首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Genetic modification of Bt rice may affect straw decomposition and soil carbon pool under flood conditions. This study aims to assess the effects of cry gene transformation in rice on the residue decomposition and fate of C from residues under flooded conditions.

Materials and methods

A decomposition experiment was set up using 13C-enriched rice straws from transgenic and nontransgenic Bt rice to evaluate the soil C dynamics and CH4 or CO2 emission rates in the root and non-root zones. The concentrations and stable carbon isotope compositions of the soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), CH4, and CO2 of the root and non-root zones were determined from 7 to 110 days after rice straw incorporation.

Results and discussion

Rice straw incorporation into soil significantly increased the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates. The percentage of 13C-SOC remaining in the root zone was significantly lower than that in the non-root zone with rice straw decomposition. The DOC and MBC concentrations significantly increased in both the root and non-root zones between 0 and 80 days after rice straw incorporation. However, no significant differences were found after Bts (Bt rice straw added into soil) and Cks (nontransgenic Bt rice straw added into soil) incorporation in the root and non-root zones. This result may be attributed to the priming effects of sufficient oxygen and nutrients on straw degradation in the root zone.

Conclusions

Bt gene insertion did not affect the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates in both the root and non-root zones. However, rice straw incorporation and root exudation significantly increased the SOC, DOC, and MBC concentrations and the CH4 and CO2 emission rates.  相似文献   

2.

Purpose

The objective of the present study was to investigate the interactive effects of nitrogen (N) addition, temperature, and moisture on soil microbial respiration, microbial biomass, and metabolic quotient (qCO2) at different decomposition stages of different tree leaf litters.

Materials and methods

A laboratory incubation experiment with and without litter addition was conducted for 80 days at two temperatures (15 and 25 °C), two wetting intensities (35 and 50 % water-filled porosity space (WFPS)) and two doses of N addition (0 and 4.5 g N m?2, as NH4NO3). The tree leaf litters included three types of broadleaf litters, a needle litter, and a mixed litter of them. Soil microbial respiration, microbial biomass, and qCO2 along with other soil properties were measured at two decomposition stages of tree leaf litters.

Results and discussion

The increase in soil cumulative carbon dioxide (CO2) flux and microbial biomass during the incubation depended on types of tree leaf litters, N addition, and hydrothermal conditions. Soil microbial biomass carbon (C) and N and qCO2 were significantly greater in all litter-amended than in non-amended soils. However, the difference in the qCO2 became smaller during the late period of incubation, especially at 25 °C. The interactive effect of temperature with soil moisture and N addition was significant for affecting the cumulative litter-derived CO2-C flux at the early and late stages of litter decomposition. Furthermore, the interactive effect of soil moisture and N addition was significant for affecting the cumulative CO2 flux at the late stage of litter decomposition but not early in the experiment.

Conclusions

This present study indicated that the effects of addition of N and hydrothermal conditions on soil microbial respiration, qCO2, and concentrations of labile C and N depended on types of tree leaf litters and the development of litter decomposition. The results highlight the importance of N availability and hydrothermal conditions in interactively regulating soil microbial respiration and microbial C utilization during litter decomposition under forest ecosystems.
  相似文献   

3.
Abstract

Using an Ochrept soil of a forest at climax stage or of an arable site at Kita‐Ibaraki, a city in central Japan, the rates of carbon dioxide (CO2)‐carbon (C) evolution, the amounts of microbial biomass carbon (MBC) and the amounts of dissolved organic carbon (DOC) were measured in a laboratory with special reference to the incubation temperature and the soil water content. The rates of CO2‐C evolution increased exponentially with increase in the incubation temperature in the range of 4–40°C. The temperature coefficients (Q10) were 2.0 for the forest and 1.9 for the arable soil. The amounts of MBC were almost constant of 980 μg g‐1 soil in the incubation temperature up to 25°C for the forest, and 340 μg g‐1 soil in the incubation temperature up to 31 °C for the arable soil. The amounts of DOC in soil solutions were almost constant at 3.1 μg g‐1 soil in the incubation temperature up to 25°C for the forest, and 3.8 μg g‐1 soil in the incubation temperature up to 31°C for the arable soil. The rates of CO2‐C evolution and the amounts of DOC increased with increase in soil water content (% of soil dry weight) up to 91% for the forest or up to 26% for the arable soil. However, the rates of CO2‐C evolution and the amounts of DOC were almost constant within soil water content in the range of 91–160% or 26–53%, respectively. The amounts of MBC of the forest or arable soil were almost constant over a wide range of soil water content in the range of 41–220% or 8–73%, respectively. The rates of CO2‐C evolution of both the forest and the arable soils were highly correlated with the amounts of DOC, but not with the amounts of MBC, under laboratory conditions in the case that the amounts of DOC were changed by various treatments. The regression equation,  相似文献   

