首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While many studies have examined the cycling of urinary nutrients, few have focused on the effects ruminant urine might have on the soil microbial community. Urine application can cause microbial communities to become stressed, potentially changing community composition and microbial function with subsequent effects on nutrient dynamics. Identification of the factors that stress microbes may assist in explaining ruminant urine effects on nutrient cycling. In this laboratory study bovine urine, with either a high (15.0 g K+ l?1) or low (10.4 g K+ l?1) salt concentration, was added to repacked soil cores maintained at high or low soil moisture contents (70 or 35% water-filled pore space, respectively). Control cores did not receive urine. Microbial stress was measured using phospholipid fatty acid (PLFA) biomarker ratios. Urine addition increased stress as indicated by a decrease in the iso15:0/anteiso15:0 PLFA ratio from >1.35 to <0.95 in both wet and dry soils and by an increase in the 18:1ω9trans/18:1ω9cis PLFA ratio from 1.4 to 1.9 from day 8 onwards in wet soils. Higher stress was indicated by a lower Gram-positive/Gram-negative PLFA ratio in the urine treatments than in the control treatments on day 29 and this may have been a response to the reduction in substrate availability as the experiment progressed. The PLFA biomarkers showed that the salt treatments did not induce stress. Stress induced by urine addition and wet soil treatments was also indicated by principal component analyses and the metabolic quotient for CO2, respectively. Thus microbial stress was induced by both urine addition and high soil moisture content, but not specifically by increasing the urinary salt concentration.  相似文献   

2.
It is known that carbon (C) amendments increase microbial activity in anoxic soil microcosm studies, however the effects on abundance of total and denitrifier bacterial communities is uncertain. Quantitative PCR was used to target the 16S rRNA gene for the total bacterial community, the nosZ functional gene to reflect a broad denitrifier community, and functional genes from narrow denitrifier communities represented by Pseudomonas mandelii and related species (cnorBP) and Bosea/Bradyrhizobium/Ensifer spp. (cnorBB). Repacked soil cores were amended with varying amounts of glucose and red clover plant tissue (0–1000 mg C kg? 1 of soil) and incubated for 96 h. Carbon amendment significantly increased respiration as measured by cumulative CO2 emissions. Inputs of red clover or glucose at 1000 mg C kg? 1 of soil caused increased abundance in the total bacteria under the conditions used. There was about an approximate 2-fold increase in the abundance of bacteria bearing the nosZ gene, but only in treatments receiving 500 or 1000 mg C kg? 1 of soil of glucose or red clover, respectively. Additions of ≥ 500 mg C kg? 1 soil of red clover and ≥ 250 mg C kg? 1 of glucose increased cnorBP-gene bearing denitrifiers. Changes in abundance of the targeted communities were related to C availability in soil, as indicated by soil respiration, regardless of C source. Applications of C amendments at rates that would occur in agricultural soils not only increase microbial activity, but can also induce changes in abundance of total bacterial and denitrifier communities in studies of anoxic soil microcosms.  相似文献   

3.
The soil microbial communities of a landfill cover substrate, which was treated with landfill gas (100 l CH4 m?2 d?1) and landfill leachate for 1.5 years, were investigated by phospholipid fatty acid (PLFA), ergosterol and respiratory quinone analyses. The natural 13C depletion of methane was used to assess the activity of methanotrophs and carbon turnover in the soil system. Under methane addition, the soil microbial community was dominated by PLFAs (14:0 and 16:1 isomers) and quinones (ubiquinone-8 and 18-methylene-ubiquinone-8) related to type I methanotrophs, and 18:1 PLFAs contained in type II methanotrophs. While type I methanotrophic PLFAs were 13C depleted, i.e. type I methanotrophs were actively oxidising and assimilating methane, 13C depletion of 18:1 PLFAs was low and inconsistent with their abundance. This, possibly reflects isotopic discrimination, assimilation of carbon derived from type I methanotrophs and a high contribution of non-methanotrophic bacteria to the 18:1 isomers. Landfill leachate irrigation caused the methanotrophic community to shift closer to the soil surface. It also decreased 18:1 PLFAs, while type I methanotrophs were probably stimulated. Gram positive bacteria, but not fungi, were also 13C depleted and consequently involved in the secondary turnover of carbon originating from methanotrophic bacteria. Cy17:0 PLFA was 13C depleted in deep soil layers, indicating anaerobic methane oxidation.  相似文献   

