共查询到20条相似文献,搜索用时 15 毫秒
1.
应用深度学习的图像分析技术,可较早地、无损地检测作物病害,但移动端计算资源的有限性限制了深度学习在移动端的应用和发展.利用迁移学习方法,进行多种神经网络的预训练,将其在ImageNet图像数据集上学到的知识迁移运用到多种农作物数据集及番茄单作物数据集的多种病害识别上,并进行多个深度学习模型在多种作物数据集的计算复杂度、... 相似文献
2.
农作物病害的快捷精准识别对我国粮食安全与农业发展提质增效具有重要意义。针对现有病害识别模型参数量大、泛化能力弱、不适用于田间实际场景且不易搭载至移动端等问题,本文提出了EssNet农作物病害识别网络,该网络以ShuffleNetV2_0.5为基础网络,引入高效通道注意力(ECA)机制与SiLU激活函数进行结构改进,同时结合知识蒸馏技术使用EfficientNetB0网络对EssNet进行学习指导,最后使用余弦退火衰减策略对学习率进行动态调整使网络表现达到最优。结果表明,本文提出的EssNet农作物病害识别网络对复杂环境下2种作物(玉米、苹果)的11种病害在测试集上的准确率达到95.21%,比基础网络提高2.11个百分点,参数量为0.35 M,权重文件为1.49 MB。该网络的整体性能优于其他现有模型,为建立田间轻量级农作物病害识别方法提供了参考。 相似文献
3.
为了实现番茄病害的精准识别,本研究提出一种轻量级网络自适应特征提取方法。该方法首先对图片进行正形处理,然后基于SqueezeNet模型构建轻量级网络模型GKFENet。GKFENet模型包含全局特征提取和关键特征提取2个模块,其中全局特征提取模块逐层提取番茄病害叶片的全局特征,关键特征提取模块通过学习评估出特征图各通道的重要程度,计算出权重值,最后将该值加权到原特征图上,从而实现病害关键特征的自适应提取。结果显示,正形机制有助于神经网络学习特征,本研究构建的GKFENet模型的平均识别准确率为97.90%,模型大小仅为2.64 MB,且在强噪声环境下,其识别准确率仍能保持在78.00%以上。GKFENet模型在训练过程中相对稳定,对8种番茄病害的识别准确率均超过96.00%。相比Bayes、KNN、LeNet、SqueezeNet、MobileNet模型,本研究构建的GKFENet模型的识别精度高,稳定性强且占用内存小,对于移动端未来的应用具有较高的实际价值。 相似文献
4.
针对传统CNN(Convolutional neural network)模型存在训练参数量大而无法应用于硬件条件受限的场合这一问题,本研究提出一种轻量级CNN农作物病害识别模型,能够在保证模型识别准确率情况下简化模型结构,扩大模型的适用场景.设计1个深度卷积模块作为基本卷积单元,2个深度卷积模块和1个批归一化层组成1个残差块作为残差单元,以残差单元作为基本元素设计一个轻量级CNN农作物病害识别模型.对辣椒、番茄和马铃薯的病害图像进行分类识别,最终模型在训练集上的总识别准确率为99.33%,测试集上的总识别准确率为98.32%.相对VGG16等传统模型,在进行农作物病害识别时本模型有更高的识别准确率、更快的识别速度和更小的内存占用. 相似文献
5.
目前,基于迁移学习诊断农作物病害已经成为一种趋势,然而大多数研究使用的模型参数众多,占用了大量设备空间并且推理演算耗时较长,导致对存储和计算资源有严格限制的设备无法利用深度神经网络的优势.为此,本研究以PlantVillage数据集中的番茄病害样本为研究对象,基于条件卷积及通道注意力机制,提出1种新颖的轻量级模型,同时... 相似文献
6.