4.
5.

Purpose

Little is known about the interactive effects of temperature, nitrogen (N) supply, litter quality, and decomposition time on the turnover of carbon (C) and N of forest litter. The objective of this study was to investigate the interactive effects of warming, N addition and tree species on the turnover of C and N during the early decomposition stage of litters in a temperate forest.

Materials and methods

A 12-week laboratory incubation experiment was carried out. The leaf litters including two types of broadleaf litters (Quercus mongolica and Tilia amurensis), a needle litter (Pinus koraiensis), and a mixed litter of them were collected from a broad-leaved Korean pine mixed forest ecosystem in northeastern China in September 2009. Nine treatments were conducted using three temperatures (15, 25, and 35 °C) combined with three doses of N addition (equal to 0, 75, and 150 kg?·?ha?1?a?1, respectively, as NH4NO3).

Results and discussion

After 12 weeks of incubation, the mass loss ranged between 12 and 35 %. The broadleaf litters had greater mass loss and cumulative CO2–C emission than the needle litter. Temperature and N availability interacted to affect litter mass loss and decomposition rate. The dissolved organic carbon (DOC) and nitrogen (DON) concentrations in litter leachate varied widely with litter types. DOC increased significantly with increased temperature but decreased significantly with increased N availability. DON increased significantly with increased N availability but showed a higher level at the moderate decomposition temperature. The amounts of CO2 and N2O emission were significantly higher at 25 °C than those at 15 and 35 °C, and were significantly increased by the N addition.

Conclusions

The present study indicated relatively intricate temperature and N addition effects on C and N cycling during early stages of litter decomposition, implying that future increases in temperature and N deposition will directly affect C and N cycling in broad-leaved Korean pine mixed forest ecosystem, and may indirectly influence the ecosystem composition, productivity, and functioning in NE China. It is, therefore, important to understand the interactive effects of biotic and abiotic factors on litter decomposition in field conditions in order to assess and predict future ecosystem responses to environmental changes in NE China.  相似文献   

6.
[目的]研究玉米秸秆不同构件混合分解的非加和效应及其对黄绵土土壤有机碳矿化的影响,为秸秆还田背景下坡地土壤CO2排放提供理论支撑。[方法]采用室内模拟试验,试验设置无玉米秸秆土壤对照(CK)及4种玉米秸秆添加处理:茎+土壤(CKS)、叶+土壤(CKL)、鞘+土壤(CKLS)、混合玉米秸秆+土壤(CKM)。[结果]培养结束土壤有机碳矿化累积排放量实测值显著高于预测值,且促进作用主要是由培养初期快速分解阶段(1~28d)导致的。培养结束后混合玉米秸秆剩余质量预测值明显高于实测值,且元素含量发生明显改变,其中全氮含量预测值明显低于实测值,C/N预测值明显高于实测值。培养结束后CKS处理土壤微生物碳含量明显高于其他几种处理,其他几种处理差异不显著;添加玉米秸秆处理土壤微生物量氮明显降低,相应的土壤微生物量C/N增大,CKS,CKL和CKM处理与CK处理差异达到显著水平。土壤可溶性有机碳(DOC)含量CKLS和CKM处理明显高于其他3种处理,CKS与CKL处理与对照差异不显著。[结论]玉米秸秆不同构件按比例混合对玉米秸秆分解产生协同促进作用,混合分解过程促进氮累积。  相似文献   

