首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The beneficial effect to the environment of nitrate (NO3 ?) removal by denitrification depends on the partitioning of its end products into nitrous oxide (N2O), nitric oxide (NO), and dinitrogen (N2). However, in subtropical China, acidic forest mineral soils are characterized by negligible denitrification capacity and thus reactive forms of N could not be effectively converted to inert N2, resulting in a negative environmental consequence. In this study, the influences of C input from litter decomposition on denitrification rate and its gaseous products under anoxic conditions in the acidic coniferous and broad-leaved forest soils in subtropical China were investigated using the acetylene (C2H2) blockage technique in the laboratory.

Materials and methods

The coniferous and broad-leaved forest soils with and without litter addition were incubated under anaerobic conditions for 244 h. There were three treatments for each forest soil including addition of 0.5 and 1% corresponding litter (gram of litter per gram of soil) and the control without addition of litter.

Results and discussion

The results showed that litter addition into the broad-leaved forest soil had no effect on average rates of denitrification (calculated as the sum of NO, N2O, and N2), whereas in the coniferous forest soil, the addition resulted in a significant increase in average denitrification rate. In the broad-leaved forest soil, both rates of litter addition decreased the production of NO but increased the production of N2, and high rates of litter addition into the coniferous forest soil promoted the reduction of N2O to N2.

Conclusions

Increased decomposition of litter in the forest soils could effectively reduce N2O and NO production through denitrification under anaerobic conditions.  相似文献   

2.
Abstract

Litter fall and its decomposition rate play an important role in nutrient recycling, carbon budgeting and in sustaining soil productivity. Litter production and the decomposition rate were studied on commonly planted broad-leaved Eucalyptus (Eucalyptus globulus, Eucalyptus camaldulensis, Eucalyptus saligna) and coniferous (Juniperus procera, Cupressus lusitanica, Pinus patula) plantation species and compared with the adjacent broad-leaved natural forest. The production of litter was recorded by litter traps and the decomposition rate was studied by nylon net bag technique. Litter production under broad-leaved plantation species and natural forest (that varied from 9.7 to 12.6 Mg ha?1 y?1) was significantly higher (p<0.05) than that under coniferous species (that varied from 4.9 to 6.6 Mg ha?1 y?1). The average concentration of C and N in fresh mature leaves was higher than in leaf-litter fall, implying that both C and N were either sorbed in the plant system or lost through decomposition, leaching or erosion during the leaf-litter fall period. The amount of N, which potentially returned to the soil through the leaf-litter fall, tended to be higher in natural forest than in Eucalyptus plantations. The residual litter mass in the litter bag declined with time for all species. The annual dry matter decay constant (k) varied from 0.07 m?1 in Pinus patula to 0.12 m?1 in Eucalyptus saligna. The half-time (t0.5) decay varied from 6.0 for Eucalyptus saligna to 9.7 months for Pinus patula. The results suggest that the decomposition rate in Pinus patula was relatively lower than the other species and the litter production under broad-leaved Eucalyptus was comparatively higher than that in coniferous species. Overall the litter decomposition was fast for all species. The higher litter production and its relative faster rate of decomposition is a positive aspect to be considered during species selection for the restoration of degraded habitats given other judicious management practices such as prolonging the rotation period are adhered to.  相似文献   

3.
浙江省天台县不同森林类型枯落物及土壤水文特性   总被引:1,自引:0,他引:1  
[目的]掌握浙江省天台县不同森林枯落物和土壤的持水能力,为该区域今后在森林水源涵养等方面提供科学依据。[方法]采用野外调查和室内浸泡法,对天台县8种森林类型(毛竹林、阔叶混交林、针阔混交林、针叶混交林、马尾松林、杉木林、黑松林、木荷林)枯落物及林下土壤持水性进行了研究。[结果] 8种森林类型的枯落物蓄积量在8.05~23.84 t/hm~2之间;最大持水量变化范围为14.59~35.15 t/hm~2,其大小排序为:木荷林针阔混交林阔叶混交林马尾松林杉木林黑松林毛竹林针叶混交林;8种森林类型林下枯落物持水量与浸泡时间之间变化规律基本一致,持水量与浸泡时间呈对数函数关系,不同森林类型林下枯落物吸水速率与浸泡时间呈幂函数关系;各森林类型土壤容重介于0.83~1.21 g/cm~3,土壤持水力变化范围为200.74~575.70 t/hm~2,其大小依次为:黑松林针阔混交林木荷林杉木林毛竹林马尾松林阔叶混交林针叶混交林。[结论]阔叶林以及含有阔叶树种的森林类型枯落物以及林下土壤持水能力均较强,其中土壤持水能力最强的为黑松林。  相似文献   

