首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The forest–savanna transition zone is widely distributed on nutrient-poor oxisols in Central Africa. To reveal and compare the nutrient cycle in relation to soil microbes for forest and savanna vegetation in this area, we evaluated seasonal fluctuations in microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP) for 13 months as well as soil moisture, temperature, soil pH levels, and nutrients for both vegetation types in eastern Cameroon. Soil pH was significantly lower in forest (4.3) than in savanna (5.6), and soil N availability was greater in forest (87.1 mg N kg−1 soil) than in savanna (32.9 mg N kg−1 soil). We found a significant positive correlation between soil moisture and MBP in forest, indicating the importance of organic P mineralization for MBP, whereas in savanna, we found a significant positive correlation between soil N availability and MBP, indicating N limitation for MBP. These results suggest that for soil microbes, forest is an N-saturated and P-limited ecosystem, whereas savanna is an N-limited ecosystem. Additionally, we observed a significantly lower MBN and larger MB C:N ratio in forest (50.7 mg N kg−1 soil and 8.6, respectively) than in savanna (60.0 mg N kg−1 soil and 6.5, respectively) during the experimental period, despite the rich soil N condition in forest. This may be due to the significantly lower soil pH in forest, which influences the different soil microbial communities (fungi-to-bacteria ratio) in forest versus savanna, and therefore, our results indicate that, in terms of microbial N dynamics, soil pH rather than soil substrate conditions controls the soil microbial communities in this area. Further studies should be focused on soil microbial community, such as PLFA, which was not evaluated in the present study.  相似文献   

2.
《Soil & Tillage Research》2007,93(1):126-137
Although reduced tillage itself is beneficial to soil quality and farm economics, the amount of crop residues returned to the soil will likely alter the success of a particular conservation tillage system within a farm operation. We investigated the impact of three cropping systems (a gradient in silage cropping intensity) on selected soil physical, chemical, and biological properties in the Piedmont of North Carolina, USA. Cropping systems were: (1) maize (Zea mays L.) silage/barley (Hordeum vulgare L.) silage (high silage intensity), (2) maize silage/winter cover crop (medium silage intensity), and (3) maize silage/barley grain—summer cover crop/winter cover crop (low silage intensity). There was an inverse relationship between silage intensity and the quantity of surface residue C and N contents. With time, soil bulk density at a depth of 0–3 cm became lower and total and particulate C and N fractions, and stability of macroaggregates became higher with lower silage intensity as a result of greater crop residue returned to soil. Soil bulk density at 0–3 cm depth was initially 0.88 Mg m−3 and increased to 1.08 Mg m−3 at the end of 7 years under high silage intensity. Total organic C at 0–20 cm depth was initially 11.7 g kg−1 and increased to 14.3 g kg−1 at the end of 7 years under low silage intensity. Stability of macroaggregates at 0–3 cm depth at the end of 7 years was 99% under low silage intensity, 96% under medium silage intensity, and 89% under high silage intensity. Soil microbial biomass C at 0–3 cm depth at the end of 7 years was greater with low silage intensity (1910 mg kg−1) than with high silage intensity (1172 mg kg−1). Less intensive silage cropping (i.e., greater quantities of crop residue returned to soil) had a multitude of positive effects on soil properties, even in continuous no-tillage crop production systems. An optimum balance between short-term economic returns and longer-term investments in improved soil quality for more sustainable production can be achieved in no-tillage silage cropping systems.  相似文献   

3.
Earthworms can have positive effects upon crop growth in the tropics. If soils are to be managed sustainably, then more attention should be paid to the effects of cultivation and cropping practices upon earthworms. When forest vegetation is cleared, slashed, burned and land is tilled and cultivated, earthworm abundance, diversity and activity are reduced. Conversely, retaining trees in agroecosystems may maintain earthworm populations during the cropping phase.Here, we assessed the impact on earthworm species diversity and densities of crop cultivation in the understorey of timber plantations thinned to two tree densities and compared these with uncropped, undisturbed timber plantation controls. The plots were reassessed after two and a half years of fallow to see whether populations had recovered. The experiment was in central Cameroon.Seventeen earthworm species were recorded from Eudrilidae subfamilies Eudrilinae and Pareudrilinae, Ocnerodrilidae and Acanthodrilidae, most of which were endemics. This included two new species from two new genera from the sub-family Pareudrilinae, one new species from one new genus of Ocnerodrilidae, two new species of Dichogaster and one new species of Legonodrilus. Ten species were epigeic, six were endogeic and one was anecic.Generally, earthworm densities were lower in cropped plots than in the undisturbed plantation control. The most abundant species was a Legonodrilus sp. nov. with average densities of 49 individuals m−2 in the crop phase and 80 ind. m−2 in the fallow phase. By the fallow phase, densities in the low tree density (120 ind. m−2) were higher than in the high density (40 ind. m−2). The densities of the epigeic Acanthodrilidae were significantly reduced to 7 ind. m−2 in the cropped plots compared with 42 ind. m−2 in the control plots. The effects of cropping were thus species-specific and more work is required to identify which of these endemics are the ecosystem engineers in the system.  相似文献   