目的 实现精确迅速的农作物病害检测,减少人工诊断成本,降低病害带来的农作物产量和品质影响。方法 根据对农作物病害和病斑特征的分析,提出一种基于卷积注意力机制改进的YOLOX-Nano智能检测与识别模型,该模型采用CSPDarkNet作为主干网络,将卷积注意力模块CBAM引入到YOLOX-Nano网络结构的特征金字塔(Feature pyramid network,FPN)中,并在训练中引入Mixup数据增强方式,同时将分类的损失函数由二分类交叉熵损失函数(Binary cross entropy loss,BCE Loss)替换为焦点损失函数Focal Loss、回归损失函数由GIOU Loss替换为本文设计的CenterIOU Loss函数,采用迁移学习策略训练改进的YOLOX-Nano模型,以此提升农作物病害检测的精度。结果 改进后的YOLOX-Nano模型仅有0.98×106的参数量,在移动端测试单张图片检测时间约为0.187 s,平均识别精度达到99.56%。实践结果表明,其能快速有效地检测与识别苹果、玉米、葡萄、草莓、马铃薯和番茄等农作物的常见病害,且达到了精度与速度的平衡。结论 改进后的模型不仅对农作物叶片病害识别具有较高的精度和较快的检测速度,参数量和计算量较少,还易于部署在手机等移动端设备。该模型实现了在田间复杂环境对多种农作物病害精准定位与识别,对于指导早期农作物病害的防治具有十分重要的现实意义。 相似文献
7.
番茄叶片病害的精准识别对农业领域未来的发展至关重要,农业研究人员逐渐使用深度学习的方法进行植物病害的精准检测。然而对比以往的神经网络可以发现,它们普遍缺少上下文信息的连续性以及全文信息的完整性。对此本研究提出了一种Bi-LSTM和多尺度卷积神经网络相结合的模型,采用双向长短期记忆网络,可以更好地捕捉双向信息的反馈,使上下文的信息更具有连续性,而所提出的多尺度卷积神经网络既保证了全局信息的完整性,同时减少了细节信息的丢失,为了提高模型对病害特征的识别能力引入注意力模块,从而使模型重点关注疾病的特征部分。从公开的PlantVillage数据集中选取番茄的9类疾病和健康的叶片作为研究对象,试验结果在验证集上得到最高分类准确率为98.16%,与其他几个经典的CNN模型相比较,该模型的识别准确率优于其他的基础模型,并且具有较好的稳定性。经过试验验证,该模型可以为番茄病害识别提供一种有效的解决方法。 相似文献
8.
针对传统苹果叶部病害识别方法识别率低和现有卷积神经网络(CNN)训练时间长的问题,提出一种基于多尺度注意力卷积神经网络的苹果叶部病害识别方法。该方法由多尺度空洞卷积模块Inception与改进的残差模块组成,其中,多尺度空洞卷积模块Inception用于图像的多尺度特征提取,在卷积模块中引入双注意力机制增强网络模型,显著表示图像中叶部病斑区域特征,降低非病斑区域与背景区域对识别结果的干扰,在原始残差模块上引入卷积层与非线性激活函数改进的残差模块,增加鲁棒性判别特征的跨层融合,在苹果病害叶片图像数据集上的识别准确率达96%以上。结果表明,所提出的方法具有参数量少、占用内存小以及性能好的优势,可进一步应用于田间苹果叶部病害智能识别系统。 相似文献
9.
10.
基于注意力残差机制的细粒度番茄病害识别 总被引:2,自引:0,他引:2
【目的】解决温室环境下细粒度番茄病害识别方法不足问题。【方法】以早、晚期5种番茄病害叶片为研究对象,提出一种基于注意力与残差思想相结合的新型卷积神经网络模型ARNet。通过引入多层注意力模块,层次化抽取病害分类信息,解决早期病害部位分散、特征难以提取难题;为避免网络训练出现退化现象,构建残差模块有效融合高低阶特征,同时引入数据扩充技术以防止模型过拟合。【结果】对44 295张早、晚期病害叶片数据集进行模型训练与测试的结果表明,与VGG16等现有模型相比,ARNet具有更好的分类表现,其平均识别准确率达到88.2%,显著高于其他模型。ARNet对早期病害识别准确率明显优于晚期病害,验证了注意力机制在提取细微区域特征上的有效性,且在训练过程中未发生过度抖动的状况。【结论】本文提出的模型具有较强鲁棒性和较高稳定性,在实际应用中可为细粒度番茄病害智能诊断提供参考。 相似文献
11.