4.
《Pedobiologia》2014,57(3):147-154
Fumigation is a common practice to control soil pathogens, but little is known about the impacts of fumigation on other soil biota groups. The purpose of this study was to investigate the effects of fumigation on soil biota, including microorganisms, nematodes, and microarthropods. Bacteria were the most resistant group and some survived following treatment with 2000 mg kg−1 dazomet. Some soil fungi survived 100 mg kg−1 dazomet, although they were mainly Trichoderma. The fungi pathogenic to ginseng were all killed at 100 mg kg−1, and showed both inter- and intra-species variation with respect to dazomet susceptibility. Among the nematodes, Aphelenchus was relatively resistant. The results suggested that susceptibility of soil organisms to dazomet differs between species, and that tolerant organisms may engage in recolonisation. In microcosm experiments, the microbial biomass and community were assessed using phospholipid fatty acid (PLFA) analysis while recolonisation of soil organisms was controlled by mesh size. The bacterial PLFA levels were changed little after fumigation, whereas the fungal PLFA levels gradually increased after fumigation. Principal analysis of the PLFA levels and the ratio of gram-negative to gram-positive bacteria showed that fumigation altered the microbial community. The number of nematodes did not recover even at 12 weeks after fumigation. The increased Collembolan numbers suggest that fumigated soil could be recolonised by specific organisms that have adapted to the conditions. In field experiments, we tested the ability of organic materials to enhance the recolonisation of fumigated soil by soil organisms. Bean powder and rice bran increased the microbial PLFA levels and nematode numbers at 6 weeks and 12 weeks after treatment, and the abundance of nematodes continued to increase 42 weeks after fumigation. The abundance of microarthropods was only slightly affected by the presence of the organic materials. We suggest that treating fumigated soils with organic materials is an effective technique to promote soil organism numbers. In addition, Trichoderma was observed to be relatively resistant to fumigation, and therefore, we propose that the fumigation effect can be improved by using a combination of resistant Trichoderma and dazomet.  相似文献   

5.
This study investigates how carbon sources of soil microbial communities vary with soil depth. Microbial phospholipid fatty acids (PLFA) were extracted from 0–20, 20–40 and 40–60 cm depth intervals from agricultural soils and analysed for their stable carbon isotopes (δ13C values). The soils had been subjected to a vegetation change from C3 (δ13C≈?29.3‰) to C4 plants (δ13C≈?12.5‰) 40 years previously, which allowed us to trace the carbon flow from plant-derived input (litter, roots, and root exudates) into microbial PLFA. While bulk soil organic matter (SOM) reflected ≈12% of the C4-derived carbon in top soil (0–20 cm) and 3% in deeper soil (40–60 cm), the PLFA had a much higher contribution of C4 carbon of about 64% in 0–20 cm and 34% in 40–60 cm. This implies a much faster turnover time of carbon in the microbial biomass compared to bulk SOM. The isotopic signature of bulk SOM and PLFA from C4 cultivated soil decreases with increasing soil depth (?23.7‰ to ?25.0‰ for bulk SOM and ?18.3‰ to ?23.3‰ for PLFA), which demonstrates decreasing influence of the isotopic signature of the new C4 vegetation with soil depth. In terms of soil microbial carbon sources this clearly shows a high percentage of C4 labelled and thus young plant carbon as microbial carbon source in topsoils. With increasing soil depth this percentage decreases and SOM is increasingly used as microbial carbon source. Among all PLFA that were associated to different microbial groups it could be observed that (a) depended on availability, Gram-negative and Gram-positive bacteria prefer plant-derived carbon as carbon source, however, (b) Gram-positive bacteria use more SOM-derived carbon sources while Gram-negative bacteria use more plant biomass. This tendency was observed in all three-depth intervals. However, our results also show that microorganisms maintain their preferred carbon sources independent on soil depth with an isotopic shift of 3–4‰ from 0–20 to 40–60 cm soil depth.  相似文献   

