方法。该算法基于不同的模型,在处理不同的数据集上呈现出各自的特性,充分利用了模型间的优势互补,使用非极大值抑制算法将YOLOv5和EfficientDet模型进行集成,进一步提高模型特征提取能力并且增强了模型的检测能力。结果表明,该方法在不增加延迟的情况下,能有效提高3种苹果树叶片病害的检测效果,平均精度可达73.4%,相比于单个YOLOv5和EfficientDet模型分别提高了3.0%、4.8%。集成后的算法具有更好的特征提取能力,可以提取到更多的病害特征信息,并且较好地平衡了模型的识别精度与模型复杂度,可为田间环境下苹果树叶片病害识别提供参考。  相似文献   

9.
为准确识别自然条件下的咖啡叶片病虫害,提出一种基于YOLOv5改进的目标检测算法。该方法通过在主干网络融入ConvNext网络和ECA注意力机制来优化相关网络模型,提高了网络特征提取能力,更好解决了鲁棒性差和对遮挡目标与小目标的漏检问题。结果表明,该方法的检测精度均值(mAP)达到了94.13%,检测速度和精度都具有良好效果,同时模型大小只有17.2 MB,可以满足边缘设备的运行条件。因此,改进后的YOLOv5算法可为自然环境下咖啡叶片病虫害识别提供技术支撑,满足实时目标检测的实际应用需求。  相似文献   

10.
苹果生长过程中容易受到病害影响而减产,造成经济损失。大型卷积神经网络可准确识别出苹果病害,但移动设备有限的计算资源限制了该类网络在其上的具体应用。轻量级卷积神经网络可运行在移动端,并能够实现病害的实时识别,但其识别精度往往不如前者。为解决该问题,在轻量级卷积神经网络ShuffleNet V2基础上,通过调整基本残差单元结构和网络宽度,同时引入卷积块注意模块(convolutional block attention module,CBAM),提出了改进型ShuffleNet#苹果叶部病害诊断模型。以苹果疮痂病、黑腐病、锈病、健康叶片为研究对象,收集简单和复杂背景图像各2000张,通过数据增广将其扩充至40000张,构建苹果叶部病害图像数据集,应用该数据集,对苹果叶部病害诊断模型进行训练和测试。以识别准确率、模型复杂度、平均推理时间等为判别标准,并与多个现有卷积神经网络模型进行比较。结果表明:改进后的模型能有效地识别出上述2种不同背景的4类图像,在测试集上识别准确率达到98.95%,移动端单张图像的平均推理时间为39.38ms。相较于大型的ResNet101网络,该模型在准确率上仅降低0...  相似文献   

11.
为了提升猪舍环境下生猪姿态检测的速度和性能,在YOLOv4模型的基础上提出一种改进的Mini_YOLOv4模型。首先,该模型将YOLOv4的特征提取网络改为轻量级的MobileNetV3网络结构,以降低模型参数量;其次,在检测网络的CBL_block1、CBL_block2模块中使用深度可分离卷积代替传统卷积,避免了复杂模型导致的内存不足和高延迟问题;最后,将原YOLOv4网络每个尺度的最后一层3×3卷积改为Inception网络结构,以提高模型在生猪姿态检测上的准确率。应用上述模型,对生猪的站立、坐立、腹卧、趴卧和侧卧5类姿态进行识别。结果显示,Mini_YOLOv4模型较YOLOv4模型在检测精度上提升了4.01百分点,在检测速度上提升近1倍,在保证识别精度的同时提升了实时性,可为生猪行为识别提供技术参考。  相似文献   

12.
为实现自然环境下不同成熟度火龙果在不同光照、不同遮挡场景下的精确快速识别,提出了一种基于对YOLOv5的网络模型改进的一种检测模型(PITAYA-YOLOv5)。首先,使用k-means++算法重新生成火龙果数据集的锚框,提高了网络的特征提取能力;其次,将CSPDarkNet替换成PPLCNet作为骨干网络,并加入SE注意力模块(Squeeze-and-Excitation block),在降低网络参数量的同时保持检测精度;同时加入加权双向特征金字塔网络(Bi-FPN)替换YOLOv5的特征融合网络,提高网络对不同尺度特征图的融合效率;引入αDIoU损失函数,提高了模型的收敛效果。试验结果表明:PITAYA-YOLOv5目标检测模型的平均精度均值为94.90%,较原模型提高1.33个百分点,F1值为91.37%,较原模型提高1.12个百分点,平均检测速度达到20.2 ms,占用内存仅有8.1 M。针对枝条遮挡和果间遮挡下的火龙果检测能力明显增强。对比Faster R-CNN、CenterNet、YOLOv3、YOLOv5以及轻量化骨干网络ShuffleNetv2,该模型具有良好的检测精...  相似文献   

