首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现有番茄叶片病害识别存在背景复杂、识别准确率低、模型参数量大、计算量大以及难以部署至移动设备或嵌入式设备等问题,提出一种改进的轻量化YOLO v5n的番茄叶片病害识别方法。首先收集细菌性斑疹病、早疫病、晚疫病、叶霉病、斑枯病、褐斑病等6种常见番茄叶片病害图像以及番茄健康叶片图像,对图像进行镜像翻转、高斯模糊等数据增强方式增加样本多样性,提升模型识别和泛化能力。接着在YOLO v5n网络基础上,选择采用轻量化的C3Ghost模块替换C3模块以压缩卷积过程中的计算量、模型权重和大小,同时在颈部网络中融合轻量级卷积技术GSConv和VOV-GSCSP模块,在增强特征提取能力的同时降低模型参数量。最后引入PAGCP算法对改进后的模型进行全局通道剪枝压缩参数量并减少训练开销。试验结果表明,改进后的YOLO v5n平均精度均值达到99.0%,参数量减少66.67%,计算量降低了2.6 G,模型权重压缩了2.23 MB。本研究提出的番茄叶片病害识别方法在降低了模型大小、参数量、计算量的同时仍保持较高的识别精度,为移动设备上实现番茄叶片病害识别提供技术参考。  相似文献   

2.
目的 实现精确迅速的农作物病害检测,减少人工诊断成本,降低病害带来的农作物产量和品质影响。方法 根据对农作物病害和病斑特征的分析,提出一种基于卷积注意力机制改进的YOLOX-Nano智能检测与识别模型,该模型采用CSPDarkNet作为主干网络,将卷积注意力模块CBAM引入到YOLOX-Nano网络结构的特征金字塔(Feature pyramid network,FPN)中,并在训练中引入Mixup数据增强方式,同时将分类的损失函数由二分类交叉熵损失函数(Binary cross entropy loss,BCE Loss)替换为焦点损失函数Focal Loss、回归损失函数由GIOU Loss替换为本文设计的CenterIOU Loss函数,采用迁移学习策略训练改进的YOLOX-Nano模型,以此提升农作物病害检测的精度。结果 改进后的YOLOX-Nano模型仅有0.98×106的参数量,在移动端测试单张图片检测时间约为0.187 s,平均识别精度达到99.56%。实践结果表明,其能快速有效地检测与识别苹果、玉米、葡萄、草莓、马铃薯和番茄等农作物的常见病害,且达到了精度与速度的平衡。结论 改进后的模型不仅对农作物叶片病害识别具有较高的精度和较快的检测速度,参数量和计算量较少,还易于部署在手机等移动端设备。该模型实现了在田间复杂环境对多种农作物病害精准定位与识别,对于指导早期农作物病害的防治具有十分重要的现实意义。  相似文献   

3.
因病害叶片图像的复杂多变性,较难准确分割病斑图像和提取到鲁棒的病害分类特征.现有的基于卷积神经网络(CNN)的作物病害识别方法通过扩展训练样本来增加大量不同角度、方向的训练样本,从而增强模型的鲁棒性和泛化能力,但需要较长的训练数据和较大的算力,并且对于一些少见的病斑不能准确识别,因此提出一种基于注意力胶囊网络(ACap...  相似文献   

4.
苹果叶片病害形态相似、斑点大小不同,依靠人工和农业专家识别的传统方式效率较低。为此提出一种基于改进残差网络的苹果病害识别模型REP-ResNet。该模型在基准模型ResNet-50的基础上通过采用批标准化、激活函数、卷积层的残差结构顺序,加入通道注意力机制和并行卷积的方式进行改进。训练过程中,将公开数据集PlantVillage预训练的模型权重参数迁移至上述网络模型中重新训练,达到加快网络的收敛速度和提高模型识别能力的目的。采用数据扩充的方式解决训练过程中样本不均的问题。结果表明,REP-ResNet模型与基准网络模型相比识别准确率提高2.41个百分点。模型使用迁移学习的方式进行训练,在复杂背景下的苹果叶片病害识别中准确率达到97.69%,与传统卷积神经网络相比识别效果有较大提高。  相似文献   