6.
A 67-day incubation experiment was carried out with a soil initially devoid of any organic matter due to heating, which was amended with sugarcane sucrose (C4-sucrose with a δ13C value of ?10.5‰), inorganic N and an inoculum for recolonisation and subsequently at day 33 with C3-cellulose (δ13C value of ?23.4‰). In this soil, all organic matter is in the microbial biomass or in freshly formed residues, which makes it possible to analyse more clearly the role of microbial residues for decomposition of N-poor substrates. The average δ13C value over the whole incubation period was ?10.7‰ in soil total C in the treatments without C3-cellulose addition. In the CO2 evolved, the δ13C values decreased from ?13.4‰ to ?15.4‰ during incubation. In the microbial biomass, the δ13C values increased from ?11.5‰ to ?10.1‰ at days 33 and 38. At day 67, 36% of the C4-sucrose was left in the treatment without a second amendment. The addition of C3-cellulose resulted in a further 7% decrease, but 4% of the C3-cellulose was lost during the second incubation period. Total microbial biomass C declined from 200 μg g?1 soil at day 5 to 70 μg g?1 soil at day 67. Fungal ergosterol increased to 1.5 μg g?1 soil at day 12 and declined more or less linearly to 0.4 μg g?1 soil at day 67. Bacterial muramic acid declined from a maximum of 35 μg g?1 soil at day 5 to a constant level of around 16 μg g?1 soil. Glucosamine showed a peak value at day 12. Galactosamine remained constant throughout the incubation. The fungal C/bacterial C ratio increased more or less linearly from 0.38 at day 5 to 1.1 at day 67 indicating a shift in the microbial community from bacteria to fungi during the incubation. The addition of C3-cellulose led to a small increase in C3-derived microbial biomass C, but to a strong increase in C4-derived microbial biomass C. At days 45 and 67, the addition of N-free C3-cellulose significantly decreased the C/N ratio of the microbial residues, suggesting that this fraction did not serve as an N-source, but as an energy source.  相似文献   

7.
The substrate availability for microbial biomass (MB) in soil is crucial for microbial biomass activity. Due to the fast microbial decomposition and the permanent production of easily available substrates in the rooted top soil mainly by plants during photosynthesis, easily available substrates make a very important contribution to many soil processes including soil organic matter turnover, microbial growth and maintenance, aggregate stabilization, CO2 efflux, etc. Naturally occurring concentrations of easily available substances are low, ranging from 0.1 μM in soils free of roots and plant residues to 80 mM in root cells. We investigated the effect of adding 14C-labelled glucose at concentrations spanning the 6 orders of magnitude naturally occurring concentrations on glucose uptake and mineralization by microbial biomass. A positive correlation between the amount of added glucose and its portion mineralized to CO2 was observed: After 22 days, from 26% to 44% of the added 0.0009 to 257 μg glucose C g?1 soil was mineralized. The dependence of glucose mineralization on its amount can be described with two functions. Up to 2.6 μg glucose C g?1 soil (corresponds to 0.78% of initial microbial biomass C), glucose mineralization increased with the slope of 1.8% more mineralized glucose C per 1 μg C added, accompanied by an increasing incorporation of glucose C into MB. An increased spatial contact between micro-organisms and glucose molecules with increasing concentration may be responsible for this fast increase in mineralization rates (at glucose additions <2.6 μg C g?1). At glucose additions higher than 2.6 μg C g?1 soil, however, the increase of the glucose mineralization per 1 μg added glucose was much smaller as at additions below 2.6 μg C g?1 soil and was accompanied by decreasing portions of glucose 14C incorporated into microbial biomass. This supports the hypothesis of decreasing efficiency of glucose utilization by MB in response to increased substrate availability in the range 2.6–257 μg C g?1 (=0.78–78% of microbial biomass C). At low glucose amounts, it was mainly stored in a chloroform-labile microbial pool, but not readily mineralized to CO2. The addition of 257 μg glucose C g?1 soil (0.78 μg C glucose μg?1 C micro-organisms) caused a lag phase in mineralization of 19 h, indicating that glucose mineralization was not limited by the substrate availability but by the amount of MB which is typical for 2nd order kinetics.  相似文献   