13.
小麦产量可由单位面积的小麦麦穗总数估算得出。基于采集小麦图像序列特征并进行检测的方法受光照等因素影响大,检测精度不高。为准确定位麦穗位置,估计麦穗数量,引入深度卷积神经网络进行麦穗检测工作。针对麦穗比例多样,先验锚框设定无法完美契合的弊端,舍弃了目标检测网络中常用的矩形先验锚定框(anchor),提出了一种基于YOLO框架的无锚框(anchor-free)麦穗目标检测方法。采用CSPDarkNet53作为特征提取网络,中间层采用特征图金字塔网络结构FPN(Feature Pyramid Networks)设计特征处理模块,增大感受野并提取图像的多尺度信息,获得融合高低层语义信息的特征图,后端采用FoveaBox式无锚框检测器完成目标检测。在WEDD与GWHD两个不同分辨率的公开麦穗数据集上测试表明,该网络的检测平均精度AP值相较于YOLOv4网络分别提升了8.81%和1.69%,并在GWHD数据集上帧率达到36FPS。本算法能够实时有效地进行麦穗精确检测,为后续小麦估产、育种等创造了条件。  相似文献   

14.
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原...  相似文献   

15.
针对现有番茄检测精度低、没有品质检测和部署难度高等问题,提出基于YOLOv5s改进的番茄及品质实时检测方法,并与原始YOLOv5模型及其他经典模型进行对比研究。结果表明,针对番茄大小不同的问题,采用K-Means++算法重新计算先验锚框提高模型定位精度;在YOLOv5s主干网络末端添加GAM注意力模块,提升模型检测精度并改善鲁棒性;应用加权双向特征金字塔网络(BiFPN)修改原有结构,完成更深层次的加权特征融合;颈部添加转换器(transformer),增强网络对多尺度目标的检测能力。改进后的YOLOv5s番茄识别算法检测速度达到72帧/s。在测试集中对番茄检测均值平均精度(mAP)达到93.9%,分别比SSD、Faster-RCNN、YOLOv4-Tiny、原始YOLOv5s模型提高17.2、13.1、5.5、3.3百分点。本研究提出的番茄实时检测方法,在保持检测速度的同时,可降低背景因素干扰,实现复杂场景下对番茄的精准识别,具有非常好的应用前景,为实现番茄自动采摘提供相应技术支持。  相似文献   

16.
为实现穴盘甘蓝的智能化管理,针对穴盘甘蓝病害识别存在的光照不均匀、对比度低和待检测目标小等问题,研究了基于深度学习的穴盘甘蓝病害检测算法。该算法结合通道空间注意力机制模块,在特征提取模块对特征信息进行重标定,引导模型关注病害区域特征,抑制背景噪声,降低模型漏检率。并采用自适应多尺度特征融合算法提取穴盘甘蓝病害多尺度特征,充分利用不同尺度特征的语义信息提升小目标的检测精确率。由于算法的检测框定位不准确,在回归损失函数中添加了重叠面积损失、中心点距离损失和宽高损失,对回归任务进行了优化,提高穴盘甘蓝病害预测框定位精度;同时引入变焦损失函数作为分类损失函数,利用权重缩放因子缓解模型训练过程中相似病害类间差距小的问题。结果表明,研究算法对穴盘甘蓝炭疽病、细菌性黑斑病、褐斑病、黑腐病的检测平均精确率分别为97.59%、99.70%、98.69%和97.64%;其平均精度均值达到98.41%,与YOLOX、Faster R-CNN、YOLOv3、SSD、CenterNet算法相比,分别提高了4.96、12.86、18.19、4.71、10.69百分点。  相似文献   