7.
以广西壮族自治区桂林市华江乡内广泛分布的毛竹林土壤为研究对象,以竹生物质炭和竹凋落物作为外源碳,设置对照(CK)、低添加量生物质炭(1% BC)、高添加量生物质炭(2% BC)、低添加量凋落物(1% L)、高添加量凋落物(2% L)5个处理,进行为期两个月的室内培养试验,研究不同外源碳添加对毛竹林土壤营养元素和酶活性的影响。结果表明:与对照相比,竹生物质炭和竹凋落物添加均显著提高了土壤pH;竹生物质炭添加显著降低了而竹凋落物添加显著提高了土壤铵态氮(NH4+-N)含量(P<0.05),且高添加量(2% BC和2% L)的降低或提高作用更明显;不同外源碳添加均显著提高了土壤硝态氮(NO3-N)含量,且凋落物添加的提高作用更明显;不同外源碳添加均显著提高了土壤有效磷(AP)含量,且高添加量的提高作用更明显;竹生物质炭添加对土壤可溶性有机碳(DOC)含量没有显著影响,但降低了土壤可溶性氮(DN)含量,而竹凋落物添加显著提高了土壤DOC和DN含量;不同外源碳添加对土壤微生物生物量碳(MBC)和氮含量(MBN)均没有显著影响,但降低了土壤蔗糖酶和脲酶活性。相关性分析表明,土壤pH、NH4+-N、NO3-N、DOC和DN是影响竹林土壤酶活性的关键性因子。  相似文献   

8.
Effects of leaf litter of beech (Fagus sylvatica L.) and stinging nettles (Urtica dioica L.) and of the endogeic earthworm species Octolasion lacteum (Örley) on carbon turnover and nutrient dynamics in soil of three beechwood sites on a basalt hill (Hesse, Germany) were investigated in a laboratory experiment lasting for about 1 year. The sites were located along a gradient from basalt (upper part of the hill) to limestone (lower part of the hill) with an intermediate site in between (transition zone). At the intermediate site U. dioica dominated in the understory whereas at the other sites Mercurialis perennis L. was most abundant. The amount and composition of organic matter was similar in soil of the basalt (carbon content 5.9%, C/N ratio 13.8) and intermediate site (carbon content 5.6%, C/N ratio 14.3) but the soil of the intermediate site produced more CO2 (in total +17.5%) and more nitrogen (as nitrate) was leached from this soil (in total +55.6%). It is concluded that the soil of the intermediate site contains a large mobile carbon and nitrogen pool and the formation of this pool is ascribed to the input of U. dioica litter. Leaf litter of U. dioica strongly increased NO3 -N leaching immediately after the litter had been added, whereas nitrogen was immobilized due to addition of beech litter. Despite the very fast initial decomposition of nettle litter, the increase in CO2 production due to this litter material was only equivalent to 20.1% of the amount of carbon added with the nettle litter; the respective value for beech litter was 34.8%. Earthworms altered the time course of carbon and nitrogen mineralization in each of the treatments. In general, earthworms strongly increased mineralization of nitrogen but this effect was less pronounced in soil of the intermediate site (treatments without litter), which is ascribed to a depleted physically protected nitrogen and carbon pool. In contrast, their effect on the total amount of nitrogen mobilized from nettle litter was small. Earthworms significantly reduced CO2 production from soil of the intermediate site (treatments without litter) and it is concluded that earthworm activity contributes to the restoration of the depleted physically protected carbon pool at this site.  相似文献   

