首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emergence of CTX-M-1 producing Uropathogenic Escherichia coli (UPEC) has become a serious challenge. In addition to antimicrobial resistance, a number of virulence factors have been shown. Therefore, this study was designed to determine the prevalence of O- serogroups, phylogenetic groups, exotoxin genes, and antimicrobial resistance properties of CTX-M-1- producing UPEC. A total of 248 UPEC isolates were collected. The antibiotic resistance was performed, and PCR was used to detect the blaCTX-M1, exotoxins, serogroups and phylogroups of UPEC. Of 248 isolates, 95 (38.3%) harbored blaCTX-M-1. Of them, serogroups O1 and O25 were predominant, accounting for 20% and 13.7%, respectively. The hlyA was the dominant exotoxin gene (32.6%), followed by sat (28.4%), vat (22.1%), cnf (13.7%), picU (8.4%), and cdt (2.1%). The hlyA gene was significantly associated with pyelonephritis (P = 0.003). Moreover, almost half of the isolates (45.4%) belonged to phylogenetic group B2. Most of exotoxin genes were present in significantly higher proportions in group B2 isolates except cdt gene (P < 0.05). All of the isolates were susceptible to imipenem, nitrofurantoin, and fosfomycin. The CTX-M-1-producing UPEC strains causing nosocomial infections are more likely to harbor certain exotoxin genes, raising the possibility that this increase in virulence genes may result in an increased risk of complicated UTI.  相似文献   

2.
In the last few years, antimicrobial resistant (AMR) Escherichia coli have been detected in newborn chickens suggesting their vertical transmission from breeding birds to their offspring. However, little is known about the presence of AMR E. coli in the reproductive organs of broiler breeders. The aim of this study was to investigate the presence of E. coli in the ovaries of healthy broiler breeders and to study their antimicrobial resistance. Samples from broiler breeders (n = 80) collected from 80 different broiler breeder flocks were included in this study. Antibiotic susceptibility testing was performed using disk diffusion method according to Clinical and Laboratory Standards Institute guidelines. Minimal inhibitory concentrations (MICs) of five antimicrobial agents were determined by Etest. PCR and sequencing were used to detect the blaESBL genes. E. coli were detected in the ovaries of thirty seven out of 80 (46.25%) sampled flocks. High levels of resistance to various first-line antimicrobial agents were recorded in E. coli isolates. This study showed that 89.18% of E. coli isolates were multidrug resistant (MDR). Furthermore, MDR extended-spectrum β-lactamases (ESBL)-producing E. coli were detected in the ovaries of four different broiler breeder flocks. Molecular characterization revealed that three isolates harboured blaCTX-M-1 gene and one isolate expressed blaSHV-12 gene. In addition, one blaCTX-M-1 -producing E. coli co-harboured the blaTEM-1 gene. These findings would contribute to a better epidemiological understanding of MDR E. coli for improve existing preventive strategies in order to reduce the dissemination of antimicrobial resistance in the broiler production system.  相似文献   

3.
This study determined the antimicrobial resistance profiles of Escherichia coli isolates from dogs with a presumptive diagnosis of urinary tract infection (UTI). Urine samples from 201 dogs with UTI diagnosed through clinical examination and urinalysis were processed for isolation of Escherichia coli. Colonies from pure cultures were identified by biochemical reactions (n=114) and were tested for susceptibility to 18 antimicrobials. The two most frequent antimicrobials showing resistance in Urinary E. coli isolates were oxytetracycline and ampicillin. Among the resistant isolates, 17 resistance patterns were observed, with 12 patterns involving multidrug resistance (MDR). Of the 69 tetracycline-resistant E. coli isolates, tet(B) was the predominant resistance determinant and was detected in 50.9% of the isolates, whereas the remaining 25.5% isolates carried the tet(A) determinant. Most ampicillin and/or amoxicillin-resistant E. coli isolates carried blaTEM-1 genes. Class 1 integrons were prevalent (28.9%) and contained previously described gene cassettes that are implicated primarily in resistance to aminoglycosides and trimethoprim (dfrA1, dfrA17-aadA5). Of the 44 quinolone-resistant E. coli isolates, 38 were resistant to nalidixic acid, and 6 were resistant to nalidixic acid, ciprofloxacin and enrofloxacin. Chromosomal point mutations were found in the GyrA (Ser83Leu) and ParC (Ser80Ile) genes. Furthermore, the aminoglycoside resistance gene aacC2, the chloramphenicol resistant gene cmlA and the florfenicol resistant gene floR were also identified. This study revealed an alarming rate of antimicrobial resistance among E. coli isolates from dogs with UTIs.  相似文献   

4.