8.
《Pedobiologia》2014,57(4-6):277-284
Assimilating atmospheric carbon (C) into terrestrial ecosystems is recognized as a primary measure to mitigate global warming. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the dominant enzyme by which terrestrial autotrophic bacteria and plants fix CO2. To investigate the possibility of using RubisCO activity as an indicator of microbial CO2 fixation potential, a valid and efficient method for extracting soil proteins is needed. We examined three methods commonly used for total soil protein extraction. A simple sonication method for extracting soil protein was more efficient than bead beating or freeze–thaw methods. Total soil protein, RubisCO activity, and microbial fixation of CO2 in different agricultural soils were quantified in an incubation experiment using 14C-CO2 as a tracer. The soil samples showed significant differences in protein content and RubisCO activity, defined as nmol CO2 fixed g−1 soil min−1. RubisCO activities ranged from 10.68 to 68.07 nmol CO2 kg−1 soil min−1, which were closely related to the abundance of cbbL genes (r = 0.900, P = 0.0140) and the rates of microbial CO2 assimilation (r = 0.949, P = 0.0038). This suggests that RubisCO activity can be used as an indicator of soil microbial assimilation of atmospheric CO2.  相似文献   

9.
Relationships between soil pH and microbial properties in a UK arable soil   总被引:1,自引:0,他引:1  
Effects of changing pH along a natural continuous gradient of a UK silty-loam soil were investigated. The site was a 200 m soil transect of the Hoosfield acid strip (Rothamsted Research, UK) which has grown continuous barley for more than 100 years. This experiment provides a remarkably uniform soil pH gradient, ranging from about pH 8.3 to 3.7. Soil total and organic C and the ratio: (soil organic C)/(soil total N) decreased due to decreasing plant C inputs as the soil pH declined. As expected, the CaCO3 concentration was greatest at very high pH values (pH > 7.5). In contrast, extractable Al concentrations increased linearly (R2 = 0.94, p < 0.001) from below about pH 5.4, while extractable Mn concentrations were largest at pH 4.4 and decreased at lower pHs. Biomass C and biomass ninhydrin-N were greatest above pH 7. There were statistically significant relationships between soil pH and biomass C (R2 = 0.80, p < 0.001), biomass ninhydrin-N (R2 = 0.90, p < 0.001), organic C (R2 = 0.83, p < 0.001) and total N (R2 = 0.83, p < 0.001), confirming the importance of soil organic matter and pH in stimulating microbial biomass growth. Soil CO2 evolution increased as pH increased (R2 = 0.97, p < 0.001). In contrast, the respiratory quotient (qCO2) had the greatest values at either end of the pH range. This is almost certainly a response to stress caused by the low p. At the highest pH, both abiotic (from CaCO3) and biotic Co2 will be involved so the effects of high pH on biomass activity are confounded. Microbial biomass and microbial activity tended to stabilise at pH values between about 5 and 7 because the differences in organic C, total N and Al concentrations within this pH range were small. This work has established clear relationships between microbial biomass and microbial activity over an extremely wide soil pH range and within a single soil type. In contrast, most other studies have used soils of both different pH and soil type to make similar comparisons. In the latter case, the effects of soil pH on microbial properties are confounded with effects of different soil types, vegetation cover and local climatic conditions.  相似文献   