4.
《Soil biology & biochemistry》2001,33(4-5):503-509
The distribution of vegetation types in Venezuelan Guyana (in the ‘Canaima’ National Park) represents a transitional stage in a long term process of savannization, a process considered to be conditioned by a combined chemical and intermittent drought stress. All types of woody vegetation in this environment accumulate large amounts of litter and soil organic carbon (SOC). We hypothesized that this accumulation is caused by low microbial activity. During 1 year we measured microbial biomass carbon (Cmic), microbial respiration and soil respiration of stony Oxisols (Acrohumox) at a tall, a medium and a low forest and with three chemical modifications of site conditions by the addition of NO3, Ca2+ and PO43− as possible limiting elements. Due to high SOC contents, mean Cmic was 1 mg g soil−1 in the mineral topsoil and 3 mg g soil−1 in the forest floor. Mean microbial respiration in the mineral topsoil and the forest floor were 165 and 192 μg CO2-C g soil−1 d−1, respectively. We calculated high mean metabolic quotients (qCO2) of 200 mg CO2-C g Cmic−1 d−1 in the litter layer and 166 mg CO2-C g Cmic−1 d−1 in the mineral topsoil, while the Cmic-to-SOC ratios were as low as 1.0% in the litter layer and 0.8% in the mineral topsoil. Annual soil respiration was 9, 12 and 10 Mg CO2-C ha−1 yr−1 in the tall, medium and low forest, respectively. CO2 production was significantly increased by CaHPO4 fertilization, but no consistent effects were caused by Ca2+ and NO3, fertilization. Our findings indicate that Cmic and microbial respiration are reduced by low nutrient concentrations and low litter and SOC quality. Reduced microbial decomposition may have contributed to SOC accumulation in these forests.  相似文献   

5.
太行山不同林型枯落物持水性及生态水文效应研究   总被引:7,自引:0,他引:7  
研究了太行山不同林型枯落物物持水性及生态水文效应,结果表明:(1)灌丛和混交林未分解层占总厚度的一半以上,阔叶林和针叶林半分解层占总厚度的一半以上;枯落物总蓄积量大小排序为针叶林>混交林>阔叶林>灌丛,不同林型半分解层蓄积量均占总蓄积量一半以上,表明了高海拔枯落物分解速度比低海拔枯落物分解速度快。(2)不同林型枯落物半分解层和未分解层最大持水量、最大持水率、有效拦蓄率、有效拦蓄量和自然含水率随海拔的增加而增加,基本表现为针叶林>阔叶林>混交林>灌丛,并且未分解层高于半分解层;针叶林枯落物有效拦蓄能力最强,灌丛最弱,即高海拔拦蓄能力较强,低海拔较弱。(3)土壤容重随着海拔的增加而降低,依次表现为灌丛>混交林>阔叶林>针叶林;土壤总孔隙度、非毛管孔隙度和毛管孔隙度随海拔的增加而降低,其中毛管孔隙度在不同林型差异均不显著(p > 0.05);土壤饱和含水量、有效调蓄空间、最大持水率、最大持水量和有效持水量随海拔的增加而增加,依次表现为针叶林>阔叶林>混交林>灌丛。(4)不同林型初渗速率与稳渗速率存在较好的幂函数关系,相关性分析结果显示土壤渗透性能与总孔隙度和非毛管孔隙度均为极显著正相关关系(p < 0.01),其中,非毛管孔隙状况对土壤渗透性的影响更为显著。综合分析表明:太行山森林水源涵养能力随海拔的增加而增加。  相似文献   