Background

The already high and increasing occurrence of extended-spectrum beta-lactamases (ESBL) producing Escherichia coli in European broiler populations is of concern due to the fact that third and fourth generation cephalosporins are deemed critically important in human medicine. In Sweden 34% of the broilers carry ESBL/pAmpC producing E. coli in their gut, despite the absence of a known selection pressure such as antimicrobial usages. The aim of the current study was to characterise a selection of E. coli strains carrying the blaCTX-M-1, to determine if the spread was due to a specific clone.

Findings

Ten isolates carrying blaCTX-M-1 from Swedish broilers belonged to eight different multi-locus sequence types with three isolates belonging to ST155. The ST155 isolates were identical as assessed by PFGE. The blaCTX-M-1 was in all isolates carried on a plasmid of replicon type incI, which also transferred resistance to tetracycline and sulfamethoxazole.

Conclusion

The occurrence of ESBL-producing E. coli in the Swedish broilers is not due to the emergence of a single clone, but rather the spread of a specific incI plasmid carrying blaCTX-M-1.  相似文献   

5.
Thirty-five Escherichia coli isolates obtained from the liver, spleen and intestines of 180 frugivorous and insectivorous bats were investigated for antimicrobial resistance phenotypes/genotypes, prevalence of Extended-Spectrum beta-lactamase (ESBL) production, virulence gene detection and molecular typing. Eight (22.9 %) of the isolates were multidrug resistant (MDR). Two isolates were cefotaxime-resistant, ESBL-producers and harbored the blaCTX-M-15 gene; they belonged to ST10184-D and ST2178-B1 lineages. tet(A) gene was detected in all tetracycline-resistant isolates while int1 (n = 8) and blaTEM (n = 7) genes were also found. Thirty-three of the E. coli isolates were assigned to seven phylogenetic groups, with B1 (45.7 %) being predominant. Three isolates were enteropathogenic E. coli (EPEC) pathovars, containing the eae gene (with the variants gamma and iota), and lacking stx1/stx2 genes. Bats in Nigeria are possible reservoirs of potentially pathogenic MDR E. coli isolates which may be important in the ecology of antimicrobial resistance at the human-livestock-wildlife-environment interfaces. The study reinforces the importance of including wildlife in national antimicrobial resistance monitoring programmes.  相似文献   

6.
A PCR based method was developed for the identification of ceftiofur resistance genes (blaCMY-2, blaTEM-1, and ampC) in swine bacterial pathogens. Using this method, the ceftiofur resistant (n = 76) and susceptible (n = 45) strains of Bordetella bronchiseptica, Salmonella spp., Escherichia coli, and Pasteurella multocida were screened for the presence of these three genes. The resistant genes were detected in 70% (blaTEM-1), 68% (blaCMY-2) and 45% (ampC) of the resistant isolates and in 18% (blaTEM-1), 27% (blaCMY-2), and 36% (ampC) of the susceptible isolates. Results obtained in the present study showed widespread distribution of these three resistance genes in ceftiofur-resistant swine pathogens. It was also observed that more pathogens are acquiring these resistance genes.  相似文献   

7.
Eighty-nine Escherichia coli isolates recovered from faeces of red deer and small mammals, cohabiting the same area, were analyzed to determine the prevalence and mechanisms of antimicrobial resistance and molecular typing. Antimicrobial resistance was detected in 6.7% of isolates, with resistances to tetracycline and quinolones being the most common. An E. coli strain carrying blaCTX-M-1 as well as other antibiotic resistant genes included in an unusual class 1 integron (Intl1-dfrA16blaPSE-1-aadA2-cmlA1-aadA1-qacH-IS440-sul3-orf1-mef(B)Δ-IS26) was isolated from a deer. The blaCTX-M-1 gene was transferred by conjugation and transconjugants also acquired an IncN plasmid. This strain was typed as ST224, which seems to be well adapted to both clinical and environmental settings. The phylogenetic distribution of the 89 strains varied depending on the animal host. This work reveals low antimicrobial resistance levels among faecal E. coli from wild mammals, which reflects a lower selective pressure affecting these bacteria, compared to livestock. However, it is remarkable the detection of a multi-resistant ESBL-E. coli with an integron carrying clinically relevant antibiotic-resistance genes, which can contribute to the dissemination of resistance determinants among different ecosystems.  相似文献   