10.
Biochar’s role on greenhouse gas emission and plant growth has been well addressed. However, there have been few studies on changes in soil microbial community and activities with biochar soil amendment (BSA) in croplands. In a field experiment, biochar was amended at rates of 0, 20 and 40 t ha−1 (C0, C1 and C2, respectively) in May 2010 before rice transplantation in a rice paddy from Sichuan, China. Topsoil (0–15 cm) was collected from the rice paddy while rice harvest in late October 2011. Soil physico-chemical properties and microbial biomass carbon (MBC) and nitrogen (MBN) as well as selected soil enzyme activities were determined. Based on 16S rRNA and 18S rRNA gene, bacterial and fungal community structure and abundance were characterized using terminal-restriction fragment length polymorphism (T-RFLP) combined with clone library analysis, denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR assay (qPCR). Contents of SOC and total N and soil pH were increased but bulk density decreased significantly. While no changes in MBC and MBN, gene copy numbers of bacterial 16S rRNA was shown significantly increased by 28% and 64% and that of fungal 18S rRNA significantly decreased by 35% and 46% under BSA at 20 and 40 t ha−1 respectively over control. Moreover, there was a significant decrease by 70% in abundance of Methylophilaceae and of Hydrogenophilaceae with an increase by 45% in Anaerolineae abundance under BSA at 40 t ha−1 over control. Whereas, using sequencing DGGE bands of fungal 18S rRNA gene, some bands affiliated with Ascomycota and Glomeromycota were shown inhibited by BSA at rate of 40 t ha−1. Significant increases in activities of dehydrogenase, alkaline phosphatases while decreased β-glucosidase were also observed under BSA. The results here indicated a shift toward a bacterial dominated microbial community in the rice paddy with BSA.  相似文献   

11.
The use of organic residues as soil amendments or fertilisers may represent a valuable recycling strategy. In this study, a series of laboratory assays was performed to study the effects of the application of organic residues on C and N mineralization and biochemical properties in a Mediterranean agricultural soil. Two crop residues (straw and cotton) and two animal by-products (meat bone meal and blood meal) were added at three rates (5, 10 and 20 mg g?1 on dry weight basis) to a moist (40% water holding capacity) sandy soil and incubated at 20 °C for 28 days. Each residue underwent a different mineralization pattern depending on the nature and complexity of its chemical constituents. In all cases, the addition of the waste produced, after a short lag-phase, an exponential increase in the soil respiration rate, reflecting the growth of microbial biomass. The amount of total extra CO2-C evolved after 28 days, expressed as % in respect to added C, differed significantly (P < 0.005) among application doses: 5 > 10 > 20 mg g?1 and residue type: meat bone meal > blood meal > cotton cardings > wheat straw. Plant residues led to a rapid immobilisation of N that affected microbial size and activity and further mineralization. Animal by-products produced an immediate and remarkable increase of mineral N in the soil. However, the large amounts of NH4+ released in the soil at high rates of animal residues led, in some cases, to temporary adverse effects on microbial biomass growth and nitrification. All residues produced a significant increase in soil microbial biomass size and activity, being the intensity of the response related to their chemical properties.  相似文献   

12.
The forest–savanna transition zone is widely distributed on nutrient-poor oxisols in Central Africa. To reveal and compare the nutrient cycle in relation to soil microbes for forest and savanna vegetation in this area, we evaluated seasonal fluctuations in microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP) for 13 months as well as soil moisture, temperature, soil pH levels, and nutrients for both vegetation types in eastern Cameroon. Soil pH was significantly lower in forest (4.3) than in savanna (5.6), and soil N availability was greater in forest (87.1 mg N kg−1 soil) than in savanna (32.9 mg N kg−1 soil). We found a significant positive correlation between soil moisture and MBP in forest, indicating the importance of organic P mineralization for MBP, whereas in savanna, we found a significant positive correlation between soil N availability and MBP, indicating N limitation for MBP. These results suggest that for soil microbes, forest is an N-saturated and P-limited ecosystem, whereas savanna is an N-limited ecosystem. Additionally, we observed a significantly lower MBN and larger MB C:N ratio in forest (50.7 mg N kg−1 soil and 8.6, respectively) than in savanna (60.0 mg N kg−1 soil and 6.5, respectively) during the experimental period, despite the rich soil N condition in forest. This may be due to the significantly lower soil pH in forest, which influences the different soil microbial communities (fungi-to-bacteria ratio) in forest versus savanna, and therefore, our results indicate that, in terms of microbial N dynamics, soil pH rather than soil substrate conditions controls the soil microbial communities in this area. Further studies should be focused on soil microbial community, such as PLFA, which was not evaluated in the present study.  相似文献   