12.
13.
水稻病害一直是影响水稻产量的重要因素之一,为了快速、准确地检测水稻病害,本研究提出了一种基于卷积神经网络的轻量级水稻叶片病害识别模型。首先,从参数量的角度对注意力机制进行改进,得到轻量级注意力机制模块,对水稻叶片病害特征图中的潜在注意力信息进行深度挖掘;其次,使用深度可分离卷积代替部分标准卷积,进一步降低模型的参数量;最后,为了提高模型的泛化能力,让模型学习过程更快、更稳定,采用了自带内部归一化属性的扩展型指数线性单元函数(SELU)与外部组归一化模块相结合的方法。通过在公共数据集中进行验证,本研究构建模型的平均精度最高(0.990 0),模型在参数量和平均单次迭代时间方面也有一定优势,与其他模型相比,具有相对较好的性能。 相似文献
14.
轻量级深度学习模型常被部署于移动端或物联网端,以实现算力资源受限条件下马铃薯病害的识别。但轻量级模型网络层数较少,模型特征提取能力有限,无法实现相似表型特征的精确提取。为解决上述问题,提出一种轻量级残差网络模型的构建方法,该方法融合迁移学习和知识蒸馏策略训练模型,在教师模型上使用迁移学习策略缩短教师模型的训练时间,并将ResNet18模型进行模型剪枝,使用降采样的方法提高模型识别准确率,最终在保证轻量化的前提下,实现对马铃薯叶片病害类别的精准识别。在马铃薯叶片数据集上进行试验,结果表明,本研究方法构建的轻量级模型的识别准确率相较于Resnet18提高1.55百分点,模型大小缩小49.18%;相较于目前农作物病害识别领域,常用的轻量级模型MobileNetV3在模型大小相近的情况下,识别准确率提高2.91百分点。该模型能够满足大部分实际应用下的场景,可为部署在物联网和移动端设备上的模型提供参考。 相似文献
15.
为实现穴盘甘蓝的智能化管理,针对穴盘甘蓝病害识别存在的光照不均匀、对比度低和待检测目标小等问题,研究了基于深度学习的穴盘甘蓝病害检测算法。该算法结合通道空间注意力机制模块,在特征提取模块对特征信息进行重标定,引导模型关注病害区域特征,抑制背景噪声,降低模型漏检率。并采用自适应多尺度特征融合算法提取穴盘甘蓝病害多尺度特征,充分利用不同尺度特征的语义信息提升小目标的检测精确率。由于算法的检测框定位不准确,在回归损失函数中添加了重叠面积损失、中心点距离损失和宽高损失,对回归任务进行了优化,提高穴盘甘蓝病害预测框定位精度;同时引入变焦损失函数作为分类损失函数,利用权重缩放因子缓解模型训练过程中相似病害类间差距小的问题。结果表明,研究算法对穴盘甘蓝炭疽病、细菌性黑斑病、褐斑病、黑腐病的检测平均精确率分别为97.59%、99.70%、98.69%和97.64%;其平均精度均值达到98.41%,与YOLOX、Faster R-CNN、YOLOv3、SSD、CenterNet算法相比,分别提高了4.96、12.86、18.19、4.71、10.69百分点。 相似文献
16.