8.
Escherichia coli isolates were cultured from diseased Japanese quail and their environment. Of 31 E. coli isolates, 11 were cultured from heart blood of dead Japanese quail and 20 were from dead-in-shell embryos, fluff samples, and footbath and drinking water samples. All E. coli isolates were moderately positive on the Congo red binder test and 14 out of 31 isolates produced hemolysis on sheep blood agar. Twenty-seven isolates were grouped under serogroups O4, O9, O38, O42, and O88, whereas 4 isolates could not be typed. Of the E. coli isolates cultured from Japanese quail infected with colibacillosis, 54.5% belonged to serogroup O9 and the same serotype was predominant in the hatchery environment. All the E. coli isolates showed high resistance to multiple drugs with 100% resistance observed against ampicillin/cloxacillin, chloramphenicol, tetracycline, and cotrimoxazole. The highest sensitivity was observed against nitrofurantoin. This study shows that hatchery hygiene should be improved to control colibacillosis and reduce production losses. At the same time, indiscriminate use of antibiotics should be avoided as it increases the risk of development of drug-resistant strains of bacteria.  相似文献   

9.
A total of 318 Escherichia coli isolates obtained from different food-producing animals affected with colibacillosis between 2001 and 2006 were subjected to phylogenetic analysis: 72 bovine isolates, 89 poultry isolates and 157 porcine isolates. Overall, the phylogenetic group A was predominant in isolates from cattle (36/72, 50%) and pigs (101/157, 64.3%) whereas groups A (44/89, 49.4%) and D (40/89, 44.9%) were predominant in isolates from poultry. In addition, group B2 was not found among diseased food-producing animals except for a poultry isolate. Thus, the phylogenetic group distribution of E. coli from diseased animals was different by animal species. Among the 318 isolates, cefazolin resistance (minimum inhibitory concentrations: ≥32 μg/ml) was found in six bovine isolates, 29 poultry isolates and three porcine isolates. Of them, 11 isolates (nine from poultry and two from cattle) produced extended spectrum β-lactamase (ESBL). The two bovine isolates produced blaCTX-M-2, while the nine poultry isolates produced blaCTX-M-25 (4), blaSHV-2 (3), blaCTX-M-15 (1) and blaCTX-M-2 (1). Thus, our results showed that several types of ESBL were identified and three types of β-lactamase (SHV-2, CTX-M-25 and CTX-M-15) were observed for the first time in E. coli from diseased animals in Japan.  相似文献   

10.

This study investigated the occurrence of antimicrobial-resistant Escherichia coli in dairy calves in southern Vietnam. Fecal samples were taken directly from the rectum of 84 calves from 41 smallholder dairy farms, when newborn and at 14 days of age for isolation of E. coli. Escherichia coli strains were isolated from 144 of the 168 fecal samples tested. Of the 144 E. coli isolates, 40% were found to be susceptible to all 12 antimicrobial drugs tested and 53% of the E. coli isolates were resistant to at least three antimicrobials. Calves were colonized with antimicrobial-resistant E. coli already on the day of birth. Resistance to tetracycline was most common, followed by resistance to sulfamethoxazole, ampicillin, trimethoprim, and ciprofloxacin. Four isolates carried a gene encoding for extended-spectrum cephalosporinases (ESC), and these genes belonged to blaCTX-M group 1 (2 isolates), blaCTX-M group 9 (1 isolate), and blaCMY-2 (1 isolate). Thirty-three isolates had a plasmid-mediated quinolone resistance (PMQR) phenotype, and 30 of these carried the qnrS gene. These results are of importance for management routines of dairy cattle to prevent the spread of antimicrobial resistance.

