共查询到20条相似文献,搜索用时 62 毫秒
1.
苹果叶片病害形态相似、斑点大小不同,依靠人工和农业专家识别的传统方式效率较低。为此提出一种基于改进残差网络的苹果病害识别模型REP-ResNet。该模型在基准模型ResNet-50的基础上通过采用批标准化、激活函数、卷积层的残差结构顺序,加入通道注意力机制和并行卷积的方式进行改进。训练过程中,将公开数据集PlantVillage预训练的模型权重参数迁移至上述网络模型中重新训练,达到加快网络的收敛速度和提高模型识别能力的目的。采用数据扩充的方式解决训练过程中样本不均的问题。结果表明,REP-ResNet模型与基准网络模型相比识别准确率提高2.41个百分点。模型使用迁移学习的方式进行训练,在复杂背景下的苹果叶片病害识别中准确率达到97.69%,与传统卷积神经网络相比识别效果有较大提高。 相似文献
2.
3.
基于注意力残差机制的细粒度番茄病害识别 总被引:2,自引:0,他引:2
【目的】解决温室环境下细粒度番茄病害识别方法不足问题。【方法】以早、晚期5种番茄病害叶片为研究对象,提出一种基于注意力与残差思想相结合的新型卷积神经网络模型ARNet。通过引入多层注意力模块,层次化抽取病害分类信息,解决早期病害部位分散、特征难以提取难题;为避免网络训练出现退化现象,构建残差模块有效融合高低阶特征,同时引入数据扩充技术以防止模型过拟合。【结果】对44 295张早、晚期病害叶片数据集进行模型训练与测试的结果表明,与VGG16等现有模型相比,ARNet具有更好的分类表现,其平均识别准确率达到88.2%,显著高于其他模型。ARNet对早期病害识别准确率明显优于晚期病害,验证了注意力机制在提取细微区域特征上的有效性,且在训练过程中未发生过度抖动的状况。【结论】本文提出的模型具有较强鲁棒性和较高稳定性,在实际应用中可为细粒度番茄病害智能诊断提供参考。 相似文献
4.
为解决田间复杂环境下小样本黄瓜叶片病害识别中模型泛化能力差、识别准确率不高的问题,将自注意力机制模块引入激活重建生成对抗网络(activation reconstruction GAN,AR-GAN),采用Smooth L1正则化作为损失函数,设计改进激活重建生成对抗网络IAR-GAN(improved AR-GAN)增广黄瓜叶片病害图像。通过在Inception网络基础上加入空洞卷积和形变卷积,设计空洞和形变卷积神经网络(dilated and deformable convolutional neural network,DDCNN)用于黄瓜叶片病害识别。试验结果显示,提出的IAR-GAN有效缓解了过拟合现象,丰富了生成样本的多样性;所提出的DDCNN对黄瓜炭疽病、斑靶病和霜霉病的平均识别准确率均达到96%以上,比Inception-V3模型提高了9个百分点。以上结果表明,本研究提出的数据增广方法和病害识别模型可为复杂环境下小样本的作物叶部病害的准确识别提供新思路。 相似文献
5.
苹果叶片病害的高效准确识别有助于合理使用杀虫剂、肥料等农业资源,进而保证苹果的产量与质量。为提高苹果叶片病害识别的准确率,提出一种残差网络与注意力机制结合的苹果叶片病害识别模型:P-D-ECA-ResNet101。首先构建苹果叶片病害数据集,然后使用常见的4种网络模型在构建的数据集上进行训练,选取训练效果最好的ResNet101为骨干网络模型,通过推迟下采样(delayed downsampling)、拆解大卷积层以及引入高效通道(efficient channel attention module, ECA)注意力模块对ResNet101网络模型进行优化,最后通过特征图可视化展示改进后网络模型的识别机制。试验结果表明,推迟下采样可以增强模型特征提取能力,拆解大卷积层可以有效减少模型的复杂度,引入ECA注意力模块可以削弱无效特征信息对模型的干扰。改进后的P-D-ECA-ResNet101模型在构建的苹果叶片病害测试集上的平均识别准确率达到96.20%,相较于原模型ResNet101提升了2.20百分点。特征图可视化分析表明改进后的P-D-ECA-ResNet101模型可以更好地聚焦于病... 相似文献
6.
传统农作物病害识别过程中,要求生产者通过肉眼观察识别病害类型,对生产者的专业知识要求高,识别难度大.随着深度学习的发展和卷积神经网络强大的特征提取能力的不断挖掘,降低了图像识别技术上的操作难度,并取得显著效果,应用计算机视觉技术进行农作物叶面病害识别,正在成为农业现代化的主流方向.以番茄的叶面病害识别为例,提出了一种基... 相似文献
7.