9.
Hyperaccumulating plants are increasingly investigated in combination with EDTA addition to soil for phytoremediation of heavy metal contaminated soils. A 60-day incubation experiment was carried out to investigate the effects of heavy metal release during the decomposition of Zn-rich (15.7 mg g?1 dry weight) Arabidopsis halleri litter on C mineralization, microbial biomass C, biomass N, ATP, and adenylate energy charge (AEC). These effects were investigated in two soils with different Zn, Cu, and Pb levels, with and without EDTA addition to soil. The sole addition of Zn-rich A. halleri litter to the two soils did not increase the contents of NH4NO3 extractable Zn, only with the combined additions of EDTA and litter was there a considerable increase, being equivalent to three times the added amount in the low metal soil and to 50% in the high metal soil. Litter amendment increased the CO2 evolved; being equivalent to 44% of the added C in the two soils, but EDTA addition had no significant effect on CO2 evolution. Litter amendment resulted also in an 18% increase in microbial biomass C, 27% increase in ATP and 6% increase in AEC in the two soils, but EDTA had again no effect on these indices at both metal levels. In contrast, the sole addition of litter had no effect on microbial biomass N, but EDTA addition increased microbial biomass N on average by 49%. The application of EDTA for chelate-assisted phytoextraction should in the future consider the risk of groundwater pollution, which is intensified by resistance of EDTA to microbial decomposition.  相似文献   

10.
 Short-term changes in N availability in a sandy soil in response to the dissolved organic carbon (DOC) from a poultry manure (application rate equivalent to approximately 250 kg N ha–1) were evaluated in a 44-day aerobic incubation experiment. The treatments included poultry manure alone and two treatments in which an extra source of C, of low water solubility, was added with the poultry manure in the form of a low (1.05 g kg–1) and a high (4.22 g kg–1) amount of cellulose. All treatments were fertilised with the equivalent of 60 kg N ha–1 of (15NH4)2SO4 in solution. A control treatment consisted of sieved field-moist soil plus 60 kg N ha–1 of (15NH4)2SO4 in solution. Measurements were made of N2O and CO2 emissions, inorganic N, DOC, biomass N, biomass C and labelled N contained in the inorganic N and biomass N pools. The dynamics of N turnover in this study were driven mainly by processes of mineralisation–immobilisation with little significant loss of N by volatilisation or denitrification. The DOC supplied with the poultry manure played a more important role in N2O emissions than differences in C/N ratio. Changes in DOC and cumulative CO2-C production during the first 11 days were also highly correlated (R 2=0.88–0.66, P<0.01). An initial net immobilisation of N, with significant increases in biomass C and biomass N (P<0.05) for all treatments over the control at day 11, indicated a high availability of C from the DOC fraction. The presence of additional C from the applied cellulose did not enable a massive N immobilisation. Total inorganic N and unlabelled inorganic N concentrations were highest in soils treated with poultry manure alone (P<0.05), indicating that an active gross mineralisation of the added poultry manure and a possible positive priming effect were taking place during the incubation. Received: 29 May 1998  相似文献   

11.
The effects of soil mesofauna and different farming systems on decomposition of clover (Trifolium repens) litter were investigated in a laboratory experiment. Microcosms were incubated for 16 weeks with fine and coarse litterbags in soils from three types of management systems: fallow, integrated farming and organic farming, the latter two cropped with wheat. The effects were studied by analysing litter mass loss, C and N content, DOC, nitrate and pH in soil leachate, and CO2 production, as well as mesofauna. Mesofauna significantly accelerated mass loss and C and N release from clover litter in all three soils. With mesofauna access, at the end of the experiment average clover mass loss was almost twice as high and clover C and N content were 60% lower than without mesofauna. Farming systems influenced the decomposition through affecting both element turnover and mesofauna. Although in the first weeks less N was leached from organic farming than from integrated farming soil, cumulative N leaching did not differ between these soils. However, more than 20% less N was leached from the fallow soil than from the field soils. CO2 production was highest in fallow soil. Here, mesofauna had no effect on this variable. In soil with integrated farming, mesofauna reduced cumulative CO2 production by 10% whereas in soil from organic farming it increased CO2 production by 20%. Our data suggest that differences in C and N turnover in different management systems are strongly mediated by soil mesofauna.  相似文献   