  相似文献   

11.
An observational study was conducted of chicken and turkey flocks slaughtered at federal processing plants in the province of Quebec, Canada. The objectives were to estimate prevalence of drug use at hatchery and on farm and to identify antimicrobial resistance (AMR) in cecal Escherichia coli and Enterococcus spp. isolates and factors associated with AMR. Eighty-two chicken flocks and 59 turkey flocks were sampled. At the hatchery, the most used antimicrobial was ceftiofur in chickens (76% of flocks) and spectinomycin in turkeys (42% of flocks). Virginiamycin was the antimicrobial most frequently added to the feed in both chicken and turkey flocks. At least 1 E. coli isolate resistant to third-generation cephalosporins was present in all chicken flocks and in a third of turkey flocks. Resistance to tetracycline, streptomycin, and sulfisoxazole was detected in > 90% of flocks for E. coli isolates. Antimicrobial resistance (AMR) was observed to bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, and tetracycline in both chicken and turkey flocks for Enterococcus spp. isolates. No resistance to vancomycin was observed. The use of ceftiofur at hatchery was significantly associated with the proportion of ceftiofur-resistant E. coli isolates in chicken flocks. In turkey flocks, ceftiofur resistance was more frequent when turkeys were placed on litter previously used by chickens. Associations between drug use and resistance were observed with tetracycline (turkey) in E. coli isolates and with bacitracin (chicken and turkey), gentamicin (turkey), and tylosin (chicken) in Enterococcus spp. isolates. Further studies are needed to provide producers and veterinarians with alternative management practices and tools in order to reduce the use of antimicrobial feed additives in poultry.  相似文献   

12.
Escherichia coli play an important ecological role within resistant bacteria populations, and can be used as a bio-indicator of antimicrobial resistance. The aim of the present study was to use this feature of E. coli to investigate the prevalence of antimicrobial resistance and the degree of cross-species transmission of bacteria in pigs and poultry in China. A total of 592 E. coli strains, isolated from pigs and poultry (healthy and diseased animals), were tested for resistance to 22 antimicrobials representing eight antimicrobial drug types.E. coli isolates had high rates of resistance to ampicillin (99.5%), doxycycline (95.6%), tetracycline (93.4%), trimethoprim–sulfamethoxazole (74.3%), amoxicillin (65.1%), streptomycin (54.7%), and chloramphenicol (50.2%). Resistance to cephalosporins, quinolones, and aminoglycosides was also quite prevalent. The majority (81%) of isolates demonstrated multi-antimicrobial resistance, most commonly to 5–6 different antimicrobial types. One isolate was resistant to all 22 antimicrobials. Twenty-two cultures exhibiting multi-antimicrobial resistance were analysed by pulsed-field gel electrophoresis (PFGE) to assess their distribution between farms. Three distinct PFGE types were identified, indicating inter-farm transmission of multi-antimicrobial resistant bacteria. The study confirmed the presence and transmission of multi-antimicrobial-resistant E. coli strains amongst pigs and poultry in China and highlights the urgent need for appropriate monitoring programmes.  相似文献   

13.
食品动物源产CTX-M-14大肠杆菌传播分子机制的演变   总被引:1,自引:1,他引:0  
从保存的2002-2009年分离的食品动物源大肠杆菌中,挑选16株blaCTX-M-14阳性菌,用PCR方法检测超广谱β-内酰胺酶(ESBLs)编码基因、PMQR耐药基因及其他重要抗生素耐药基因(rmtB和floR);通过脉冲场凝胶电泳(PFGE)及种族进化关系分析16株细菌的亲缘关系;通过接合转移试验、复制子分型和blaCTX-M-14上下游插入元件的检测,分析产CTX-M-14大肠杆菌的传播分子机制。PCR检测结果表明,16株食品动物源产CTX-M-14大肠杆菌大多属于系统发育组A组,其次为B1和D组,没有B2组;PFGE分型结果表明,同一时间内不同动物间存在产CTX-M-14共生型大肠杆菌克隆的扩散传播,但养殖场内CTX-M-14主要是随质粒或其他元件进行水平传播;质粒复制子分型结果表明,携带blaCTX-M-14的质粒属于IncK(3/14)、 IncF(5/14)、 IncHI2(1/14)、IncFIB 和 IncF(1/14)、IncHI1和IncN(2/14)、 IncI1(2/14)等,且随着时间推移,复制子的种类呈增多趋势。2002-2007年的菌株blaCTX-M基因的上下游均检测到ISEcp1和IS903;但2009年菌株除了部分在上下游都可以检测到ISEcp1和IS903外,还有的只检测到上游的ISEcp1或下游的IS903;2002-2009年的菌均未检测到ISCR1。16株产CTX-M-14大肠杆菌除了携带其他ESBLs编码基因,如blaCTX-M79和blaTEM-135外,还携带其他重要抗生素耐药基因,如oqxA、floR、aac(6')-1b-cr及rmtB,而且2002-2009年大肠杆菌携带耐药基因的种类和数量逐年增多;接合转移试验发现,2002-2005年的菌株,blaCTX-M-14往往发生单独转移,而2009年分离菌blaCTX-M-14往往和floR或rmtB位于同一质粒上发生共同转移。这说明养殖场使用氨基糖苷类或氟苯尼考等任何一种抗生素,都可以筛选出产CTX-M-14大肠杆菌并促进其扩散,所以动物养殖过程中要慎用这些抗生素。  相似文献   

