首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Twenty ovariectomized pony mares were used to determine if dihydrotestosterone propionate (DHTP) administration, with or without estradiol benzoate (EB) pretreatment, would have the same effects on follicle stimulating hormone (FSH) and luteinizing hormone (LH) secretion as testosterone propionate (TP) administration. All mares were given an initial injection of gonadotropin releasing hormone (GnRH) to characterize their LH and FSH response, and then two groups of mares (n = 4/group) were administered EB (22 micrograms/kg of body weight), two groups were administered vehicle (safflower oil) and a fifth group was administered TP (175 micrograms/kg of body weight) daily for 10 days. Following a second injection of GnRH, one group of EB-treated mares and one group of oil-treated mares were administered DHTP (175 micrograms/kg of body weight) daily for 10 days; the other EB- and oil-treated mares were administered oil and the TP-treated mares were continued on the same dose of TP for 10 days. A final injection of GnRH was then given. Treatment with EB increased (P less than .01) concentrations of LH in daily blood samples and increased (P less than .05) the LH response to exogenous GnRH. Administration of TP or DHTP reduced (P less than .05) both daily LH concentrations and the LH response to exogenous GnRH. Concentrations of FSH in daily blood samples were reduced (P less than .05) and the FSH response to exogenous GnRH was increased (P less than .05) by administration of EB alone, DHTP alone or TP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Breeding records of 48 Thoroughbred and Standardbred mares treated with native GnRH (500μg im, bid) during February—April, 1999 or 2000, on 7 farms in central Kentucky were retrospectively examined. Treated mares were classified as being in anestrus or early transition (n=42; if no signs of estrus occurred within 31/2 weeks and the largest follicle remained ≤25 mm in diameter or the first larger follicle(s) of the season regressed without ovulating), or were classified as being in late transition (n=6; if follicular growth achieved 30-40 mm diameter but ovulation had not yet occurred during the breeding season). Thirty-eight mares (38/48; 79%) ovulated in 13.7 ± 7.4 days. Interval to ovulation was negatively associated with size of follicles at onset of native GnRH therapy (P < 0.01). Per cycle pregnancy rate was 53% (19/36 mares bred). Ovulation inducing drugs were administered to 32 of the native GnRH treated mares (2500 units hCG intravenously, n = 20; deslorelin implant [Ovuplant™] subcutaneously, n=12), while 6 mares were not administered any additional drugs to induce ovulation. Per cycle pregnancy rate did not differ among mares treated only with native GnRH (2/5 mares bred; 40% PR), mares treated with native GnRH plus hCG (12/19 mares bred; 63% PR), or mares treated with native GnRH plus Ovuplant™ (5/12 mares bred; 42% PR) (P > 0.10). Additional treatment with either hCG or Ovuplant™ did not alter mean follicle size at ovulation or interovulatory interval (P > 0.10). The proportion of interovulatory intervals > 25 days was not different between mares receiving no additional treatment to induce ovulation (0/4; 0%) compared to mares receiving hCG to induce ovulation (3/8; 38%) (P > 0.10), but the proportion of interovulatory intervals > 25 days was greater for mares receiving Ovuplant™ to induce ovulation (5/7; 71%) compared to mares receiving no additional treatment to induce ovulation (P < 0.05). The proportion of mares with extended interovulatory intervals (i.e., > 25 days) did not differ between mares with follicles < 15 mm diameter (4/8, 50%) and those with follicles > 15 mm diameter (3/11, 27%) at onset of native GnRH treatment (P > 0.10). While concurrent untreated controls were not used in this study, the 79% response rate to twice daily administration of native GnRH is in agreement with other reports using pulsatile or constant infusion as methods of administration, confirming therapy can hasten follicular development and first ovulation of the breeding season. As with previous reports, follicle size at onset of treatment is an important determinant of interval from onset of native GnRH therapy to ovulation. Use of hCG or Ovuplant™ did not enhance ovulatory response in native GnRH treated mares. Use of Ovuplant™ during native GnRH therapy may increase the incidence of post-treatment anestrus in mares not becoming pregnant.  相似文献   