6.
Summary The effects of simulated acid rain on litter decomposition in a calcareous soil (pHH 2 O 5.8) were studied. Litterbags (45 m and 1 mm mesh size) containing freshly fallen beech leaf litter were exposed to different concentrations of acid in a beech forest on limestone (Göttinger Wald. Germany) for 1 year. Loss of C, the ash content, and CO2–C production were measured at the end of the experiment. Further tests measured the ability of the litter-colonizing microflora to metabolize 14C-labelled beech leaf litter and hyphae. The simulated acid rain strongly reduced CO2–C and 14CO2–C production in the litter. This depression in production was very strong when the input of protons was 1.5 times greater than the normal acid deposition, but comparatively low when the input was 32 times greater. acid deposition may thus cause a very strong accumulation of primary and secondary C compounds in the litter layer of base-rich soils, even with a moderate increase in proton input. The presence of mesofauna significantly reduced the ability of the acid rain to inhibit C mineralization. The ash content to the 1-mm litterbags indicated that this was largely due to transport of base-rich mineral soil into the litter.  相似文献   

7.
Biochar addition to soil has been generally associated with crop yield increases observed in some soils, and increased nutrient availability is one of the mechanisms proposed. Any impact of biochar on soil organisms can potentially translate to changes in nutrient availability and crop productivity, possibly explaining some of the beneficial and detrimental yield effects reported in literature. Therefore, the main aim of this study was to assess the medium-term impact of biochar addition on microbial and faunal activities in a temperate soil cropped to corn and the consequences for their main functions, litter decomposition and mineralization. Biochar was added to a corn field at rates of 0, 3, 12, 30 tons ha−1 three years prior to this study, in comparison to an annual application of 1 t ha−1.Biochar application increased microbial abundance, which nearly doubled at the highest addition rate, while mesofauna activity, and litter decomposition facilitated by mesofauna were not increased significantly but were positively influenced by biochar addition when these responses were modeled, and in the last case directly and positively associated to the higher microbial abundance. In addition, in short-term laboratory experiments after the addition of litter, biochar presence increased NO2 + NO3 mineralization, and decreased that of SO4 and Cl. However, those nutrient effects were not shown to be of concern at the field scale, where only some significant increases in SOC, pH, Cl and PO4 were observed.Therefore, no negative impacts in the soil biota activities and functions assessed were observed for the tested alkaline biochar after three years of the application, although this trend needs to be verified for other soil and biochar types.  相似文献   

8.
The aim of the study was to determine the effect of adding two tropical earthworm species, Rhinodrilus contortus and Pontoscolex corethrurus, to mesocosms on the availability of mineral N (NH4 + and NO3 concentrations), soil microbial biomass (bio-N), and the decomposition rates of three contrasting leaf litter species, in a glasshouse experiment. The mesocosms were filled with forest soil and covered with a layer of leaf litter differing in nutritional quality: (1) Hevea brasiliensis (C/N=27); (2) Carapa guianensis (C/N=32); (3) Vismia sp., the dominant tree species in the second growth forest (control, C/N= 42); and, (4) a mixture of the former three leaf species, in equal proportions (C/N=34). At the end of the 97-day experiment, the soil mineral N concentrations, bio-N, and leaf litter weight loss were determined. Both earthworm species showed significant effects on the concentrations of soil NO3 (p<0.01) and NH4 + (p<0.05). Bio-N was always greater in the mesocosms with earthworms (especially with R. contortus) and in the mesocosms with leaf litter of H. brasiliensis (6 µg N g–1 soil), the faster decomposing species, than in the other treatments (0.1–1.6 µg N g–1). Thus, earthworm activity increased soil mineral-N concentrations, possibly due to the consumption of soil microbial biomass, which can speed turnover and mineralization of microbial tissues. No significant differences in decomposition rate were found between the mesocosms with and without earthworms, suggesting that experiments lasting longer are needed to determine the effect of earthworms on litter decomposition rates.  相似文献   