5.
苹果叶片病害的高效准确识别有助于合理使用杀虫剂、肥料等农业资源,进而保证苹果的产量与质量。为提高苹果叶片病害识别的准确率,提出一种残差网络与注意力机制结合的苹果叶片病害识别模型:P-D-ECA-ResNet101。首先构建苹果叶片病害数据集,然后使用常见的4种网络模型在构建的数据集上进行训练,选取训练效果最好的ResNet101为骨干网络模型,通过推迟下采样(delayed downsampling)、拆解大卷积层以及引入高效通道(efficient channel attention module, ECA)注意力模块对ResNet101网络模型进行优化,最后通过特征图可视化展示改进后网络模型的识别机制。试验结果表明,推迟下采样可以增强模型特征提取能力,拆解大卷积层可以有效减少模型的复杂度,引入ECA注意力模块可以削弱无效特征信息对模型的干扰。改进后的P-D-ECA-ResNet101模型在构建的苹果叶片病害测试集上的平均识别准确率达到96.20%,相较于原模型ResNet101提升了2.20百分点。特征图可视化分析表明改进后的P-D-ECA-ResNet101模型可以更好地聚焦于病...  相似文献   

6.
针对传统苹果叶部病害识别方法识别率低和现有卷积神经网络(CNN)训练时间长的问题,提出一种基于多尺度注意力卷积神经网络的苹果叶部病害识别方法。该方法由多尺度空洞卷积模块Inception与改进的残差模块组成,其中,多尺度空洞卷积模块Inception用于图像的多尺度特征提取,在卷积模块中引入双注意力机制增强网络模型,显著表示图像中叶部病斑区域特征,降低非病斑区域与背景区域对识别结果的干扰,在原始残差模块上引入卷积层与非线性激活函数改进的残差模块,增加鲁棒性判别特征的跨层融合,在苹果病害叶片图像数据集上的识别准确率达96%以上。结果表明,所提出的方法具有参数量少、占用内存小以及性能好的优势,可进一步应用于田间苹果叶部病害智能识别系统。  相似文献   

7.
准确识别苹果叶片病害种类以进行及时防治对于苹果增量增产具有重要的意义,为解决同时检测苹果叶片多种病害目标结果不准确的问题,提出一种改进的YOLOv4目标检测算法(MC-YOLOv4)对苹果叶片常见的5种病害(斑点落叶病、褐斑病、灰斑病、花叶病、锈病)进行检测。为方便迁移到移动终端,首先,该算法将YOLOv4网络结构中的主干特征提取网络CSPDarknet53换成了轻量级的MobileNetV3网络,并在加强特征提取网络结构中引入深度可分离卷积代替传统卷积;其次,为提高检测精度,将卷积注意力机制模块CBAM融合至PANet结构中,可增强对有用特征信息的提取;最后,为了使锚框更适应本研究的数据集,通过K-means聚类算法将模型的锚框信息更新。结果表明,MC-YOLOv4模型在检测中的平均精度为97.25%,单张图像平均检测时间为13.3 ms,权重文件大小为55.5 MB。MC-YOLOv4模型对于同时检测苹果叶片多种病害目标的问题上具有识别速度快、识别精准度高、可靠性强等特点,该研究为苹果叶片的病害检测提供了一种更优的方法,有助于实现精准施药,提高苹果的产量和品质。  相似文献   

8.
为快速准确识别自然环境下的番茄叶片病害,提出一种基于改进YOLOv4算法的轻量化番茄叶部病害识别方法。该方法根据番茄病害特征采用K均值聚类算法调整先验框的维度,并使用宽度因子为0.25的MobileNetv1代替YOLOv4原有的主干网络CSPDarknet53进行特征提取,并在特征融合网络PANet中引入深度可分离卷积代替原有的3×3标准卷积,同时在主干网络的2个输出特征层和空间金字塔池化输出层分别嵌入卷积块注意力模块(CBAM),提高模型识别精度。试验结果表明,改进后的模型对8类番茄叶片整体检测精准性(mAP)为98.76%,参数量为12.64 M,传输帧数为1 s 101.76帧,相较于原YOLOv4模型,模型参数量减少80%,每秒传输帧数比原始YOLOv4模型提高了130%。  相似文献   