3.
We hypothesized that the LH response to GnRH would be greater as the interval from foaling increases, whereas the FSH response would decrease, and that corpus luteum function after the first ovulation would be similar to that after the second ovulation. At parturition, mares were assigned to receive GnRH (2 micrograms/kg) intravenously on 1) d 3 postpartum (n = 6); 2) d 6 postpartum (n = 6); 3) d 1 of first postpartum estrus (foal estrus) and again on d 1 of second postpartum estrus (n = 8). Blood was collected through an indwelling cannula at -2, -1 and 0 h relative to GnRH stimulation (basal concentrations) and at .25, .5, .75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 h post-GnRH. Samples were assayed for concentrations of LH and FSH. Basal concentrations of LH were lower (P less than .05) for mares given GnRH on d 3 postpartum than for mares on d 1 of foal estrus. A rise in concentrations of LH was noted within 30 min in all groups, but the response to GnRH on d 1 of the first estrus was less (P less than .05) than on d 1 of second postpartum estrus. As the interval from parturition increased, the amount of LH secreted in response to GnRH increased. The maximum response to GnRH was greater (P less than .05) during d 1 of the first estrus than on d 3 or 6 postpartum and was greater on d 1 of cycle 2 than on d 1 of cycle 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Eight long-term ovariectomized pony mares were treated with either dihydrotestosterone (DHT) benzoate (400 micrograms/kg body weight) in safflower oil or an equivalent amount of oil every other day for 21 d to determine the effects of DHT on follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations in blood samples drawn once daily and after administration of three successive injections of gonadotropin releasing hormone (GnRH). The GnRH injections were given at 4-h intervals on the day following the last DHT or oil injection. Treatment with DHT benzoate did not alter (P greater than .10) concentrations of FSH or LH in daily blood samples relative to controls. The FSH and LH response, assessed by areas under the GnRH curves, decreased (P less than .05) from the first to third injection of GnRH when averaged over both groups of mares. There was no effect of DHT treatment on FSH response to GnRH. There was an interaction (P less than .05) between treatment and GnRH injection for LH areas; areas decreased (P less than .05) for DHT-treated mares from the first to third GnRH injection but were unchanged for control mares. It seems that DHT alone cannot mimic the stimulatory effects of testosterone on FSH production and secretion as observed in previous experiments with ovariectomized and intact mares. Moreover, because intact mares have been shown previously to respond to DHT treatment with an increase in GnRH-induced FSH secretion, it appears that some mechanism is lost in long-term ovariectomized mares, making them unresponsive to DHT treatment.  相似文献   

5.
Twelve long-term ovariectomized (OVX) pony mares were used to determine the effects of dexamethasone (DEX) or progesterone (PR) on concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in daily blood samples and after administration of gonadotropin releasing hormone (GnRH). All mares were subsequently administered dihydrotestosterone (DHT) to determine if DEX or PR treatment altered the FSH or LH response to this androgen. Daily blood sampling was started on day 1. After a pretreatment injection of GnRH on day 5, four mares were administered DEX at 125 micrograms/kg of body weight (BW), four mares were administered PR at 500 micrograms/kg of BW and four mares were administered vehicle. Injections were given subcutaneously in vegetable shortening daily through day 14. After a second injection of GnRH on day 15, all mares were administered DHT in shortening at 150 micrograms/kg of BW. Injections of DHT were given daily through day 24. A final injection of GnRH was given on day 25. Treatment of mares with DEX 1) reduced (P less than .01) daily LH secretion and briefly increased (P less than .05) daily FSH secretion and 2) increased (P less than .01) the FSH response to exogenous GnRH. Treatment of mares with PR had no effect on daily LH secretion but increased (P less than .05) daily FSH secretion and increased (P less than .01) the FSH response to exogenous GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Effects of testosterone propionate (TP) treatment on plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) before and after an injection of gonadotropin releasing hormone (GnRH) were studied using ovariectomized cows and pony mares. An initial injection of GnRH (1 microgram/kg of body weight) was followed by either TP treatment or control injections for 10 (cows) or 11 (ponies) d. A second GnRH injection was administered 1 d after the last TP or oil injection. Concentrations of LH and FSH were determined in samples of plasma taken before and after each GnRH injection. Control injections did not alter the response to GnRH (area under curve) nor the pre-GnRH concentrations of LH and FSH in ovariectomized cows or ponies. Testosterone treatment increased (P less than .01) the FSH release in response to GnRH in ovariectomized mares by 4.9-fold; there was no effect in cows, even though average daily testosterone concentrations were 59% higher than in pony mares. Testosterone treatment reduced the LH release in response to GnRH by 26% in ovariectomized mares (P less than .05) and by 17% in ovariectomized cows (P approximately equal to .051). These results are consistent with a model that involves ovarian androgens in the regulation of FSH secretion in the estrous cycle of the mare, but do not support such a model in the cow.  相似文献   