13.
The incorporation of organic amendments from pruning waste into soil may help to mitigate soil degradation and to improve soil fertility in semiarid ecosystems. However, the effects of pruning wastes on the biomass, structure and activity of the soil microbial community are not fully known. In this study, we evaluate the response of the microbial community of a semiarid soil to fresh and composted vegetal wastes that were added as organic amendments at different doses (150 and 300 t ha−1) five years ago. The effects on the soil microbial community were evaluated through a suite of different chemical, microbiological and biochemical indicators, including enzyme activities, community-level physiological profiles (CLPPs) and phospholipid fatty acid analysis (PLFA). Our results evidenced a long-term legacy of the added materials in terms of soil microbial biomass and enzyme activity. For instance, cellulase activity reached 633 μg and 283 μg glucose g−1 h−1 in the soils amended with fresh and composted waste, respectively. Similarly, bacterial biomass reached 116 nmol g−1 in the soil treated with a high dose of fresh waste, while it reached just 66 nmol g−1 in the soil amended with a high dose of composted waste. Organic amendments produced a long-term increase in microbiological activity and a change in the structure of the microbial community, which was largely dependent on the stabilization level of the pruning waste but not on the applied dose. Ultimately, the addition of fresh pruning waste was more effective than the application of composted waste for improving the microbiological soil quality in semiarid soils.  相似文献   

14.
《Soil biology & biochemistry》2001,33(4-5):503-509
The distribution of vegetation types in Venezuelan Guyana (in the ‘Canaima’ National Park) represents a transitional stage in a long term process of savannization, a process considered to be conditioned by a combined chemical and intermittent drought stress. All types of woody vegetation in this environment accumulate large amounts of litter and soil organic carbon (SOC). We hypothesized that this accumulation is caused by low microbial activity. During 1 year we measured microbial biomass carbon (Cmic), microbial respiration and soil respiration of stony Oxisols (Acrohumox) at a tall, a medium and a low forest and with three chemical modifications of site conditions by the addition of NO3, Ca2+ and PO43− as possible limiting elements. Due to high SOC contents, mean Cmic was 1 mg g soil−1 in the mineral topsoil and 3 mg g soil−1 in the forest floor. Mean microbial respiration in the mineral topsoil and the forest floor were 165 and 192 μg CO2-C g soil−1 d−1, respectively. We calculated high mean metabolic quotients (qCO2) of 200 mg CO2-C g Cmic−1 d−1 in the litter layer and 166 mg CO2-C g Cmic−1 d−1 in the mineral topsoil, while the Cmic-to-SOC ratios were as low as 1.0% in the litter layer and 0.8% in the mineral topsoil. Annual soil respiration was 9, 12 and 10 Mg CO2-C ha−1 yr−1 in the tall, medium and low forest, respectively. CO2 production was significantly increased by CaHPO4 fertilization, but no consistent effects were caused by Ca2+ and NO3, fertilization. Our findings indicate that Cmic and microbial respiration are reduced by low nutrient concentrations and low litter and SOC quality. Reduced microbial decomposition may have contributed to SOC accumulation in these forests.  相似文献   

15.
《Applied soil ecology》2011,47(3):355-371
Secondary succession of nematodes was studied in 1–48-year-old abandoned fields on cambisols in South Bohemia, Czech Republic, and compared with cultivated field and sub-climax oak forests. Bacterivores were the predominant group in the cultivated field whereas in forests root-fungal feeders (mainly Filenchus) were almost as abundant as bacterivores. The total abundance of nematodes in the cultivated field averaged 868 × 103 ind m−2. During the first three years of succession the abundance practically did not change (775 × 103 ind m−2), the fauna was still similar to that in cultivated field but the biomass increased mainly due to Aporcelaimellus. Then the abundance increased up to 3731 × 103 ind m−2 in 7–8-year-old abandoned fields, plant parasites (Helicotylenchus) dominated and the fungal-based decomposition channel was activated. Later the abundance stabilised at between 1086 and 1478 × 103 ind m−2 in 13–25-year-old successional meadow stages with high population densities of omnivores and predators. The total abundance of nematodes was low in the 12–13-year-old willow shrub stage (594 × 103 ind m−2), increased in the 35–48-year-old birch shrub stage (1760 × 103 ind m−2) and the nematode fauna developed towards a forest community. The diversity and maturity of nematode communities generally increased with the age of abandoned fields but the highest values were in meadow stages (81–113 species, 57–68 genera, MI 2.73–3.30). The development of meadow arrested succession towards forests or diverted succession towards a waterlogged ecosystem. The succession of nematodes was influenced by the method of field abandonment (bare soil vs. legume cover, mowing) that affected the formation of either a shrub or meadow stage, and by the soil water status. The composition of the nematode fauna indicated that the soil food web could recover faster from agricultural disturbance under successive meadows than under shrubs.  相似文献   