9.
【目的】针对目前三七Panax notoginseng病害识别模型结构复杂、参数庞大,难以实现在移动设备上部署的问题,提出一种基于SSD(Single shot multibox detector)目标检测的改进模型,以期实现三七病害检测的便捷化、快速化与精准化。【方法】基于SSD模型架构,采用轻量化卷积神经网络(MobileNet)替换原始特征提取网络(VGG16),降低主干网络的参数量与计算量,同时根据人类视觉皮层中群智感受野(pRF)的大小与其视网膜图中偏心率之间的函数关系,构建RFB模块,用该模块替换原SSD模型框架顶部卷积层,从而增强网络深层特征,提高轻量化模型的检测精度与检测速度,实现多尺度三七病害检测。【结果】与SSD模型相比,RFBMobileNet-SSD模型网络参数量和参数计算量分别降低了96.67%和96.10%。在不同天气条件下应用模型对4种不同病害数据进行验证发现,改进模型的准确率提高了4.6个百分点,召回率提高了6.1个百分点,F1精度提高了5.4个百分点,单幅图像检测时间由SSD模型的0.073 s缩短为0.020 s,尺寸仅为SSD模型的54.6%。【结...  相似文献   

10.
针对自然条件下苹果叶部病斑分割与识别效果欠佳的问题,本文提出一种融合条件随机场和卷积块状注意力模块的苹果叶部病害语义分割模型,实现苹果叶部锈病、褐斑病、灰斑病及斑点落叶病的病斑准确分割和识别。本文在U-Net模型基础上,使用ResNet50为骨干网络防止梯度消失问题,并分别在跳跃连接分支与上采样层加入卷积块状注意力模块,减少训练过程中的分割精度损失,融合Dice Loss和Focal Loss降低损失波动,最后利用条件随机场优化分割结果,获取病斑掩模图像,实现对苹果叶部病害语义分割。本研究在自制苹果叶部病害数据集上进行试验,分析了光照、阴影及水滴等因素对分割结果的影响。试验结果表明:本文构建的语义分割模型相比传统U-Net模型,平均分割精度(mIoU)提升8.24百分点,平均分类精度(mPrecision)提升11百分点,类别平均像素准确率(mPA)提升6.09百分点,受光照不均、雨滴的影响更小,具有更好的鲁棒性和可靠性。  相似文献   

11.
邵彧  张善文  李萍 《吉林农业科学》2021,46(4):113-118,134
通过维数约简实现特征提取是图像识别的一个重要步骤.由于同一种作物病害叶片和病斑图像的高度复杂性,在各种不同拍摄角度、位置和光照等条件下得到的图像之间差异较大,使得很多经典的维数约简和特征提取算法不能有效地用于作物叶部病害识别.本文在判别局部保持投影(Discriminant Locality Preserving Projections,DLPP)的基础上,提出一种基于DLPP的苹果叶部病害识别方法.首先利用GrabCut算法对采集的病害叶部图像进行背景分割,然后利用分水岭算法对去背景图像进行分割,得到病斑图像;再利用DLPP将病斑图像投影到低维判别空间,得到分类特征;最后利用K-最近邻分类器进行病害类别识别.在实际苹果病害叶片图像数据库上的实验结果表明,该方法是有效可行的.  相似文献   

12.
针对自然环境中,人工目视解译苹果叶部病害耗时耗力、人为主观因素强的问题。本研究提出了一种融合自注意力机制和Transformer模块的目标检测算法——BCE-YOLOv5,实现对自然环境下对苹果叶片病虫害的自动识别与检测。该算法首先使用BotNet、ConvNeXt模块分别替换Backbone网络和Neck网络的CSP结构,增加自注意力机制对目标的特征提取能力。通过将改进的CBAM引入YOLOv5的特征融合网络之后,使注意力机制对特征融合信息更加地关注。最后,用α-IoU损失函数替换IoU损失函数,使得网络在模型训练过程中收敛的更加稳定。BCE-YOLOv5算法在传统算法YOLOv5基础上平均精准率均值提升了2.9百分点,并且改进后的算法的模型大小和计算量较传统算法分别减小了0.2 M和0.9 GFLOPs。平均精度均值比YOLOv4s、YOLOv6s、YOLOx-s和YOLOv7模型分别高2.5、1.3、3.5、2.2百分点。该方法能快速准确识别苹果叶部病害,为苹果种植过程中提供智能化管理做参考。  相似文献   