7.
This study investigated the efficacy of two dosage regimens of a potent GnRH analogue (GnRHa), deslorelin acetate, in inducing ovulation in seasonally anestrous mares. Forty-five seasonally anestrous mares were randomly assigned according to follicular size to one of three treatment groups: control, increasing GnRHa dose, and constant GnRHa dose. Treatment began on February 28 and continued until ovulation or for a maximum of seven treatments. Mares were palpated every other day until a 35 mm follicle was detected, then every day until ovulation or regression of the follicle occurred. Blood samples were taken from five randomly chosen mares in each treatment group and analyzed for LH levels.Twenty percent of mares in both deslorelin treatment groups ovulated, while no control mares ovulated during the treatment period. There was no difference in the number of mares that ovulated between treatment groups. Four of the six mares that ovulated were in transitional anestrus at the initiation of treatment, while only two were in deep anestrus.Concentrations of LH were greater (p=0.0008) in both GnRH-treated groups than in the control mares. Concentrations of LH did not differ between the two GnRH-treated groups until day 12 of treatment, when mares treated with a constant dosage had higher (p=0.0358) levels of LH than those treated with an increasing dosage. It is possible that administration of larger amounts of the GnRH agonist lowered the sensitivity of the pituitary to stimulation by GnRH.Deslorelin acetate did stimulate follicular growth and ovulation in a limited number of anestrous mares. Further investigation into the potential of this short-term implant to shorten the onsent of the breeding season is recommended.  相似文献   

8.
为了在非繁殖季节判断绵羊的发情状况,试验以新疆高海拔地区中国美利奴羊为研究对象,采用酶联免疫测定(ELISA)法测定绵羊血清中雌二醇(E2)、孕酮(P4)、促卵泡素(FSH)、促黄体生成素(LH)的含量,研究激素诱导发情羊、发情症状不明显羊、不发情羊体内激素分泌规律的差异。结果表明:激素诱导发情羊的E2含量比不发情羊高,差异显著(P<0.05);但是在P4、FSH、LH水平上,激素诱导发情羊要低于不发情羊,差异不显著(P>0.05)。发情羊与发情不明显羊在4种激素含量上差异不显著(P>0.05),说明公羊试情存在一定缺陷,而通过测定E2含量判定绵羊发情状态将成为未来研究的重点。  相似文献   

9.
The present experiment characterized the pituitary responsiveness to exogenous GnRH in the first 10 d after ovulation following commercially available deslorelin acetate implantation at the normal dosage for hastening ovulation in mares. Twelve mature, cyclic mares were assessed daily for estrus and three times weekly for ovarian activity starting May 1. Mares achieving a follicle at least 25 mm in diameter or showing signs of estrus were checked daily thereafter for ovarian characteristics. When a follicle >30 mm was detected, mares were administered either a single deslorelin acetate implant or a sham injection and then assessed daily for ovulation. On d 1, 4, 7, and 10 following ovulation, each mare was challenged i.v. with 50 microg GnRH, and blood samples were collected to characterize the LH and FSH responses. The size of the largest follicle on the day of treatment did not differ (P = 0.89) between groups. The number of days from treatment to ovulation was shorter (P < 0.001) by 2.0 d for the treated mares indicating a hastening of ovulation. The size of the largest follicle present on the days of GnRH challenge was larger in the treated mares on d 1 (P = 0.007) but smaller on d 10 (P = 0.02). In addition, the interovulatory interval was longer (P = 0.036) in the treated mares relative to controls by 4.4 d. Concentrations of FSH in plasma of the treated mares were lower (P < 0.05) than control concentrations from d 3 to 12; LH concentrations in the treated mares were lower (P < 0.05) relative to controls on d 0 to 5, d 7, and again on d 20 to 23. Progesterone values were the same (P = 0.99) for both groups from 2 d before ovulation though d 23. There was an interaction of treatment, day, and time of sampling (P < 0.001) for LH and FSH concentrations after injection of GnRH. Both the LH and FSH responses were suppressed (P < 0.009) in the treated mares relative to controls on d 1, 4, and 7; by d 10, the responses of the two groups were equivalent. In conclusion, deslorelin administration in this manner increased the interovulatory interval, consistently suppressed plasma LH and FSH concentrations, and resulted in a complete lack of responsiveness of LH and FSH to GnRH stimulation at the dose used during the first 7 d after the induced ovulation. Together, these results are consistent with a temporary down-regulation of the pituitary gland in response to deslorelin administered in this manner.  相似文献   