14.
15.
Antimicrobial resistance profile of E. coli and Salmonella serovars isolated from diarrheic calves and handlers in Egypt is unknown due to the absence of monitoring. Therefore, this study aimed to determine the virulence, genetic and antimicrobial resistance profiles of E. coli and Salmonella serovars associated with diarrhea in calves and handlers in intensive dairy farms in Egypt. A total of 36 bacterial strains (20 E. coli and 16 Salmonella) were isolated from fecal samples of 80 diarrheic Holstein dairy calves (10 E. coli and 13 Salmonella) and hand swabs of 35 handlers (10 E. coli and 3 Salmonella) in two intensive dairy farms in Sharkia Governate in Egypt. E. coli strains belonged to six different serogroups and O114:K90 was the most prevalent serogroup (30%). However, Salmonella strains were serotyped into four different serogroups and S. Kiel was the most prevalent serotype (50%). Thirteen (65%) E. coli isolates were harbouring either stx2, eaeA and/or astA virulence-associated genes. However, stn and spvC virulence genes were detected in 2 (12.5%) and 4 (25%) of Salmonella isolates, respectively. E. coli isolates showed marked resistance to ampicillin (75%), while Salmonella strains exhibited high resistance to amikacin (100%), gentamicin (93.75%) and tobramycin (87.5%). Results of the present study showed that E. coli and Salmonella serovars isolated from diarrheic calves and handlers in intensive dairy farms in Egypt exhibited resistance to multiple classes of antimicrobials, which may pose a public health hazard. Thus, the continuous monitoring of antimicrobial resistance is necessary for both humans and veterinary medicine to decrease the economic losses caused by antimicrobial-resistant strains in animals as well as the zoonotic risk.  相似文献   

16.
Dissemination of extended-spectrum cephalosporin (ESC)-resistant Salmonella is a public health concern in the egg production industry. ESC-resistant Salmonella often acquires the bla gene via insertion sequences (ISs). Therefore, this study aimed to assess antimicrobial resistance in Salmonella from Japanese layer breeding chains and egg processing chains, and determine the genetic profiles of IS-like elements in ESC-resistant Salmonella. Antimicrobial susceptibility testing was performed on 224 isolates from 49 facilities involving layer breeder farms, hatcheries, pullet-rearing farms, and layer farms in breeding chains along with egg processing chains. ESC-resistant Salmonella strains were whole-genome sequenced. Among them, 40 (17.9%) were resistant to at least streptomycin, tetracycline, ampicillin, chloramphenicol, cefpodoxime, nalidixic acid, ciprofloxacin, and/or kanamycin despite lacking resistance to azithromycin and meropenem. Moreover, 15 were ESC-resistant Salmonella harboring blaCMY-2 (Salmonella enterica serovar Ohio, n=12; S. Braenderup, n=1; untypeable with O7:b:-, n=1) and blaCTX-M-14 (S. Cerro, n=1). IncA/C2 plasmids containing ISEcp1, IS26, and multiple antimicrobial resistance genes (including blaCMY-2) were identified in S. Ohio isolates from pullet-rearing and layer farms belonging to the same company. Chromosomal integration of partial or whole IncA/C2 plasmids was seen with two S. Ohio isolates via ISEcp1 or IS26, respectively. Antimicrobial resistance genes such as blaCMY-2 might be transmitted among the upper and the lower levels of layer breeding chains via the replicon type IncA/C2 plasmids containing ISEcp1 and IS26.  相似文献   

17.
Streptococcus suis is an important pathogen in the swine industry. This study is the first to report on the antimicrobial susceptibility of S. suis isolated from clinically healthy pigs in Brazil; the fourth major pork producer in the world. The antimicrobial susceptibility of 260 strains was determined by disc diffusion method. Strains were commonly susceptible to ceftiofur, cephalexin, chloramphenicol, and florfenicol, with more than 80% of the strains being susceptible to these antimicrobials. A high frequency of resistance to some of the antimicrobial agents was demonstrated, with resistance being most common to sulfa-trimethoprim (100%), tetracycline (97.69%), clindamycin (84.61%), norfloxacin (76.92%), and ciprofloxacin (61.15%). A high percentage of multidrug resistant strains (99.61%) were also found. The results of this study indicate that ceftiofur, cephalexin, and florfenicol are the antimicrobials of choice for empirical control of the infections caused by S. suis.  相似文献   