12.
There is now clear evidence for a prolonged increase in atmospheric CO2 concentrations and enrichment of the biosphere with N. Understanding the fate of C in the plant-soil system under different CO2 and N regimes is therefore of considerable importance in predicting the environmental effects of climate change and in predicting the sustainability of ecosystems. Swards of Lolium perenne were grown from seed in a Eutric Cambisol at either ambient (ca. 350 μmol mol−1) or elevated (700 μmol mol−1) atmospheric pCO2 and subjected to two inorganic N fertilizer regimes (no added N and 70 kg N ha−1 month−1). After germination, soil solution concentrations of dissolved organic C (DOC), dissolved inorganic N (DIN), dissolved organic N (DON), phenolics and H+ were measured at five depths down the soil profile over 3 months. The exploration of soil layers down the soil profile by roots caused transient increases in soil solution DOC, DON and phenolic concentrations, which then subsequently returned to lower quasi-stable concentrations. In general, the addition of N tended to increase DOC and DON concentrations while exposure to elevated pCO2 had the opposite effect. These treatment effects, however, gradually diminished over the duration of the experiment from the top of the soil profile downwards. The ambient pCO2 plus added N regime was the only treatment to maintain a notable difference in soil solution solute concentration, relative to other treatments. This effect on soil solution chemistry appeared to be largely indirect resulting from increased plant growth and a decrease in soil moisture content. Our results show that although plant growth responses to elevated pCO2 are critically dependent upon N availability, the organic chemistry of the soil solution is relatively insensitive to changes in plant growth once the plants have become established.  相似文献   

13.
CO2 efflux plays a key role in carbon exchange between the biosphere and atmosphere, but our understanding of the mechanism controlling its temporal and spatial variations is limited. The purpose of this study is to determine annual soil CO2 flux and assess its variations in arable subtropical soils of China in relation to soil temperature, moisture, rainfall, microbial biomass carbon (MBC) and dissolved organic carbon (DOC) using the closed chamber method. Soils were derived from three parent materials including granite (G), tertiary red sandstone (T) and quaternary red clay (Q). The experiment was conducted at the Ecological Station of Red Soil, The Chinese Academy of Sciences, in a subtropical region of China. The results showed that soil CO2 flux had clear seasonal fluctuations with the maximum value in summer, the minimum in winter and intermediate in spring and autumn. Further, significant differences in soil CO2 flux were found among the three red soils, generally in the order of G>T>Q. The average annual fluxes were estimated as 2.84, 2.13 and 1.41 kg CO2 m−2 year−1 for red soils derived from G, T and Q, respectively. Soil temperature strongly affects the seasonal variability of soil CO2 flux (85.0-88.5% of the variability), followed by DOC (55.8-84.4%) and rainfall (43.0-55.8%). The differences in soil CO2 flux among the three red soils were partly explained by MBC (33.7-58.9% of the variability) and DOC (23.8-33.6%).  相似文献   

14.
The detritusphere is a very thin but microbiological highly active zone in soil. To trace the fate of litter carbon in the detritusphere we developed a new 1D dynamic mechanistic model. In a microcosm experiment soil cores were incubated with 13C labelled rye residues (δ13C=299‰), which were placed on the surface. Microcosms were sampled after 3, 7, 14, 28, 56 and 84 days and soil cores were separated into layers of increasing distance to the litter. Gradients in soil organic carbon (TOC), dissolved organic carbon (DOC), microbial biomass and activity were detected over a distance of 3 mm from the litter layer. The newly developed 1D model simulates both the total carbon and the 13C carbon pools and fluxes, so that it was possible to include the 13C data in model optimisation. The special feature of the model is that it operates with two decomposer populations; the first one is assumed to be dominated by bacteria (initial-stage decomposer) and second one by fungi (late-stage decomposer). Moreover, in the model the DOC pool is divided into two sub pools. Each DOC pool is consumed by one of the decomposer populations. After parameter optimisation the model was well suited to simulate the experimental data. The model explained 92% of the observed variance. The model output provides a comprehensive insight into the carbon cycling within the detritusphere. The simulation results showed among others that after 84 days about 10% of total litter C was transferred to the soil organic matter (SOM) pool. Only 3% was located in the microbial biomass. From the evolved CO2 71% was litter-derived and 29% was soil-derived. From the litter-derived CO2, 69% was directly formed in the litter layer. The remaining 31% was transported to soil before mineralisation. Our study shows that a combination of experimental work and mathematical modelling is a powerful approach to provide a comprehensive insight into the small-scale carbon turnover in soil.  相似文献   