10.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4-6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17beta were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17beta concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17beta, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17beta levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17beta concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

11.
An attenuated ovulatory rise in circulating concentrations of LH is characteristically associated with the first seasonal reproductive cycle of horse mares. Unlike ovulations (OV) of subsequent estrous cycles, the first OV of the breeding season (OV1) is not preceded by elevated concentrations of progesterone (PROG). Hence, the ability of pretreatment with PROG to abolish attenuation of LH-secretion associated with OV1 was investigated. Ten nonpregnant anestrous mares were randomly divided into 2 groups; control (C) and treated (T). Per individual, when diameter of the largest follicle was consistently greater than or equal to 35 mm, C mares received 3 times daily injections of cottonseed oil (IM), for 15 d or until OV, while T mares received exogenous PROG (IM) for 15 d, in a manner designed to mimic a diestrous pattern of release. Jugular blood samples were collected daily from onset of treatment through 10 d following the third OV (OV3). Repeated measures analyses of area under the ovulatory LH-rise (AUC) and the maximum concentration of LH associated with OV (MAX) revealed a significant main effect of OV (P less than .005) but no main effect of group or OV by group interaction (P greater than or equal to .5). When groups were combined, a significant increase in mean AUC and MAX from OV1 to OV3 was observed (P less than .01). To evaluate the influence of hypothalamic-hypophyseal recrudescence on ovulatory LH-release at OV1, 16 mares were bred to foal, and subsequently initiate reproductive activity, early (E; mid April; n = 8) or late (L; mid July; n = 8) in the year. A significant OV (1, 2 or 3) by group (E or L) interaction was observed for AUC (P less than .06) and MAX (P less than .04). Mean AUC and MAX increased progressively from OV1 to OV3 in E mares (P less than .05). In L mares, neither AUC or MAX changed from OV1 to OV3 (P greater than .4). Based on these data, we suggest that attenuation of the LH-rise at OV1 in the mare, is a consequence of incomplete recrudescence of the hypothalamic-pituitary axis.  相似文献   

12.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) conjugated to bovine serum albumin (BSA) to study the involvement of GnRH in luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion following ovariectomy (OVX) and after administration of testosterone propionate (TP). Five mares immunized against BSA served as controls. Immunizations were started on November 1, and OVX was performed in June (d 1). All mares were treated with TP from d 50 to 59 after OVX. On the day of OVX, concentrations of LH were lower (P less than .05) in GnRH-immunized mares than in BSA-immunized mares and were generally nondetectable; FSH concentrations were reduced (P less than .05) by 50% in GnRH-immunized mares relative to BSA-immunized mares. In contrast to BSA-immunized mares, plasma concentrations of LH or FSH did not increase after OVX in GnRH-immunized mares. The LH response to GnRH analog (less than .1% cross-reactive with GnRH antibodies) on d 50 was reduced (P less than .05) by 97% in GnRH-immunized mares relative to BSA-immunized mares, whereas the FSH response was similar for both groups. Treatment with TP for 10 d reduced (P less than .01) the LH response and increased (P less than .01) the FSH response to GnRH analog in BSA-immunized mares, but it had no effect (P greater than .1) on the response of either gonadotropin in GnRH-immunized mares.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4–6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17β were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17β concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17β, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17β levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17β concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