水稻害虫是影响水稻产量的因素之一,准确识别水稻害虫对提高水稻产量具有重要意义,针对水稻害虫识别准确率不高的问题,提出一种基于改进残差网络模型的水稻害虫识别方法。该模型是将动态路由胶囊结构嵌入残差网络深度卷积模型中,代替残差网络的全连接层,首先通过4个残差块得到特征图,将特征图进行胶囊化编码,其次进行层间路由,以减少卷积神经网络(CNN)在输出时丢失的大量信息。对水稻的14类害虫进行识别,并分析不同参数(学习率、批量大小、激活函数和优化组合)的影响。结果表明,提出的改进残差网络模型的准确率达到77.12%。模型满足水稻害虫图像识别的需求,具有一定的识别准确率及较强的鲁棒性,可为实际农业场景下水稻害虫识别提供可行的方案。 相似文献
8.
针对葡萄叶片类间相似度高导致的类内品种分类精度低的问题,构建一种改进的统计纹理残差学习网络(statistical texture residual learning network, STRLNet)的葡萄叶片分类方法。首先在ResNet50骨干网络的基础上添加SE注意力机制,然后构建底层信息的特征增强层,最后将增强后的底层特征与骨干网络提取的高层语义信息相融合,输出连接到用于存储分类特性的全连接层上。利用采集的11种成熟期葡萄叶片数据集进行训练测试,结果显示,STRLNet在提高网络空间性能的同时可充分利用底层特征信息,对构建的葡萄叶片数据集的分类准确率可以达到92.26%,相较于ResNet骨干网络提高了约2.8个百分点,与VGG16、Inception v4和ResNet等主流分类网络相比在葡萄叶片细粒度分类中具有更高的准确性。研究结果表明,在多品种的葡萄叶片分类任务中,改进后的模型相较于骨干网络可以关注到更多的特征信息,相较于主流分类网络模型可以获得更高的分类精度,模型性能得到进一步的提升。 相似文献
9.
10.
为了提高番茄叶片病害识别的效果,提出改进卷积神经网络算法。首先Sobel算子获得水平方向、垂直方向、45°、135°对角方向的4个通道图像,四通道卷积神经网络采用不同大小的卷积核提取图像特征;接着双重注意力机制包括空间注意力、通道注意力,空间注意力包括局部注意力机制、全局注意力机制,局部注意力机制注意图像的局部特征,全局注意力机制注意图像的整体特征,空间注意力使用局部-全局交替注意力;通道注意力主要进行加强番茄叶片图像的有用特征抑制无用特征;然后通过K-means聚类方法划分出病害聚类区;最后给出了算法流程。试验仿真结果显示本研究算法对番茄叶片病害黄叶卷曲病、花叶病、蜘蛛螨病、七星斑病、叶霉菌病、早疫病识别准确率平均值分别为98.51%、97.92%、96.71%、94.12%、94.63%、94.22%,高于其他算法,同时消耗时间少于其他算法。 相似文献
11.
为了提高农作物病虫害识别的精度,本文将3D-CNN和2D-CNN与空间残差网络相结合,软阈值化作为非线性层嵌入空间残差网络以消除病虫害图像不重要的图像特征,提出一种基于空间残差收缩网络的农作物病虫害识别模型。与3D-CNN和ResNet相比,基于空间残差收缩网络的农作物病虫害识别模型具有更高的精度和鲁棒性,总体分类精度为99.41%,增强了图像特征与病虫害类别的关系,可以识别多种农作物病虫害图像。 相似文献
12.
为了解决现有的农作物病害检测方法对不同番茄叶片病害检测的精度低、效果差的问题,提出一种基于YOLOv5网络模型改进的番茄叶片病害检测模型YOLOv5s-TLD。首先在原YOLOv5s模型的Backbone中构建DCAM注意力机制模块,通过制定双通道注意力和空间注意力机制加强模型对番茄叶片病理特征的提取能力,并减弱模型受复杂背景特征的影响,以提高模型对不同种类病害的检测精度和分类精度;然后应用融合Swin Transformer的C3STR模块替换原网络第6层的C3模块,强化模型在多尺度上建模的能力,实现模型对小尺寸的番茄叶片病害残差特征的高精度学习;再运用BiFPN加权双向特征金字塔网络替换原YOLOv5模型Head的PANet路径聚合网络,该网络采用跨尺度特征融合和可学习权重的方式融合模型不同层次的特征,在增强网络的特征融合能力的同时使网络获得更多的特征信息,以提高模型的感受野和特征表达能力;最后进行不同模型的检测对比试验,并在实际复杂场景下进行番茄叶片病害检测试验。试验结果表明:YOLOv5s-TLD模型平均精度均值和召回率分别为97.7%和96.3%,较原YOLOv5s模型平均精... 相似文献
13.
为实现复杂环境下辣椒病害的精准识别和分类,设计了一种适用于辣椒病害识别分类的方法。以辣椒在生长过程中常见的6种病害为分类研究的对象,使用数据增强的方法扩充数据集,提出一种基于MaxViT改进的MaxViT-DF模型,将MaxViT模型中的普通卷积替换为可变形卷积,使模型在提取特征时能更贴近复杂环境下的识别目标;同时在MaxViT模型施加注意力时引入特征融合模块,提高模型的全局感知能力。结果显示,改进的MaxViT-DF模型识别分类准确率达到98.10%,对6种辣椒病害的分类精度均高于95%。与ResNet-34、EfficientNetv2和VGG-16等模型相比,改进模型在收敛速度和分类精度上具有明显优势。以上结果表明,MaxViT-DF模型能够对不同种类的辣椒常见病害进行有效的分类识别。 相似文献
14.