15.
The sequestration of carbon in soil is not completely understood, and quantitative information about the rates of soil organic carbon (SOC) turnover could improve understanding. We analyzed the effects of the uneven distribution of crop residues after harvest of silage maize on C and N losses (CO2‐C, dissolved organic carbon (DOC) and nitrogen (DON), and NO3) from a Haplic Phaeozem and on the occurrence of priming effects induced by the decomposition of accumulated maize residues. Soil columns were taken from a continuous maize (since 1961) field after harvest i) between maize stalk rows (Mbare), ii) within the maize rows including a standing maize stalk (Mstalk), and iii) from a continuous rye (since 1878) field after tillage (rye stalk and roots were mixed into the Ap horizon). The soil columns were incubated for 230 days at 8 °C with an irrigation rate of 2 mm 10–2 M CaCl2 per day. Natural 13C abundance was used to distinguish between maize‐derived C (in SOC and maize residues) and older C originating from former C3 vegetation. The uneven distribution of maize residues resulted in a considerably increased heterotrophic activity within the maize rows as compared with soil between seed rows. Cumulative CO2 production was 53.1 g CO2‐C m–2 for Mstalk and 23.3 g CO2‐C m–2 for Mbare. The contribution of maize‐derived C to the total CO2 emission was 83 % (Mstalk) and 67 % (Mbare). Calculated as difference between CO2‐C release from Mstalk and Mbare, 19 % of the maize residues (roots and stalk) in Mstalk were mineralized during the incubation period. There was no or only a marginal effect of the accumulation of maize residues in Mstalk on leaching of DOC, DON, and NO3. Total DOC and DON leaching amounted to 2.5 g C m–2 and 0.16 g N m–2 for Mstalk and to 2.1 g C m–2 and 0.12 g N m–2 for Mbare. The contribution of maize‐derived C to DOC leaching was about 25 % for Mstalk and Mbare. Nitrate leaching amounted to 3.9 g NO3‐N m–2 for Mstalk and to 3.5 g NO3‐N m–2 for Mbare. There was no priming effect induced by the decomposition of fresh maize residues with respect to CO2 or DOC production from indigenous soil organic carbon derived from C3 vegetation.  相似文献   

16.
Land-use type and nitrogen (N) addition strongly affect nitrous oxide (N2O) and carbon dioxide (CO2) production, but the impacts of their interaction and the controlling factors remain unclear. The aim of this study was to evaluate the effect of both factors simultaneously on N2O and CO2 production and associated soil chemical and biological properties. Surface soils (0–10 cm) from three adjacent lands (apple orchard, grassland and deciduous forest) in central Japan were selected and incubated aerobically for 12 weeks with addition of 0, 30 or 150 kg N ha–1 yr–1. Land-use type had a significant (p < 0.001) impact on the cumulative N2O and CO2 production. Soils from the apple orchard had higher N2O and CO2 production potentials than those from the grassland and forest soils. Soil net N mineralization rate had a positive correlation with both soil N2O and CO2 production rates. Furthermore, the N2O production rate was positively correlated with the CO2 production rate. In the soils with no N addition, the dominant soil properties influencing N2O production were found to be the ammonium-N content and the ratio of soil microbial biomass carbon to nitrogen (MBC/MBN), while those for CO2 production were the content of nitrate-N and soluble organic carbon. N2O production increased with the increase in added N doses for the three land-use types and depended on the status of the initial soil available N. The effect of N addition on CO2 production varied with land use type; with the increase of N addition doses, it decreased for the apple orchard and forest soils but increased for the grassland soils. This difference might be due to the differences in microbial flora as indicated by the MBC/MBN ratio. Soil N mineralization was the major process controlling N2O and CO2 production in the examined soils under aerobic incubation conditions.  相似文献   