14.
The objective of Experiment 1 was to determine a dose and frequency of gonadotropin-releasing hormone (GnRH) antagonist administration to effectively suppress serum luteinizing hormone (LH) concentration and to delay ovulation when administered to mares. The objectives of Experiment 2 were 1) to determine the effects of subcutaneous or intravenous administration of a GnRH antagonist or oral altrenogest on serum LH concentration in the estrual mare; and 2) to determine the effectiveness of human chorionic gonadotropin (hCG) in inducing ovulation in mares with suppressed LH concentrations. In Experiment 1, mares (N = 20) were randomly assigned and treated with either 5% mannitol (control, single subcutaneous injection, 1 mL, at time 0; n = 5); low-dose GnRH antagonist (single subcutaneous injection, 0.01 mg/kg, at time 0; n = 5); frequent low-dose GnRH antagonist (subcutaneous injections, 0.01 mg/kg, at 0, 6, 18, and 24 hours; n = 5); or high-dose GnRH antagonist (single subcutaneous injection, 0.04 mg/kg, at time 0; n = 5). Both the frequent low-dose and high-dose GnRH antagonist treatments resulted in significantly lower LH concentrations compared with controls at 90, 102, and 114 hours after treatment (P < .05). In Experiment 2, mares (N = 38) were randomly assigned and treated with subcutaneous sterile saline (control), altrenogest (oral), subcutaneous GnRH antagonist, or intravenous GnRH antagonist. LH concentration for the altrenogest group was lower than the control group at 3, 4, 18, and 30 hours after treatment (P < .05). LH concentration for both the subcutaneous and intravenous GnRH antagonist groups were lower compared with the control group at several time points (P < .05). Based on these data, dose but not frequency of administration of a GnRH antagonist lowered LH concentration in the estrous mare but did not delay ovulation. In addition, serum LH concentrations can be lowered and ovulation effectively postponed in mares treated with altrenogest followed by administration of hCG. This indicates that serum LH concentrations can be lowered and ovulation effectively postponed in mares treated with altrenogest followed by administration of hCG.  相似文献   

15.
Eight seasonally anestrous mares were administered intravaginal polyurethane sponges on December 15 and then weekly thereafter until February 1. Control mares received no sponges or genital contact. Sponge insertion caused an immediate surge in follicle-stimulating hormone (FSH) concentrations in jugular plasma in 50% of treated mares whereas no control mares had surges in FSH (P less than .05). The effect of treatment on luteinizing hormone (LH) concentrations was much less dramatic and only three treated mares appeared to have positive responses. Sponge-treated mares exhibited positive responses in FSH concentrations 11 times out of 32 mare-days and control mares zero out of 28 (P less than .05). The magnitude of the FSH response decreased rapidly with successive responses. Sponge insertion induced estrus in four of eight treated mares; no control mares exhibited estrus (P less than .05). Sponge insertion also increased ovarian size and the incidence of large follicles. When all mares were fed altrenogest for 14 d beginning February 1, there was no beneficial effect of sponge treatment on number of mares exhibiting estrus or on pregnancy rate. These data confirm earlier speculations that sponge treatment causes surges in gonadotropins and increased ovarian size in approximately 50% of anestrous mares. However, sponge treatment does not appear to provide a practical means of preparing mares for progestogen synchronization during the nonbreeding season.  相似文献   