4.
《Applied soil ecology》2008,38(3):247-255
Soil microbial community structure and crop yield was investigated in field tomato production systems that compared black polyethylene mulch to hairy vetch mulch and inorganic N to organic N. The following hypotheses were tested: (1) hairy vetch cover cropping increases crop yield and significantly affects soil microbial community structure when compared to the standard plastic mulch and synthetic fertilizer-based system; (2) within plastic mulch systems, organic amendments will increase crop yield and significantly affect soil microbial community structure when compared to synthetic fertilizer; (3) crop yields and microbial community structure will be similar in the hairy vetch cover cropping and the organic amended plasticulture systems. Treatments consisted of ammonium nitrate (control), hairy vetch cover crop, hairy vetch cover crop and poultry manure compost (10 Mg/ha), three levels of poultry manure compost (5, 10, and 20 Mg/ha), and two levels of poultry manure (2.5 and 5 Mg/ha). Black polyethylene mulch was used in all treatments without hairy vetch. Fatty acid analysis was used to characterize the total soil microbial community structure, while two substrate utilization assays were used to investigate the community structure of culturable bacteria and fungi. Crop yield was not significantly increased by hairy vetch cover cropping when compared to black polyethylene mulch, although microbial community structure was significantly affected by cover cropping. Under black polyethylene mulch, crop yields were significantly increased by the highest levels of compost and manure when compared to inorganic fertilizer, but there was no detectable effect on soil microbial community structure. When cover cropping was compared to organic amended plasticulture systems, crop yields were similar one year but dissimilar the next. However, hairy vetch cover cropping and organic amendments under black plastic mulch produced significantly different soil microbial community structure.  相似文献   

5.
The response of the soil food web structure to soil quality changes during long-term anthropogenic disturbance due to farming practices has not been well studied. We evaluated the effects of three tillage systems: moldboard plow/rotary harrow (MP), rotary cultivator (RC), and no-tillage (NT), three winter cover-crop types (fallow, FL; rye, RY; and hairy vetch, HV), and two nitrogen fertilization rates (0 and 100 kg N ha−1 for upland rice, and 0 and 20 kg N ha−1 for soybean production) on changes in nematode community structure. Sixty-nine taxa were counted, total nematode abundance (ALL), bacterial feeders (BAC), predators (PRD), omnivores (OMN), and obligatory root feeders (ORF) were more abundant in NT than in MP and RC, but fungal feeders and facultative root feeders (FFR) were more abundant in RC than in NT and MP. Cover crop also influenced nematode community structure; rye and hairy vetch were always higher in ALL, BAC, FFR, ORF, and OMN than fallow. Seasonal changes in nematode community structure were also significant; in particular, as soil carbon increased, nematode abundance also increased. The relationship between nematode indices and soil carbon was significant only in NT, but not in MP and RC. In NT, with increasing soil carbon, enrichment index and structure index (SI) were positive and significant and channel index was negative. Bulk density was significantly negatively correlated with FFR and ORF. Seasonal difference in nematode community between summer and autumn was larger in an upland rice rotation than in a soybean rotation. Over the nine-year experiment, SI increased not only in NT but also in MP and RC, suggesting that repeated similar tillage inversions in agroecosystems may develop nematode community structures adapted to specific soil environmental conditions. Because NT showed the highest values of both SI and soil carbon, the increase of soil carbon in NT is expected to have a great impact on developing a more diverse nematode community structure.  相似文献   