17.
为解决当前流行的目标检测模型对自然环境下百香果由于目标密集互相遮挡所致的检测效率低等问题,以YOLOv3网络为基础,提出了一种基于增强的YOLOv3百香果目标检测算法。首先,针对百香果目标尺寸的特点,利用以交并比为距离度量的改进K-means++算法,重新获取与目标果实相匹配的锚选框,提高对目标的框选精度以及模型的收敛速度;其次,在输出网络中将用来筛选目标预测框的Soft-NMS算法通过线性函数的形式对其高斯函数的抑制参数进行改进,以提高模型在不同密集场景下的适应性和检测能力;最后,利用增强的YOLOv3模型在经过预处理后的百香果数据集上进行多次试验对比,结果表明增强后的YOLOv3目标检测算法平均精度均值(mAP)达到94.62%,F1值达到94.34%,较原YOLOv3算法分别提升了4.58和3.68百分点,平均检测速度为25.45帧/s,基本满足了自然环境下百香果目标检测的精准性和实时性要求。  相似文献   

18.
针对智能驾驶场景下的小尺寸交通标志检测准确率不高的问题,提出一种基于Tiny YOLOv3网络的交通标志检测算法。通过使用深度可分离卷积重构特征提取网络和增加浅层与深层特征层之间的特征融合,提高模型对小目标的注意力;同时修改anchor boxes尺寸,提升预测框的准确度。在TT100K交通标志数据集上的试验结果表明,提出算法的平均精度均值(mAP)较TinyYOLOv3提高了19.3%,对小尺寸交通标志检测具有更强的鲁棒性。  相似文献   

19.
针对工业施工场所背景复杂导致安全帽检测精度低及漏检等问题,提出一种融合注意力机制的安全帽检测算法。该算法在YOLOv5s网络模型的基础上,在主干网络中加入坐标注意力模块,使得网络可以有效关注目标信息的特征,提升远距离目标的检测能力。在网络训练过程中优化损失函数,将原有的CIoU损失函数更换为EIoU损失函数,优化了目标边界框回归的收敛速度,可以生成定位更精准的边界框,提高了模型检测精度。实验结果表明,改进后的算法平均精度达到94.5%,相较于原始模型提高了1.9个百分点,相较于YOLOv3算法提高了12.3个百分点。提出的算法有效地改善了原算法中安全帽漏检、误检的情况,同时提高了检测精度。  相似文献   

20.
目的 引入区域卷积神经网络Faster R-CNN算法并对其改进,以实现在田间真实环境下背景复杂且具有相似病斑特征的玉米病害的智能诊断。方法 在玉米田间和公开数据集网站获取具有复杂背景的9种常见病害图像1 150幅,人工标注后对原始图像进行离线数据增强扩充;对Faster R-CNN算法进行适应性改进,在卷积层加入批标准化处理层,引入中心代价函数构建混合代价函数,提高相似病斑的识别精度;采用随机梯度下降算法优化训练模型,分别选取4种预训练的卷积结构作为Faster R-CNN的特征提取网络进行训练,并测试得到最优特征提取网络,利用训练好的模型选取不同天气条件下的测试集进行对比,并将改进Faster R-CNN与未改进的Faster R-CNN和SSD算法进行对比试验。结果 在改进Faster R-CNN病害识别框架中,以VGG16卷积层结构作为特征提取网络具有更出色的性能,利用测试集图像检验模型,识别结果的平均精度为 0.971 8,平均召回率为0.971 9,F1为0.971 8,总体平均准确率可达97.23%;晴天的图像识别效果优于阴天的。改进Faster R-CNN算法与未改进的Faster R-CNN算法相比,平均精度高0.088 6,单张图像检测耗时减少0.139 s;与SSD算法相比,平均精度高0.0425,单张图像检测耗时减少0.018 s,表明在大田环境中具有复杂背景的玉米病害智能检测领域,改进Faster R-CNN算法综合性能优于未改进的Faster R-CNN算法和SSD算法。结论 将改进后的Faster R-CNN算法引入田间复杂条件下的玉米病害智能诊断是可行的,具有较高的准确率和较快的检测速度,能够避免传统人工识别的主观性,该方法为田间玉米病害的及时精准防控提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号