16.
Fertilization generates nutrient patches that may impact soil microbial activity. In this study, nitrogen patches were generated by adding ammonium sulfate or urea to soil columns (length 25 cm; internal diameter 7.2 cm). Changes in nitrogen transformation, soil microbial biomass, and microbial functional diversity with the nitrogen gradients were investigated to evaluate the response of microbial activity to chemical fertilizer nutrient patches. After applying of ammonium sulfate or urea, the added nitrogen migrated about 7 cm. Microbial biomass carbon (MBC) was lower in fertilized soil than in the control (CK) treatment at the same soil layers. MBC increased with soil depth while microbial biomass nitrogen (MBN) decreased. BIOLOG analysis indicated that the average well color development (AWCD) and functional diversity indices of the microbial communities were lower in the 1 cm and 2 cm soil layers after application of ammonium sulfate; the highest values were in the 3 cm soil layer. AWCD and Shannon indices from the 1 to 5 cm soil layers were higher than those from other soil layers under urea application. Both principal component analysis and carbon substrate utilization analysis showed significant separation of soil microbial communities among different soil layers under application of ammonium sulfate or urea. Microbial activity was substantially decreased when NH4+-N concentration was higher than 528.5 mg kg−1 (1–3 cm soil layer under ammonium sulfate application) or 536.8 mg kg−1 (1 cm soil layer under urea application). These findings indicated that changes in soil microbial biomass and microbial functional diversity can occur with a nitrogen gradient. The extent of changes depends on the nitrogen concentration and the form of inorganic fertilizer.  相似文献   

17.
A short-term incubation study was carried out to investigate the effect of biochar addition to soil on CO2 emissions, microbial biomass, soil soluble carbon (C) nitrogen (N) and nitrate–nitrogen (NO3–N). Four soil treatments were investigated: soil only (control); soil + 5% biochar; soil + 0.5% wheat straw; soil + 5% biochar + 0.5% wheat straw. The biochar used was obtained from hardwood by pyrolysis at 500 °C. Periodic measurements of soil respiration, microbial biomass, soluble organic C, N and NO3–N were performed throughout the experiment (84 days). Only 2.8% of the added biochar C was respired, whereas 56% of the added wheat straw C was decomposed. Total net CO2 emitted by soil respiration suggested that wheat straw had no priming effect on biochar C decomposition. Moreover, wheat straw significantly increased microbial C and N and at the same time decreased soluble organic N. On the other hand, biochar did not influence microbial biomass nor soluble organic N. Thus it is possible to conclude that biochar was a very stable C source and could be an efficient, long-term strategy to sequester C in soils. Moreover, the addition of crop residues together with biochar could actively reduce the soil N leaching potential by means of N immobilization.  相似文献   