【目的】解决当前病虫害识别方法参数多、计算量大、难以在边缘嵌入式设备部署的问题,实现农作物病虫害精准识别,提高农作物产量和品质。【方法】提出一种融合多头注意力的轻量级卷积网络(Multi-head attention to convolutional neural network,M2CNet)。M2CNet采用层级金字塔结构,首先,结合深度可分离残差和循环全连接残差构建局部捕获块,用来捕捉短距离信息;其次,结合全局子采样注意力和轻量级前馈网络构建轻量级全局捕获块,用来捕捉长距离信息。提出M2CNet-S/B/L 3个变体以满足不同的边缘部署需求。【结果】M2CNetS/B/L参数量分别为1.8M、3.5M和5.8M,计算量(Floating point operations,FLOPs)分别为0.23G、0.39G和0.60G。M2CNet-S/B/L对PlantVillage病害数据集取得了大于99.7%的Top5准确率和大于95.9%的Top1准确率,对IP102虫害数据集取得了大于88.4%的Top5准确率和大于67.0%的Top1准确率,且比同级别的模型表现优异。【结论】该方... 相似文献
17.
针对当前玉米病害发生量大、病情复杂、难以防治,严重影响玉米产量和质量的问题,提出了一种基于卷积神经网络和迁移学习的玉米叶片病害检测与识别方法。首先收集了3 827张玉米健康叶片图像和3种不同的玉米病害叶片图像样本,为了使模型拥有更好的泛化能力,使用生成对抗网络对样本进行处理,得到分辨率更高的样本,再对样本进行平移旋转,使样本数量达到5 153张。然后构建ResNet模型,分别对ResNet34、ResNet50及对其添加CBAM注意力机制和FPN特征金字塔网络,并通过迁移学习方法将预训练权重迁移到训练模型中。试验结果表明,ResNet50结合CBAM注意力机制模型的准确率达到了97.5%,相比ResNet50模型准确率提升了4.2百分点,相比ResNet34模型准确率提升了4.9百分点。本研究表明,提出的ResNet50结合CBAM注意力机制模型能够较精准地检测识别玉米枯萎叶、锈病叶、灰斑病叶和健康叶。并可将模型安装在无人机等移动设备上,实现对玉米叶片病害智能化防治,而且后期还会扩充更多的植物病害数据,实现对多类植物病害的检测,为智慧农业添砖加瓦,促进农业防治现代化。 相似文献
18.
19.
【目的】为实现复杂背景下广佛手发病早期的病虫害快速精准识别,提出一种基于YOLOv5-C的广佛手病虫害识别方法。【方法】使用YOLOv5s网络模型作为基础网络,通过引入所提出的多尺度特征融合模块,提高网络模型的特征提取与特征融合能力,均衡提高每一类广佛手病虫害的识别准确率;使用注意力机制模块提高网络模型对病虫害目标特征信息的关注度,弱化复杂背景的干扰信息,提高网络模型的识别准确率;利用改进的C3-SC模块替换PANet结构中的C3模块,在不影响网络模型识别性能的条件下减少网络模型的参数。【结果】基于YOLOv5-C的复杂背景下的广佛手病虫害识别,F1分数为90.95%,平均精度均值为93.06%,网络模型大小为14.1 Mb,在GPU上每张图像平均检测时间为0.01 s。与基础网络YOLOv5s相比,平均精度均值提高了2.45个百分点,7个类别识别的平均准确率的标准差由7.14减少为3.13,变异系数由7.88%减少为3.36%。平均精度均值比Retina Net、SSD、Efficientdet和YOLOv4模型分别高22.30、20.65、4.84和2.36个百分点。【结论】该方法... 相似文献
20.
传统基于深度学习的玉米叶片病害检测模型检测精度不高、模型参数量大,基于此,提出一种融合多尺度、无参数度量学习的玉米叶片病害识别算法模型。首先,利用Vgg-16、Swin Transformer网络,将玉米叶片病害图片映射到全局和局部特征空间;然后,利用多尺度特征融合网络,实现全局和局部特征的深度融合,强化特征的分类能力;最后,利用无参数元学习网络,实现待测玉米叶片病害图片与特征集之间的度量,根据度量结果,实现玉米叶片病害的快速定位与识别。在开源Plant Village数据集、自建玉米叶片病害数据集上进行了测试,所提出模型的识别准确率分别为97.45%、96.39%,同时保持了较低的识别时间开销;相比其他经典玉米叶片病害识别模型,具有更强的鲁棒性和泛化性能。 相似文献