6.
《Soil & Tillage Research》2007,93(1):138-151
Concerns about effects of increasing atmospheric concentration of carbon dioxide (CO2) on climate has given rise to the possibility of emission credits for soil organic carbon (SOC) sequestration. The goal of this study was to analyze SOC sequestration options in cropping systems of the Northern Guinea Savanna of West Africa. An 11-year experiment from the region, which consisted of 56 cropping system treatments that combined various crop rotation sequences with various input levels and an additional treatment of native grass fallow, was analyzed. Rotations included one or more of: sorghum (Sorghum bicolor (L.) Moench), cotton (Gossypium hirsutum L.), groundnut (Arachis hypogaea L.), maize (Zea mays L.) and native grass fallow. Inputs were defined by whether or not the plots were plowed and the addition of soil amendments (N, nitrogen; P, phosphorous; K, potassium; D, dolomite; CR, crop residues; CP, compost and ME, manure). Plots were moldboard plowed before seeding, except fallows, which were not plowed. Soil organic carbon in select treatments and residue yields from all cropped treatments were analyzed. The slope parameters from the regression analysis of SOC in the continuous fallow treatment were not significantly different from zero (P > 0.05), suggesting SOC (0.53% after 11 years) was at steady state in this treatment. Rotation and input significantly affected SOC (P < 0.05), but interaction effects were not significant. After 11 years, the cropped rotation with the greatest SOC was sorghum-fallow (0.46%), which was significantly greater (P < 0.05) than SOC in other the rotations measured: continuous cotton (0.36%), continuous sorghum (0.35%), and cotton–maize–sorghum (0.33%). For the input levels, addition of P, K, and ME gave the greatest SOC (0.44%) after 11 years of cropping, which was significantly greater (P < 0.05) than SOC from the N, P, K and D (0.37%), no input (0.32%) and N, P and K (0.34%) treatments. In addition, SOC with inputs of N, P, K and D (0.37%) was significantly greater than SOC with no input (0.32%). Three management practices, which had significantly greater SOC than others and were among the best for yields, were identified as sequestering management options for the region. These were rotating sorghum and fallow, and amending the soil with mineral P, K, and ME or N, P, K and D. However, potential drawbacks, such as a risk of reduced production with increased fallows, must be identified and addressed if the options are to be adopted.  相似文献   

7.
Fertilization generates nutrient patches that may impact soil microbial activity. In this study, nitrogen patches were generated by adding ammonium sulfate or urea to soil columns (length 25 cm; internal diameter 7.2 cm). Changes in nitrogen transformation, soil microbial biomass, and microbial functional diversity with the nitrogen gradients were investigated to evaluate the response of microbial activity to chemical fertilizer nutrient patches. After applying of ammonium sulfate or urea, the added nitrogen migrated about 7 cm. Microbial biomass carbon (MBC) was lower in fertilized soil than in the control (CK) treatment at the same soil layers. MBC increased with soil depth while microbial biomass nitrogen (MBN) decreased. BIOLOG analysis indicated that the average well color development (AWCD) and functional diversity indices of the microbial communities were lower in the 1 cm and 2 cm soil layers after application of ammonium sulfate; the highest values were in the 3 cm soil layer. AWCD and Shannon indices from the 1 to 5 cm soil layers were higher than those from other soil layers under urea application. Both principal component analysis and carbon substrate utilization analysis showed significant separation of soil microbial communities among different soil layers under application of ammonium sulfate or urea. Microbial activity was substantially decreased when NH4+-N concentration was higher than 528.5 mg kg−1 (1–3 cm soil layer under ammonium sulfate application) or 536.8 mg kg−1 (1 cm soil layer under urea application). These findings indicated that changes in soil microbial biomass and microbial functional diversity can occur with a nitrogen gradient. The extent of changes depends on the nitrogen concentration and the form of inorganic fertilizer.  相似文献   