13.
番茄病害的及时发现与治理有助于提高番茄产量与质量,增加农户经济收益.利用物联网和人工智能可以无损害有效检测番茄病害,该研究提出了一种改进的AT-InceptionV3(Attention-InceptionV3)神经网络番茄叶部病害检测模型,该网络以InceptionV3为主干网络,结合多尺度卷积和注意力机制CBAM(...  相似文献   

14.
针对当前玉米病害发生量大、病情复杂、难以防治,严重影响玉米产量和质量的问题,提出了一种基于卷积神经网络和迁移学习的玉米叶片病害检测与识别方法。首先收集了3 827张玉米健康叶片图像和3种不同的玉米病害叶片图像样本,为了使模型拥有更好的泛化能力,使用生成对抗网络对样本进行处理,得到分辨率更高的样本,再对样本进行平移旋转,使样本数量达到5 153张。然后构建ResNet模型,分别对ResNet34、ResNet50及对其添加CBAM注意力机制和FPN特征金字塔网络,并通过迁移学习方法将预训练权重迁移到训练模型中。试验结果表明,ResNet50结合CBAM注意力机制模型的准确率达到了97.5%,相比ResNet50模型准确率提升了4.2百分点,相比ResNet34模型准确率提升了4.9百分点。本研究表明,提出的ResNet50结合CBAM注意力机制模型能够较精准地检测识别玉米枯萎叶、锈病叶、灰斑病叶和健康叶。并可将模型安装在无人机等移动设备上,实现对玉米叶片病害智能化防治,而且后期还会扩充更多的植物病害数据,实现对多类植物病害的检测,为智慧农业添砖加瓦,促进农业防治现代化。  相似文献   

15.
针对如何提高苹果表面缺陷的检测速度和精度,解决模型内存占比大的问题,提出一种基于改进YOLOv7的苹果表面缺陷轻量化检测算法。首先引入GhostNetV2作为YOLOv7网络的backbone,有效降低了模型复杂度,提高了检测速度。并引入SimAM无参注意力机制,以强化不同深度的特征信息。使用双向加权特征金字塔结构BiFPN进行加权特征融合,进一步提升苹果表面缺陷的检测精度。最后采用ECIOU损失函数来计算边界框损失,进一步提高模型收敛速度和整体性能。结果表明,改进YOLOv7模型在苹果表面缺陷检测上mAP@0.5较原YOLOv7网络提高2.0百分点,准确率和召回率也分别提升了1.7、3.9百分点,模型减小20.8 MB,速度提升36.43帧/s。其综合性能也优于SSD、CenterNet等主流算法,可实现对苹果表面缺陷的快速准确诊断。  相似文献   

16.
为实现农作物病害的快速精准识别,降低病害对农业安全生产的影响,本研究针对现有病害识别模型参数量大、鲁棒性低、泛化性弱等问题提出了轻量级MIE_Net农作物病害识别网络。该网络以MobileNetV2为基础网络结构,首先使用多尺度特征提取模块替换原网络的初始卷积层,提高网络对不同面积病斑的特征提取能力,增加网络中的特征复杂度;其次在主模块中添加ECA注意力机制,提高网络对叶片病害区域的关注程度,降低复杂背景对小病斑特征提取过程的影响;最后使用Swish激活函数增加网络的表达能力,使网络性能达到最优。结果表明,多尺度特征提取模块提高了模型对不同病斑大小的识别准确率,ECA注意力模块提高了网络对小病斑的识别准确率,最终网络模型对复杂环境中2种作物11种病害类别的最低识别精确率达到91.2%,总体病害识别准确率达到95.79%,比原网络提高1.84百分点,参数量为2.24 M,权重文件大小为8.78 MB。MIE_Net网络在保证模型轻量化的同时提高了模型的准确性、泛化性以及鲁棒性,整体性能优于其他现有网络模型,为以后的轻量级作物病害识别方法提供了参考。  相似文献   