18.
Dissolved organic matter (DOM) plays a central role in driving biogeochemical processes in soils, but little information is available on the relation of soil DOM dynamics to microbial activity. The effects of NO3 and NH4+ deposition in grasslands on the amount and composition of soil DOM also remain largely unclear. In this study, a multi-form, low-dose N addition experiment was conducted in an alpine meadow on the Qinghai–Tibetan Plateau in 2007. Three N fertilizers, NH4Cl, (NH4)2SO4 and KNO3, were applied at four rates: 0, 10, 20 and 40 kg N ha−1 yr−1. Soil samples from surface (0–10 cm) and subsurface layers (10–20 cm) were collected in 2011. Excitation/emission matrix fluorescence spectroscopy (EEM) was used to assess the composition and stability of soil DOM. Community-level physiological profile (CLPP, basing on the BIOLOG Ecoplate technique) was measured to evaluate the relationship between soil DOC dynamics and microbial utilization of C resources. Nitrogen (N) dose rather than N form significantly increased soil DOC contents in surface layer by 23.5%–35.1%, whereas it significantly decreased soil DOC contents in subsurface layer by 10.4%–23.8%. Continuous five-year N addition significantly increased the labile components and decreased recalcitrant components of soil DOM in surface layer, while an opposite pattern was observed in subsurface layer; however, the humification indices (HIX) of soil DOM was unaltered by various N treatments. Furthermore, N addition changed the amount and biodegradability of soil DOM through stimulating microbial metabolic activity and preferentially utilizing organic acids. These results suggest that microbial metabolic processes dominate the dynamics of soil DOC, and increasing atmospheric N deposition could be adverse to the accumulation of soil organic carbon pool in the alpine meadow on the Qinghai-Tibetan Plateau.  相似文献   

19.
Microbial biomass (MB) is the key factor in nutrient dynamics in soil, but no information exists how clearing of vegetation to cultivate maize in the central highlands of Mexico might affect it. Soil MB was measured with the chloroform fumigation incubation (CFI) and fumigation extraction (CFE) techniques and the substrate-induced respiration (SIR) method in soil sampled under or outside the canopy of mesquite (Prosopis laevigata) and huisache (Acacia tortuoso), N2 fixing shrubs, and from fields cultivated with maize. Microbial biomass C as measured with the CFI technique ranged from 122 mg C kg−1 in agricultural soil to 373 mg C kg−1 in soil sampled under mesquite shrubs. Microbial biomass N as measured with the CFI technique ranged from 11 mg N kg−1 in agricultural soil to 116 mg N kg−1 in soil sampled under mesquite shrub. The ratio of microbial biomass C as measured with CFI related to the ninhydrin-positive compounds (NPC) was 12.23 after 1 day and 8.43 after 10 days while the relationship with extractable C was 3.15 and 2.96, respectively. The metabolic quotient (qCO2) decreased in the order OUTSIDE > MESQUITE > HUIZACHE > AGRICULTURE, and the microbial biomass:soil organic C ratio decreased in the order MESQUITE > HUIZACHE > OUTSIDE > AGRICULTURE using SIR to determine the microbial biomass. It was found that converting soil under natural vegetation to arable soil was not only detrimental for soil quality, but might be unsustainable as organic matter input is limited.  相似文献   

20.
Documented approaches for measuring soil microbial activities and their controlling factors under field conditions are needed to advance understanding of soil microbial processes for numerous applications. We manipulated field plots with carbon (C) and nitrogen (N) additions to test the capability of a respiratory assay to: (1) measure respiration of endogenous soil C in comparison to field-measured CO2 fluxes; (2) determine substrate-induced respiratory (SIR) activities that are consistent with substrate availability in the field; and, (3) report N availability in the field based on assay responses with and without added N. The respiratory assay utilizes a microplate containing an oxygen-sensitive fluorescent ruthenium dye. Respiratory activities measured with this approach have previously been shown to occur within short (6–8 h) incubation periods using low substrate concentrations that minimize enrichment during the assay. Field treatments were conducted in a randomized full-factorial design with C substrate (casamino acids, glucose, or none) and inorganic N (±) as the treatment factors. With one exception, we found that respiration of endogenous soil C in the assay responded to the field treatments in a similar manner to CO2 fluxes measured in the field. Patterns of SIR with low concentrations of added amino acid or carbohydrate substrate (200 μg C g−1 soil) were consistent with field treatments. The ratio (Nratio) of carbohydrate respiration with added N (25 μg N g−1 soil) to the same without N in the assay was significantly (P < 0.05) decreased by field N amendment. The carbohydrate Nratio exhibited a logarithmic relationship (r = 0.64, P < 0.05) with extractable inorganic soil nitrate and ammonium concentrations. These data significantly extend and support the capability of this oxygen-based respiratory assay to evaluate in situ soil activities and examine factors that limit these activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号