8.
Soil food webs cycle nutrients and regulate parasites and pathogens, services essential for both agricultural productivity and ecosystem health. Nematodes provide useful indicators of soil food web dynamics. This study was conducted to determine if nematode soil food web indicators and crop yield can be enhanced by combinations of cover crops in a conservation tillage system. The effects of three cover crop treatments (vetch/pea, oat/wheat and oat/wheat/pea/vetch) with low, medium and high C:N and a bare fallow control were investigated in Davis, CA. Nematode fauna, soil properties and plant productivity were measured. Soil food web indices, including the Enrichment Index (EI), Structure Index (SI), Basal Index (BI), and Channel Index (CI), based on the composition of nematode assemblages, were calculated to infer soil food web condition. Cover cropped tomato/corn rotations had twice the number of enrichment opportunist bacterial feeding nematodes, active participants in nitrogen mineralization, than fallowed tomato/corn rotations (opportunist bacterial feeders = 163 versus 98). In winter fallowed plots food webs were basal, common in disturbed, nutrient-poor conditions (BI = 37). Total number of enrichment opportunist nematodes, soil NH4-N levels, and inferred nitrogen mineralization, were higher in cover crop treatments with low to mid C:N ratios. Omnivore and predator nematodes were scarce, averaging less than 6 nematodes 100 g?1 in all treatments. In year one, plant productivity was highest after fallow. In contrast, in year two productivity was highest after cover crops with high nitrogen content and productivity significantly correlated with the structure of the soil fauna. Monitoring the abundance of enrichment opportunists may provide managers with a new tool to evaluate soil food web nitrogen mineralization and plant productivity.  相似文献   

9.
Endogeic and juvenile anecic earthworm abundance was measured in soil samples and anecic populations were studied by counting midden numbers at the sites of two long-term cropping systems trials in South-central Wisconsin. The three grain and three forage systems at each site were designed to reflect a range of Midwestern USA production strategies. The primary objectives of this work were to determine if the abundance of endogeic or anecic earthworms varied among cropping systems or crop phases within a cropping system and were there specific management practices that impacted endogeic or anecic earthworm numbers. The earthworms present in the surface soil were: Aporrectodea tuberculata (Eisen), A. caliginosa (Savigny), A. trapezoides (Dugés); and juvenile Lumbricus terrestris (L.). True endogeic abundance was greatest in rotationally grazed pasture [188 m?2 at Arlington (ARL) and 299 m?2 at Elkhorn (ELK)], and smallest in conventional continuous corn (27 m?2 at ARL and 32 m?2 at ELK). The only type of anecic earthworm found was L. terrestris L. There was an average of 1.2 middens per adult anecic earthworm and the population of anecics was greatest in the no-till cash grain system (28 middens m?2 at ARL, 18 m?2 at ELK) and smallest in the conventional continuous corn system (3 middens m?2 at ARL, 1 m?2 at ELK). Earthworm numbers in individual crop phases within a cropping system were too variable from year-to-year to recommend using a single phase to characterize a whole cropping system. Indices for five management factors (tillage, manure inputs, solid stand, pesticide use, and crop diversity) were examined, and manure use and tillage were the most important impacting earthworm numbers across the range of cropping systems. Manure use was the most important management factor affecting endogeic earthworm numbers; but no-tillage was the most important for the juvenile and adult anecic groups and had a significantly positive influence on endogeic earthworm counts as well. The pesticides used, which were among the most commonly applied pesticides in the Midwestern USA, and increasing crop diversity did not have a significant effect on either the endogeic or anecic earthworm groups in this study. Consequently, designing cropping systems that reduce tillage and include manure with less regard to omitting pesticides or increasing crop diversity should enhance earthworm populations and probably improve sustainability.  相似文献   

10.
The use of organic residues as soil amendments or fertilisers may represent a valuable recycling strategy. In this study, a series of laboratory assays was performed to study the effects of the application of organic residues on C and N mineralization and biochemical properties in a Mediterranean agricultural soil. Two crop residues (straw and cotton) and two animal by-products (meat bone meal and blood meal) were added at three rates (5, 10 and 20 mg g?1 on dry weight basis) to a moist (40% water holding capacity) sandy soil and incubated at 20 °C for 28 days. Each residue underwent a different mineralization pattern depending on the nature and complexity of its chemical constituents. In all cases, the addition of the waste produced, after a short lag-phase, an exponential increase in the soil respiration rate, reflecting the growth of microbial biomass. The amount of total extra CO2-C evolved after 28 days, expressed as % in respect to added C, differed significantly (P < 0.005) among application doses: 5 > 10 > 20 mg g?1 and residue type: meat bone meal > blood meal > cotton cardings > wheat straw. Plant residues led to a rapid immobilisation of N that affected microbial size and activity and further mineralization. Animal by-products produced an immediate and remarkable increase of mineral N in the soil. However, the large amounts of NH4+ released in the soil at high rates of animal residues led, in some cases, to temporary adverse effects on microbial biomass growth and nitrification. All residues produced a significant increase in soil microbial biomass size and activity, being the intensity of the response related to their chemical properties.  相似文献   