16.
Studies were conducted to compare continuous vs pulsatile i.v. infusion of GnRH on serum gonadotropin concentrations and ovulation in seasonally anestrous mares and in cycling mares. Anestrous mares (Exp. 1) received no treatment (control; n = 3), 2, or 20 micrograms of GnRH/h continuous infusion (CI) (n = 4 and n = 6, respectively), or 20 micrograms of GnRH/h pulsatile infusion (PI) (n = 5). After initiation of GnRH infusion, serum LH levels increased earlier, and to a greater extent, in the PI group than in other groups (P less than .05). In contrast, serum FSH concentrations did not differ among groups. The number of days to development of the first 35-mm follicle was not different among GnRH treatment groups; however, mares receiving PI ovulated on d 9.4 of treatment, 2.8 d earlier than those receiving 20 micrograms of GnRH/h CI (P less than .05). Mares given 2 micrograms of GnRH/h CI failed to ovulate spontaneously after 16 d of treatment, but each one ovulated within 2 to 4 d after injection of 2,000 IU of hCG on d 16. Control mares did not ovulate or show any significant follicular development throughout the experiment. Cycling mares (Exp. 2) received no treatment (control; n = 6), 20 micrograms of GnRH/h CI, or 20 micrograms of GnRH/h PI (n = 4) beginning on d 16 of an estrous cycle (d 0 = day of ovulation). Serum LH concentrations in all groups increased after initiation of treatment; however, on the day of ovulation LH concentrations were lower in the CI group than in the PI or control groups (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
High concentrations of estrogens in the peripheral circulation during late gestation inhibit synthesis of LH and markedly reduce pituitary content of LH at the end of pregnancy in most domestic species. Because blood concentrations of estrogen peak shortly before mid-gestation in the mare and then gradually decrease until parturition, we hypothesized that pituitary content of LH may increase during late gestation. To test this hypothesis 10 horse mares were challenged with a maximally stimulatory dose (2 micrograms/kg) of GnRH on d 240 and 320 of gestation and d 3 after parturition. A separate group of four mares were treated with GnRH on d 2 or 3 estrus. Blood samples were collected at -2, -1, 0, .25, .5, .75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7 and 8 h relative to injection of GnRH and serum was analyzed for concentration of LH and FSH. Basal serum concentration and total quantity of LH released after GnRH stimulation (assessed by determining the area under the response curve) were not different on d 240 and 320 of gestation or on d 3 after parturition (12.5 +/- 3.5, 5.7 +/- 1.5 and 29.1 +/- 12.1 ng.min/ml, respectively) and were less (P less than .05) than on d 3 of estrus (311.0 +/- 54.0 ng.min/ml). There was little difference in the basal serum concentration of FSH at any of the time points examined. In contrast, GnRH-induced release of FSH continually decreased (P less than .05) from d 240 of gestation (559.8 +/- 88.9 ng.min/ml) to d 3 of estrus (51.8 +/- 6.2 ng.min/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Natural GnRH and its analog have potential for hastening ovulation in mares. A study was conducted to evaluate the efficacy of a GnRH agonist given either as an injectable or s.c. implant for induction of ovulation in mares. Forty-five seasonally anestrous mares (March) were assigned to one of three groups (n = 15/group): 1) untreated controls; 2) i.m. injection of the GnRH agonist buserelin at 12-h intervals (40 micrograms/injection for 28 d or until ovulation) and 3) GnRH agonist administered as a s.c. implant (approximately 100 micrograms/24 h for 28 d). Six mares per group were bled on d 0, 7, 14 and 21 after injection or insertion of implant. Samples were taken at -1, -.5 and 0 h and at .5, 1, 1.5, 2, 4, 6 and 8 h after GnRH. Additional daily samples were drawn for 28 d after injection or until ovulation. Samples were assayed for concentration of LH and FSH. Progesterone concentrations were determined in samples collected on d 4, 6 and 10 after ovulation. Number and size of follicles and detection of ovulation were determined by ultrasonography. Number of mares induced to ovulate within 30 d was 0 of 15, 7 of 15 and 9 of 15 for groups 1, 2 and 3, respectively. During treatment, follicle sizes were smaller for mares in group 3 (implant). The LH response to GnRH agonist (area under curve) was similar among groups at d 0 but was greater (P less than .05) for mares in group 3 on d 7 and 14 and groups 2 and 3 on d 21 than for controls. A similar pattern was detected for peak concentrations of LH after GnRH on d 0, 7, 14 and 21. Daily concentrations of LH remained low in untreated control mares compared with GnRH-treated mares throughout the sampling period. Concentrations of LH for mares in group 3 that ovulated were elevated greatly above those for group 2 mares, whereas concentrations of FSH were similar in both treatment groups prior to ovulation.  相似文献   