17.
Tree species have significant effects on the availability and dynamics of soil organic matter. In the present study, the pool sizes of soil dissolved organic matter (DOM), potential mineralizable N (PMN) and bio-available carbon (C) (measured as cumulative CO2 evolution over 63 days) were compared in soils under three coniferous species — 73 year old slash (Pinus elliottii), hoop (Araucaria cunninghamii) and kauri (Agathis robusta) pines. Results have shown that dissolved organic N (DON) in hot water extracts was 1.5–1.7 times lower in soils under slash pine than under hoop and kauri pines, while soil dissolved organic C (DOC) in hot water extracts tended to be higher under slash pine than hoop and kauri pines but this was not statistically significant. This has led to the higher DOC:DON ratio in soils under slash pine (32) than under hoop and kauri pines (17). Soil DOC and DON in 2 M KCl extracts were not significantly different among the three tree species. The DOC:DON ratio (hot water extracts) was positively and significantly correlated with soil C:N (R2 = 0.886, P < 0.01) and surface litter C:N ratios (R2 = 0.768, P < 0.01), indicating that DOM was mainly derived from litter materials and soil organic matter through dissolution and decomposition. Soil pH was lower under slash pine (4.5) than under hoop (6.0) and kauri (6.2) pines, and negatively correlated with soil total C, C:N ratio, DOC and DOC:DON ratio (hot water extracts), indicating the soil acidity under slash pine favored the accumulation of soil C. Moreover, the amounts of dissolved inorganic N, PMN and bio-available C were also significantly lower in soils under slash pine than under hoop and kauri pines. It is concluded that changes in the quantity and quality of surface litters and soil pH induced by different tree species largely determined the size and quality of soil DOM, and plantations of hoop and kauri pine trees may be better in maintaining long-term soil N fertility than slash pine plantations.  相似文献   

18.
Soil organic carbon (SOC) dynamics and nutrient availability determine the soil quality and fertility in a Chinese fir plantation forest in subtropical China. Uniformly 13C-labeled Chinese fir (Cunninghamia lanceolata) and alder (Alnus cremastogyne) leaf litter with or without 100 mg NH4+ or NO3 were added to the soil. The purpose was to investigate the influence of N availability on the decomposition of the litter and native SOC. The production of CO2, the natural abundance of 13C–CO2, and the inorganic N dynamics were monitored. The results showed that Chinese fir (with a high C:N ratio) and alder (with a low C:N ratio) leaf litter caused significant positive priming effects (PEs) of 24% and 42%, respectively, at the end of the experiment (235 d). The PE dynamics showed that positive PE can last for at least 87 d. However, the possible occurrence of a significant negative PE with a sufficient incubation period is difficult to confirm. The application of both NH4+ and NO3 was found to have a stimulating effect on the decomposition of Chinese fir and alder leaf litter in the early stage (0–15 d) of incubation, but an adverse effect in the late stage. Compared with NO3, NH4+ caused a greater decrease in the PE induced by both Chinese fir and alder leaf litter. The effects of NH4+ and NO3 on the PE dynamics had different patterns for different incubation stages. This result may indicate that the stability or recalcitrance of SOC, especially in such plantation forest soils, strongly depends on available leaf litter and application of N to the soil.  相似文献   