11.
《Applied soil ecology》2006,34(3):258-268
The potential negative impact of agricultural practices on soil and water quality is of environmental concern. The associated nutrient transformations and movements that lead to environmental concerns are inseparable from microbial and biochemical activities. Therefore, biochemical and microbiological parameters directing nitrogen (N) transformations in soils amended with different animal manures or inorganic N fertilizers were investigated. Soils under continuous corn cultivation were treated with N annually for 5 years at 56, 168, and 504 kg N ha−1 in the form of swine effluent, beef manure, or anhydrous ammonia. Animal manure treatments increased dehydrogenase activity, microbial biomass carbon (Cmic) and N (Nmic) contents, and activities of amidohydrolases, including l-asparaginase, urease, l-glutaminase, amidase, and β-glucosaminidase. Soils receiving anhydrous ammonia demonstrated increased nitrate contents, but reduced microbiological and biochemical activities. All treatments decreased Cmic:organic C (Corg) ratios compared with the control, indicating reduced microbial C use efficiency and disturbance of C equilibrium in these soil environments. Activities of all enzymes tested were significantly correlated with soil Corg contents (P < 0.001, n = 108), but little correlation (r = 0.03, n = 36) was detected between Cmic and Corg. Activities of amidase and β-glucosaminidase were dominated by accumulated enzymes that were free of microbial cells, while activities of asparaginase and glutaminase were originated predominately from intracellular enzymes. Results indicated that soil microbial and biochemical activities are sensitive indicators of processes involved in N flow and C use efficiency in semiarid agroecosystems.  相似文献   

12.
Microbial biomass (MB) is the key factor in nutrient dynamics in soil, but no information exists how clearing of vegetation to cultivate maize in the central highlands of Mexico might affect it. Soil MB was measured with the chloroform fumigation incubation (CFI) and fumigation extraction (CFE) techniques and the substrate-induced respiration (SIR) method in soil sampled under or outside the canopy of mesquite (Prosopis laevigata) and huisache (Acacia tortuoso), N2 fixing shrubs, and from fields cultivated with maize. Microbial biomass C as measured with the CFI technique ranged from 122 mg C kg−1 in agricultural soil to 373 mg C kg−1 in soil sampled under mesquite shrubs. Microbial biomass N as measured with the CFI technique ranged from 11 mg N kg−1 in agricultural soil to 116 mg N kg−1 in soil sampled under mesquite shrub. The ratio of microbial biomass C as measured with CFI related to the ninhydrin-positive compounds (NPC) was 12.23 after 1 day and 8.43 after 10 days while the relationship with extractable C was 3.15 and 2.96, respectively. The metabolic quotient (qCO2) decreased in the order OUTSIDE > MESQUITE > HUIZACHE > AGRICULTURE, and the microbial biomass:soil organic C ratio decreased in the order MESQUITE > HUIZACHE > OUTSIDE > AGRICULTURE using SIR to determine the microbial biomass. It was found that converting soil under natural vegetation to arable soil was not only detrimental for soil quality, but might be unsustainable as organic matter input is limited.  相似文献   

13.
《Applied soil ecology》2006,32(3):186-198
Comparisons of organic and inorganic fertilizer effects on nematode communities depend on the specific organic fertilizer used. Field experiments were conducted during 2001 and 2002 in a squash (Cucurbita pepo) agroecosystem to determine if applying sunn hemp (Crotalaria juncea) hay as an organic fertilizer improved nematode communities involved in soil nutrient cycling compared to an equivalent N rate (100 kg N/ha) of ammonium nitrate. Fertilizer source had minimal effect on nematode communities in 2001 when treatments were applied after a winter cover crop of oats (Avena sativa), but differences (P  0.05) between the fertilizer sources occurred in 2002 when no winter cover cropping preceded squash. Fertilization with sunn hemp hay increased abundance of the bacterivore guilds Ba1 and Ba2, and increased fungivores at the end of the experiment. Compared to ammonium nitrate, fertilization with sunn hemp hay resulted in a community with lower maturity index, higher enrichment index, and lower channel index, consistent with a disturbed and nutrient-enriched soil food web undergoing bacterial decomposition. Sunn hemp hay occasionally stimulated omnivorous nematodes, but suppressed plant-parasitic nematodes relative to ammonium nitrate fertilizer. Increasing the sunn hemp hay rate to 200 kg N/ha increased the abundance of bacterivores, fungivores, and predatory nematodes, and total nematode abundance compared to hay at 100 kg N/ha. Fertilization with ammonium nitrate increased the percentage of herbivores, but reduced percentage and abundance of omnivores. In conclusion, sunn hemp fertilizer maintained greater numbers of nematodes involved in nutrient cycling as compared to ammonium nitrate.  相似文献   