19.
Two experiments were conducted with ewes 9 to 11 days after estrus to determine whether the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are controlled differentially. In experiment 1, gonadotropin-releasing hormone (GnRH) was injected (100 (μg/ewe) at time = 0 min into ewes in four treatment groups. The treatment groups (9 ewes/group) were: 1) periodic iv sodium pentobarbital (NaPen) vehicle from 0 min; 2) periodic iv NaPen from 0 min; 3) vehicle iv for 120 min then iv NaPen from 120 min; 4) vehicle iv for 150 min then iv NaPen from 150 min. A surgical plane of anesthesia was maintained from the initiation of NaPen injection until the experiment ended. Jugular blood was sampled at 30-min intervals from ?30 to + 210 min for LH and FSH assays, and profiles of hormone concentrations were compared by time-trend analyses. GnRH released LH (P<.001) and FSH (P<.001), but NaPen did not affect the profiles of hormone concentrations; this indicated that NaPen did not reduce the ability of the pituitary to secrete gonadotropins in response to GnRH. Experiment 2 was a 2x2 factorial with ovariectomy (time = 0 hr) and NaPen as the main effects. One group of ovariectomized (n = 6) and one group of sham ovariectomized (n = 6) ewes were anesthetized only during surgery, while a group of ovariectomized (n = 7) and a group of sham ovariectomized (n = 6) ewes were kept at a surgical plane of anesthesia until 10 hr after surgery. Patterns of LH and FSH were compared in jugular blood collected hourly from 0 hr until 10 hr after surgery and in samples collected at 24 hr intervals from -24 to +72 hr of surgery. After ovariectomy, LH increased (P<.001) hourly and daily, but anesthesia suppressed (hourly, <.001 and daily, P<.005) these increases, which resulted in an interaction (hourly, P<.001 and daily, P<.01) of ovariectomy and anesthesia. FSH after ovariectomy increased hourly and daily (hourly, P<.02 and daily, P<.001), but the effect of anesthesia and interaction of ovariectomy and anesthesia were not significant. Because NaPen did not alter secretion of LH or FSH after exogenous GnRH in experiment 1 while it blocked the postovariectomy increase in LH but not FSH in experiment 2, we concluded that the postovariectomy increase in LH resulted from increased hypothalamic secretion of GnRH. The mechanisms responsible for the postovariectomy increase in FSH secretion are not identical to those for LH. The mechanisms that control the postovariectomy secretion of FSH might involve factors that are not suppressible by NaPen or, alternatively, the differences in LH and FSH release after ovariectomy might reflect the removal of ovarian factors that suppress FSH but not LH secretion in intact ewes.  相似文献   

20.
Duroc sows farrowed second litters in March and lactated 35 +/- 2 days. At 36 hr before weaning, electrocautery of follicles greater than or equal to 3 mm in diameter (n = 8) or sham surgery (n = 5) was performed to test the hypothesis that ablation of medium-sized follicles would prolong the duration of postweaning anestrus. Number of follicles and diameters at surgery were: 1.3 +/- .6 (greater than 5 mm diameter), 26 +/- 1 (3 to 5 mm) and greater than 20 (less than 3 mm). Blood samples were collected at 15 min intervals for 3 hr beginning at -12, 0, 12, 60 and 96 hr from weaning. Interval to estrus was 3.4 +/- .2 days in seven of eight cauterized sows and 3.6 +/- .6 days for sham-surgery sows. The remaining cauterized sow was anestrus at slaughter, 40 days after weaning. Number of corpora lutea and pregnancy rate were 15.8 +/- .6 and 92%, respectively, and were similar between sham-surgery and cauterized sows. Concentration of follicle stimulating hormone (FSH) at 12 hr before weaning was greater in sows subjected to electrocautery than for sham-surgery sows, but FSH values were similar at other sampling times. Concentrations of estradiol were similar at all times for both treatment groups. Luteinizing hormone (LH) was higher (P less than .05) at 60 hr in cauterized sows because of the onset of the preovulatory LH surge in one sow. We conclude that destruction of medium-sized ovarian follicles before weaning did not influence postweaning reproductive performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号