水稻病害一直是影响水稻产量的重要因素之一,为了快速、准确地检测水稻病害,本研究提出了一种基于卷积神经网络的轻量级水稻叶片病害识别模型。首先,从参数量的角度对注意力机制进行改进,得到轻量级注意力机制模块,对水稻叶片病害特征图中的潜在注意力信息进行深度挖掘;其次,使用深度可分离卷积代替部分标准卷积,进一步降低模型的参数量;最后,为了提高模型的泛化能力,让模型学习过程更快、更稳定,采用了自带内部归一化属性的扩展型指数线性单元函数(SELU)与外部组归一化模块相结合的方法。通过在公共数据集中进行验证,本研究构建模型的平均精度最高(0.990 0),模型在参数量和平均单次迭代时间方面也有一定优势,与其他模型相比,具有相对较好的性能。 相似文献
15.
以选择构建葡萄病害智能诊断系统的最适算法为目的,考查了3种神经网络模型:BP、RBF、GRNN,并以12种葡萄主要病害为研究样本,用3种网络模型分别构建了诊断系统,然后通过样本进行训练与仿真,比较各网络模型的稳定性和准确度。提出以GRNN作为病害诊断的最适模型,其诊断准确率为96%,为整个辅助决策系统的开发奠定了良好的基础。 相似文献
16.
基于改进VGG卷积神经网络的棉花病害识别模型 总被引:3,自引:2,他引:3
为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型迁移学习共享预训练模型中卷积层与池化层的权值参数。从构建的棉花病害图像库中随机抽取病害图像样本作为训练集和测试集,用以测试该方法的性能。试验结果表明:该模型能有效提取出棉花病害叶片图像的多层特征图像,并通过Relu激活函数的处理更能凸显棉花病害的边缘信息与纹理信息,分辨率为512像素×512像素图像在样本训练与验证试验效果最好。在平均识别准确率方面,本研究模型较BP神经网络、支持向量机、AlexNET、GoogleNET、VGG-16NET效果最好,达到89.51%,实现对棉花的褐斑病、炭疽病、黄萎病、枯萎病、轮纹病、正常叶片的准确区分。该模型在棉花病害识别领域具备良好的分类性能,可实现自然条件下棉花病害的准确识别。 相似文献
17.
为提高葡萄叶片病害图像中病斑分割性能,提出了一种基于显著性目标检测的病斑分割方法.采用显著性目标检测网络来生成葡萄病害叶片图像的显著性图,通过多种分辨率的网格结构提取图像局部和全局信息,并将它们融合成预测特征;再对病害叶片的显著性图用自适应阈值法分割出叶片上的病害区域,并用形态学方法进行后处理.结果 表明,在测试集A上... 相似文献
18.
19.
基于卷积神经网络的葡萄叶片病害检测方法 总被引:5,自引:0,他引:5
文章采用多角度建议区域Faster-RCNN准确定位图像中葡萄叶片,提出一种基于卷积神经网络的病害检测方法,检测图像叶片病害。相比直接检测图像病害,可去除背景因素对病害区域干扰,降低错误率。结果表明,该算法对自然条件下葡萄病害成像适应性良好。文章统计6种不同条件下拍摄图像,对一般叶片检测算法平均mAP为75.52%,显著高于传统算法。在病害检测时,采用两种策略:从一幅图像中检测到每个单个叶片,或将整幅图像对叶片取掩模后,作为下一级病害检测器输入图像。结果表明,第一种方法,6种常见葡萄病害平均mAP为66.47%,其中褐斑病与白粉病mAP超过70%;第二种方法,病害检测平均mAP为51.44%,但平均检测时间节约75%。两种方法性能均优于在原始图像上直接病害检测方法。 相似文献
20.
玉米叶部病虫害严重影响了玉米的产量和质量,为了对玉米叶部病害进行快速识别并进行及时有效的治理、减少玉米的损失、提高种植者的收益,在传统卷积神经网络LeNet-5模型的基础上进行优化改进,提出基于改进的LeNet-5模型,用来分类识别玉米大斑病、锈病、叶斑病3种叶部病害图像及正常玉米图像。首先通过随机旋转、图像增强及尺寸修改方法等对病害图像进行预处理操作,然后增加模型的网络层数,改进后的模型一共有14层,包括输入层、5个卷积层、5个池化层、2个全连接层及输出层,最后用ReLU函数代替传统的Sigmoid激活函数,并且在卷积层和全连接层中加入Dropout策略层,通过试验对比选择合适的丢弃概率,进一步减少参数,防止产生过拟合现象。迭代次数设置为15次,选取11个样本作为1个batch进行训练,通过不断调整参数、优化模型,选择最优的模型在测试集上进行分类识别,最终改进后的模型对玉米叶部病害的识别准确率高达97.3%,为玉米病害的及时防治提供了有效的技术支持。 相似文献