14.
《Soil & Tillage Research》2007,93(1):231-235
The Sanjiang Plain has become an intensive area of land use/cover change in China. However, little is known about the effect of cultivation on soil microbiological properties in this freshwater marsh ecosystem. Our objective was to evaluate the effect of cultivation on mineralizable, microbial biomass, and total C in the Sanjiang Plain of Northeast China. Soil microbial biomass C (MBC) was 4346 ± 309 mg kg−1 in undisturbed marsh and 229 mg kg−1 in soil cultivated for 15 years. Undisturbed marsh soil had the highest microbial quotient (3.64%), which declined with increasing cultivation time (R2 = 0.97, p < 0.01). Metabolic quotient increased with increasing cultivation time. Soil C mineralization in undisturbed marsh was 3.5 times that in soil cultivated for 1 year, and was 12 times that in soil cultivated for 15 years. Cultivation strongly affected measured soil microbiological properties.  相似文献   

15.
Earthworms are key regulators of soil structure and soil organic matter (SOM) dynamics in many agroecosystems. They are greatly impacted by agricultural management, yet little is known about how these factors interact to control SOM dynamics. This study sought to explore linkages between agricultural management, earthworms and aggregate associated SOM dynamics through a survey of tomato (Solanum lycopersicum L.) cropping systems in northern California. Earthworms and soil samples were collected between February and April of 2005 from 16 fields under one of three types of residue management: (1) tomato mulch – no postharvest tillage and tomato residues left on the soil surface, (2) cover crop – tomato residues tilled in and leguminous cover crop planted, and (3) bare fallow – tomato residues tilled in and soil surface left exposed throughout the winter. Earthworms were collected via hand-sorting and identified to species, while soils were wet sieved to yield four aggregate size classes: large macroaggregates (>2000 μm), small macroaggregates (250–2000 μm), microaggregates (53–250 μm) and the silt and clay fraction (<53 μm). The combined large and small macroaggregate fraction was then fractionated into coarse particulate organic matter (cPOM; 250 μm), microaggregates within macroaggregates (mM; 53–250 μm) and macroaggregate occluded silt and clay (Msc; <53 μm). The earthworms identified in this survey were composed entirely of exotic species and were dominated by Aporrectodea caliginosa. Earthworm abundance was related to residue management, with the tomato mulch systems averaging 4.5 times greater fresh earthworm biomass than bare fallow (P = 0.024). Aggregate stability and total soil C and N also appeared to be influenced by residue management, such that the tomato mulch system displayed significantly greater mean weight diameters than the bare fallow system (P = 0.049), as well as more than 50% greater total soil C and N (P = 0.049 and P = 0.036; respectively). Earthworm biomass was also found to be positively correlated with total soil C (P = 0.009, R2 = 0.39) and N (P = 0.010, R2 = 0.039) as well as the proportion of macroaggregate C in the cPOM fraction (P = 0.028, R2 = 0.30). Our findings suggest that residue handling and the associated management practices (e.g., tillage, organic vs. conventional agriculture) are important for both earthworm populations and SOM storage. Although earthworms are known to influence SOM in many ways, other factors appear to play a more prominent role in governing aggregate associated SOM dynamics.  相似文献   