17.
为解决田间复杂环境下小样本黄瓜叶片病害识别中模型泛化能力差、识别准确率不高的问题,将自注意力机制模块引入激活重建生成对抗网络(activation reconstruction GAN,AR-GAN),采用Smooth L1正则化作为损失函数,设计改进激活重建生成对抗网络IAR-GAN(improved AR-GAN)增广黄瓜叶片病害图像。通过在Inception网络基础上加入空洞卷积和形变卷积,设计空洞和形变卷积神经网络(dilated and deformable convolutional neural network,DDCNN)用于黄瓜叶片病害识别。试验结果显示,提出的IAR-GAN有效缓解了过拟合现象,丰富了生成样本的多样性;所提出的DDCNN对黄瓜炭疽病、斑靶病和霜霉病的平均识别准确率均达到96%以上,比Inception-V3模型提高了9个百分点。以上结果表明,本研究提出的数据增广方法和病害识别模型可为复杂环境下小样本的作物叶部病害的准确识别提供新思路。  相似文献   

18.
针对目前马铃薯叶片病害识别工作量大、准确率低且主观性强等热点问题,提出1种通过ResNet34模型结合不同迁移方式进行集成学习以快速识别马铃薯叶片病害图像的方法。首先,利用多种迁移方式(全部参数迁移、特征提取、微调及全新训练4种训练方法),通过调整超参数,使模型快速收敛达到全局最优点。其次,使用混淆矩阵对多种迁移方式的训练模型结果进行对比分析,微调模型识别准确率达到95.45%。最后,利用集成学习将3种训练较优的模型进行集成并与微调模型进行对比。通过试验建立了1个马铃薯叶片病害图像数据集,结果表明,相比现有热门神经网络模型,该数据集无论是识别准确率还是识别效率均有显著提升,通过对比发现,试验的总体准确率提升了3.68百分点,达到99.13%,迁移学习能够更快速地收敛,减少训练时间,并且集成学习能够大幅提升平均识别准确率。本研究提出的针对马铃薯叶片病害的识别方法成本低、精确率高,能更好地应用于日常病害识别中,为植物叶片病害的智能诊断提供借鉴和参考。  相似文献   

19.
为解决现有花卉识别准确度低的问题,提出一种基于生成对抗网络的花卉识别方法。使用残差网络构建生成器和判别器,充分提取深层次花卉样本特征,大幅度减小模型参数量,加快模型收敛;融入注意力机制,快速有效提取花卉显著区域特征,并改进模型损失函数,进一步提高对抗网络生成样本的质量。同时利用生成器生成高清晰度、纹理特征明显且具有多样性的高质量花卉样本进行数据增强,迁移判别器参数到花卉识别网络,加快模型收敛速度,进一步提高花卉识别准确度。Oxford 102花卉数据集试验结果显示,相较于其他方法,该方法网络训练稳定、收敛速度快,花卉识别准确度显著提高。  相似文献   

20.
苹果生长过程中容易受到病害影响而减产,造成经济损失。大型卷积神经网络可准确识别出苹果病害,但移动设备有限的计算资源限制了该类网络在其上的具体应用。轻量级卷积神经网络可运行在移动端,并能够实现病害的实时识别,但其识别精度往往不如前者。为解决该问题,在轻量级卷积神经网络ShuffleNet V2基础上,通过调整基本残差单元结构和网络宽度,同时引入卷积块注意模块(convolutional block attention module,CBAM),提出了改进型ShuffleNet#苹果叶部病害诊断模型。以苹果疮痂病、黑腐病、锈病、健康叶片为研究对象,收集简单和复杂背景图像各2000张,通过数据增广将其扩充至40000张,构建苹果叶部病害图像数据集,应用该数据集,对苹果叶部病害诊断模型进行训练和测试。以识别准确率、模型复杂度、平均推理时间等为判别标准,并与多个现有卷积神经网络模型进行比较。结果表明:改进后的模型能有效地识别出上述2种不同背景的4类图像,在测试集上识别准确率达到98.95%,移动端单张图像的平均推理时间为39.38ms。相较于大型的ResNet101网络,该模型在准确率上仅降低0...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号