19.
Understanding carbon dynamics in soil is the key to managing soil organic matter. Our objective was to quantify the carbon dynamics in microcosm experiments with soils from long-term rye and maize monocultures using natural 13C abundance. Microcosms with undisturbed soil columns from the surface soil (0-25 cm) and subsoil (25-50 cm) of plots cultivated with rye (C3-plant) since 1878 and maize (C4-plant) since 1961 with and without NPK fertilization from the long-term experiment ‘Ewiger Roggen’ in Halle, Germany, were incubated for 230 days at 8 °C and irrigated with 2 mm 10−2 M CaCl2 per day. Younger, C4-derived and older, C3-derived percentages of soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass (Cmic) and CO2 from heterothropic respiration were determined by natural 13C abundance. The percentage of maize-derived carbon was highest in CO2 (42-79%), followed by Cmic (23-46%), DOC (5-30%) and SOC (5-14%) in the surface soils and subsoils of the maize plots. The percentage of maize-derived C was higher for the NPK plot than for the unfertilized plot and higher for the surface soils than for the subsoils. Specific production rates of DOC, CO2-C and Cmic from the maize-derived SOC were 0.06-0.08% for DOC, 1.6-2.6% for CO2-C and 1.9-2.7% for Cmic, respectively, and specific production rates from rye-derived SOC of the continuous maize plot were 0.03-0.05% for DOC, 0.1-0.2% for CO2-C and 0.3-0.5% for Cmic. NPK fertilization did not affect the specific production rates. Strong correlations were found between C4-derived Cmic and C4-derived SOC, DOC and CO2-C (r≥0.90), whereas the relationship between C3-derived Cmic and C3-derived SOC, DOC and CO2-C was not as pronounced (r≤0.67). The results stress the different importance of former (older than 40 years) and recent (younger than 40 years) litter C inputs for the formation of different C pools in the soil.  相似文献   

20.
【目的】研究秸秆还田后不同水温和肥剂管理措施下土壤碳素转化特征。【方法】以华中双季稻区低产水稻土黄泥田为供试材料,模拟早稻和晚稻秸秆还田的田间环境,在实验室控制条件下,开展了两种温度环境中(15℃、35℃)不同水分(40%和100%最大田间持水量,即40%WHC、100%WHC)、配施氮肥类型(尿素、猪粪即U、M)、以及促腐菌剂添加对秸秆腐解效果及其过程中土壤碳素转化影响的研究。对水稻秸秆腐解过程中土壤CO2释放量、以及土壤可溶性有机碳(DOC)和总有机碳(TOC)含量在105天培养周期内变化特征进行动态监测分析。【结果】两种温度环境中整个培养周期内,各处理的CO2释放速率和释放总量通常表现为100%WHC-M100%WHC-U40%WHC-M40%WHC-U,即猪粪优于尿素的规律,而不论配施何种氮肥都存在100%WHC40%WHC(P0.01)的现象,同时40%WHC条件下辅施菌剂可显著提升CO2释放量;与此相反,两种温度环境下DOC含量都表现为40%WHC-M40%WHC-U100%WHC-M100%WHC-U(后两者差异小),即40%WHC条件下DOC含量显著高于100%WHC(P0.05),且配施猪粪处理优于配施尿素处理,但这两种氮肥处理间差异随培养时间延长而减小;以CO2-C释放量计算0 7 d、0 28 d、0 105 d内物料分解率,结果表明,35℃时100%WHC-U的处理中物料分解最快,15℃时40%WHC-M的处理中物料分解最慢。与之对应,105 d内TOC含量和净增量则在35℃时100%WHC-U的处理中最小(P0.01),而在15℃时40%WHC-M的处理中最大(P0.01);TOC的净增量和净损失量在相同温度条件下,尤其试验前期不同水分(P0.01)、氮素(P0.05)间均存在显著差异,且促腐菌剂添加普遍减小TOC含量;培养周期内所有处理的CO2释放速率与DOC含量间存在显著相关(P0.05)。【结论】水分状况对碳素的转化存在极大影响,其次是氮肥类型,且氮肥的影响作用随秸秆还田时间的延长而减弱;高湿条件更利于促进秸秆腐解,但导致土壤DOC含量较低,TOC的固持量也较少,而配施猪粪则可促进土壤DOC含量的提升及TOC的固持;促腐菌剂添加可促进秸秆腐解,但由于40%WHC条件下显著激发了CO2的释放而不利于土壤固碳。因此在华中低产黄泥田双季轮作稻区,早稻还田时由于气温高周期短,建议保持100%WHC、辅施适量尿素、并配合添加秸秆腐解菌剂,侧重秸秆快腐;而晚稻还田时气温低周期长,建议保持40%WHC并辅施缓效猪粪,侧重土壤固碳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号