18.
Antibiotic resistance is a global problem, and it is known that commensal bacteria can act as reservoir of antibiotic resistance genes of clinical importance. The aim of the present study was to determine the antibiotic resistance phenotype and mechanisms implicated in resistance of Escherichia coli and Enterococcus spp. isolates collected from fecal samples of 90 Lusitano horses from Portugal. Sixteen of the 71 E. coli isolates (22.5%) recovered showed resistance to at least one of the antibiotics tested. The number of E. coli isolates resistant to streptomycin, tetracycline, chloramphenicol, ampicillin, trimethoprim-sulfamethoxazole, and gentamicin was 9, 7, 6, 3, 2, and 1, respectively. The blaTEM-1 and blaOXA-1 genes were detected in ampicillin-resistant isolates and the sul2 and dfrA1 genes in trimethoprim-sulfamethoxazole-resistant, while the aac(3)-I, floR and tet(A) were found in the gentamicin, chloramphenicol and tetracycline-resistant isolates, respectively. Twenty-two of the 71 (31%) recovered enterococci showed antibiotic resistance for at least one of the tested antibiotics, and resistant isolates were identified as Enterococcus faecium (n = 14), E. faecalis (n = 3), E. hirae (n = 2), and Enterococcus spp. (n = 3). The erm(B) and erm(C) genes were identified in erythromycin-resistant enterococci and the tet(M) and/or tet(L) genes in tetracycline-resistant isolates. The slight prevalence of antibiotic resistance among commensal bacteria of healthy Lusitano horses can improve the treatment of upcoming infections in these horses because these microorganisms can be considered as antimicrobial indicator bacteria.  相似文献   

19.
BackgroundAvian pathogenic Escherichia coli (APEC) causes colibacillosis, resulting in significant economic losses in the poultry industry.ObjectivesIn this study, the molecular characteristics of two extended-spectrum beta-lactamase (ESBL)-producing APEC isolates were compared with previously reported ESBL-producing E. coli isolates.MethodsThe molecular characteristics of E. coli isolates and the genetic environments of the ESBL genes were investigated using whole genome sequencing.ResultsThe two ESBL-producing APEC were classified into the phylogenetic groups C and B1 and ST410 and ST162, respectively. Moreover, the ESBL genes of the two isolates were harbored in different Inc plasmids. The EC1809182 strain, harboring the blaCTX-M-55 gene on the plasmid, exhibited extensive homology to IncFIB (98.4%) and IncFIC(FII) (95.8%). The EC1809191 strain, harboring the blaCTX-M-1 gene, was homologous to IncI1-I (Gamma) (99.3%). All chromosomes carried the multidrug transporter, mdf(A) gene. Mobile genetic elements, adjacent to CTX-M genes, facilitated the dissemination of genes in the two isolates, analogous to other ESBL-producing E. coli isolates.ConclusionsThis study clarifies the transmission dynamics of CTX-M genes and supports strengthened surveillance to prevent the transmission of the antimicrobial-resistant genes to humans via the food chain.  相似文献   

20.
Antibiotic resistance and ESBL constitute a risk to human and animal health. Birds residing close to humans could mirror the spectrum of human associated antibiotic resistance. Household pigeons were screened in Bangladesh to shed light on human associated, as well as, environmental antibiotic resistance. Escherichia coli from pigeons (n = 150) were tested against 11 antibiotics. 89% E. coli isolates were resistant to one or more critically important human antibiotics like ampicillin, cefadroxil, mecillinam, ciprofloxacin, gentamicin and tigecycline. No carbapenamase-producers were detected and the lower ESBL prevalence (5%) in pigeons. ESBL-producing E. coli isolates had blaCTX-M-15 genes. Pigeons shared some bacterial clones and had bird associated sequence types like E. coli ST1408. Fecal carriage of bacteria resistance of critically important human antibiotics, together with examples of shared genotypes among pigeons, indicate the human-birds and bird to bird transmissions are important in the epidemiology of antibiotic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号