16.
《Applied soil ecology》2001,16(3):229-241
Changes in the proportions of water-stable soil aggregates, organic C, total N and soil microbial biomass C and N, due to tillage reduction (conventional, minimum and zero tillage) and crop residue manipulation (retained or removed) conditions were studied in a tropical rice–barley dryland agroecosystem. The values of soil organic C and total N were the highest (11.1 and 1.33 g kg−1 soil, respectively) in the minimum tillage and residue retained (MT+R) treatment and the lowest (7.8 and 0.87 g kg−1, respectively) in conventional tillage and residue removed (CT−R) treatment. Tillage reduction from conventional to minimum and zero conditions along with residue retention (MT+R,ZT+R) increased the proportion of macroaggregates in soil (21–42% over control). The greatest increase was recorded in MT+R treatment and the smallest increase in conventional tillage and residue retained (CT+R) treatment. The lowest values of organic C and total N (7.0–8.9 and 0.82–0.88 g kg−1 soil, respectively) in macro- and microaggregates were recorded in CT−R treatment. However, the highest values of organic C and total N (8.6–12.6 and 1.22–1.36 g kg−1, respectively) were recorded in MT+R treatment. The per cent increase in the amount of organic C in macroaggregates was greater than in microaggregates. In all treatments, macroaggregates showed wider C/N ratio than in microaggregates. Soil microbial biomass C and N ranged from 235 to 427 and 23.9 to 49.7 mg kg−1 in CT−R and MT+R treatments, respectively. Soil organic C, total N, and microbial biomass C and N were strongly correlated with soil macroaggregates. Residue retention in combination with tillage reduction (MT+R) resulted in the greatest increase in microbial biomass C and N (82–104% over control). These variables showed better correlations with macroaggregates than other soil parameters. Thus, it is suggested that the organic matter addition due to residue retention along with tillage reduction accelerates the formation of macroaggregates through an increase in the microbial biomass content in soil.  相似文献   

17.
The endogeic earthworm Pontoscolex corethrurus (Müller, 1857) was the most abundant species (75%) in soil contaminated with hydrocarbons, mostly benzo(a)pyrene (BaP), in the state of Tabasco (Mexico). The earthworm P. corethrurus was tested for its capacity to remove 100 mg BaP kg−1 from an Anthrosol soil (sterilized or not) and amended with legume Mucuna pruriens (L.) DC. var. utilis (Wall. ex Wight) Baker ex Burck (3%) or the grass Brachiaria humidicola (L.) DC (3%) (recently renamed as Urochloa humidicola (Rendle) Morrone & Zuloaga) in an aerobic incubation experiment. P. corethrurus removed 26.6 mg BaP kg−1 from the sterilized soil and application of B. humidicola as feed increased this to 35.7 mg BaP kg−1 and M. pruriens to 34.2 mg BaP kg−1 after 112 days. The autochthonous microorganisms removed 9.1 mg BaP kg−1 from the unsterilized soil and application of B. humidicola increased this to 18.0 mg BaP kg−1 and M. pruriens to 11.2 mg BaP kg−1. Adding P. corethrurus to the unsterilized soil accelerated the removal of BaP and 36.1 mg kg−1 was dissipated from soil. It was found that the autochthonous microorganisms removed BaP from soil, but addition of P. corethrurus increased the dissipation 4-fold. The endogeic earthworm P. corethrurus can thus be used to remediate hydrocarbon-contaminated soils in tropical regions.  相似文献   

18.
The ultimate goal of soil remediation is to restore soil health. Soil microbial parameters are considered to be effective indicators of soil health. The aim of this study was to determine the effects of phytoextraction on microbial properties through the measurement of soil microbial biomass carbon, soil basal respiration and enzyme activities. For this purpose, a pre-stratified rhizobox experiment was conducted with the Cd hyperaccumulator Sedum alfredii H. for phytoextraction Cd from an artificial contaminated soil (15.81 mg kg−1) under greenhouse conditions. The plant and soil samples were collected after growing the plant for three and six months with three replications. The results indicated that the ecotype of S. alfredii H. originating from an ancient silver mining site was a Cd-hyperaccumulator as it showed high tolerance to Cd stress, the shoot Cd concentration were as high as 922.6 mg kg−1 and 581.9 mg kg−1 at the two samplings, and it also showed high BF (58.4 and 36.8 after 3 and 6 months growth), and TF (5.8 and 5.1 after 3 and 6 months growth). The amounts of Cd accumulated in the shoots of S. alfredii reached to an average of 1206 μg plant−1 after 6 months growth. Basal respiration, invertase and acid phosphatase activities of the rhizosphere soil separated by the shaking method were significantly higher (P < 0.01) than that of the near-rhizosphere soil and the unplanted soil after 3 months growth, so were microbial biomass carbon, urease, invertase and acid phosphatase activities of the rhizosphere soil after 6 months growth. Acid phosphatase activity of the 0–2 mm sub-layer rhizosphere soil collected by the pre-stratified method after 3 months growth was significantly higher (P < 0.05) than that of other sub-layer rhizosphere soils and bulk soil, and so were microbial biomass carbon, basal respiration, urease, invertase and acid phosphatase activities of the 0–2 mm sub-layer rhizosphere soil after 6 months growth. It was concluded that phytoextraction by S. alfredii could improve soil microbial properties, especially in rhizosphere, and this plant poses a great potential for the remediation of Cd contaminated soil.  相似文献   

19.
It is broadly accepted that reduced tillage increases soil organic carbon (Corg) and total nitrogen (N) concentrations in arable soils. However, the underlying processes of sequestration are not completely understood. Thus, our objectives were to investigate the impact of a minimum tillage (MT) system (to 5–8 cm depth) on aggregates, on particulate organic matter (POM), and on storage of Corg and N in two loamy Haplic Luvisols in contrast to conventional tillage (CT) (to 25 cm). Surface soils (0–5 cm) and subsoils (10–20 cm) of two experimental fields near Göttingen, Germany, were investigated. Each site (Garte-Süd and Hohes Feld) received both tillage treatments for 37 and 40 years, respectively. In the bulk soil of both sites Corg, N, microbial carbon (Cmic), and microbial N (Nmic) concentrations were elevated under MT in both depths. Likewise, water-stable macroaggregates (>0.25 mm) were on average 2.6 times more abundant under MT than under CT but differences in the subsoils were generally not significant. For surface soils under MT, all aggregate size classes <1 mm showed approx. 35% and 50% increased Corg concentrations at Garte-Süd and Hohes Feld, respectively. For greater macroaggregates (1–2, 2–10 mm), however, differences were inconsistent. Elevations of N concentrations were regular over all size classes reaching 61% and 52%, respectively. Density fractionation of the surface soils revealed that tillage system affected neither the yields of free POM nor occluded POM nor their Corg and N concentrations. Moreover, more Corg and N (15–238%) was associated within the mineral fractions investigated under MT in contrast to CT. Overall, similar to no-tillage, a long-term MT treatment of soil enhanced the stability of macroaggregates and thus was able to physically protect and to store more organic matter (OM) in the surface soil. The increased storage of Corg and N did not occur as POM, as reported for no-tillage, but as mineral-associated OM.  相似文献   

20.
Napropamide is one of the most commonly used herbicide in agricultural practice and can exhibit toxic effect to soil microorganisms. Therefore, the main objective of this study was to examine the genetic and functional diversity of microbial communities in soil treated with napropamide at field rate (FR, 2.25 mg kg−1 of soil) and 10 times the FR (10 × FR, 22.5 mg kg−1 of soil) by the denaturing gradient gel electrophoresis (DGGE) and the community level physiological profile (CLPP) methods. In addition, the r/K-strategy approach was used to evaluate the effect of this herbicide on the community structure of the culturable soil bacteria. DGGE patterns revealed that napropamide affected the structure of microbial community; however, the richness (S) and genetic diversity (H) values indicated that the FR dosage of napropamide experienced non-significant changes. In turn, the 10 × FR dosage of herbicide caused significant changes in the S and H values of dominant soil bacteria. DGGE profiles suggest an evolution of bacteria capable of degrading napropamide among indigenous microflora. Analysis of the CLPPs indicated that the catabolic activity of microbial community expressed as AWCD (average well-color development) was temporary positively affected after napropamide application and resulted in an increase of the substrate richness (SR) as well as functional biodiversity (H) values. Analysis of the bacterial growth strategy revealed that napropamide affected the r- or K-type bacterial classes (ecotypes). In treated-soil samples K-strategists dominated the population, as indicated by the decreased ecophysiological (EP) index. Napropamide significantly affected the physiological state of culturable bacteria and caused a reduction in the rate of colony formation as well as a prolonged time of growth rate. Obtained results indicate that application of napropamide may poses a potential risk for soil functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号