9.
Samples of strongly acid forest litter and humus from beneath Sitka spruce, heather, Scots pine and larch from two sites in north-east Scotland were incubated aerobically at 20°C in the laboratory. At the Glen Tanar site, spruce litter and larch humus showed significant nitrification and ammonification whereas spruce humus and Scots pine humus produced only NH4+-N. Heather humus showed no net mineralization. At the Fetteresso site, application of fertilizer N, P and K to Sitka spruce up to 3 yr previously, significantly stimulated the production of NO3-N in both litter and humus.Amendment of the samples with organic N as peptone caused significant increases in NO3-N production in those samples that already showed nitrification. The increases in NO3-N generally represented a low proportion of the added peptone-N. Amendment with NH4+-N as (NH4)2SO4 either had no effect or significantly reduced NO3-N production (in larch humus). The results suggest the occurrence of heterotrophic nitrification in some of these forest samples.Net immobilization of NH4+-N was typically greater in NH4+-N amended than in peptone amended samples, except for heather humus which showed complete immobilization of both N sources.Total mineral N produced at the end of the aerobic incubation was correlated (P < 0.01) with NH4+-N produced during a 30-day anaerobic incubation at 30°C. Net NO3-N production was greater in litter than in the corresponding humus samples and was correlated (P < 0.001) with initial organic N soluble in 1 m KCl.  相似文献   

10.
Soil organic carbon (SOC) dynamics and nutrient availability determine the soil quality and fertility in a Chinese fir plantation forest in subtropical China. Uniformly 13C-labeled Chinese fir (Cunninghamia lanceolata) and alder (Alnus cremastogyne) leaf litter with or without 100 mg NH4+ or NO3 were added to the soil. The purpose was to investigate the influence of N availability on the decomposition of the litter and native SOC. The production of CO2, the natural abundance of 13C–CO2, and the inorganic N dynamics were monitored. The results showed that Chinese fir (with a high C:N ratio) and alder (with a low C:N ratio) leaf litter caused significant positive priming effects (PEs) of 24% and 42%, respectively, at the end of the experiment (235 d). The PE dynamics showed that positive PE can last for at least 87 d. However, the possible occurrence of a significant negative PE with a sufficient incubation period is difficult to confirm. The application of both NH4+ and NO3 was found to have a stimulating effect on the decomposition of Chinese fir and alder leaf litter in the early stage (0–15 d) of incubation, but an adverse effect in the late stage. Compared with NO3, NH4+ caused a greater decrease in the PE induced by both Chinese fir and alder leaf litter. The effects of NH4+ and NO3 on the PE dynamics had different patterns for different incubation stages. This result may indicate that the stability or recalcitrance of SOC, especially in such plantation forest soils, strongly depends on available leaf litter and application of N to the soil.  相似文献   

11.
The influence of temperature (T) and water potential (ψ) on the denitrification potential, C and N mineralization and nitrification were studied in organic and mineral horizons of an acid spruce forest soil. The amount of N2O emitted from organic soil was 10 times larger than from the mineral one. The maximum of N2O emission was in both soils at the highest water potential 0 MPa and at 20°C. CO2 production in the organic soil was 2 times higher than in mineral soil. Net ammonification in organic soil was negative for most of the T‒ψ variations, while in mineral soil it was positive. Net nitrification in organic soil was negative only at the maximum water potential and temperature (0 MPa, 28°C). The highest rate was between 0 and −0.3 MPa and between 20 and 28°C. In mineral soil NO3 accumulated at all T‒ψ variations with a maximum at 20oC and −0.3 MPa. We concluded that in organic soil the immobilization of NH4+ is the dominant process in the N‒cycling. Nevertheless, decreasing of total N mineralized at 0 MPa and 20—28oC can be explained by denitrification.  相似文献   

12.
We conducted a controlled experiment to evaluate Chinese-fir litter decomposition and its response to the addition of inorganic N. Litter-derived CO2, microbial biomass carbon (MBC), and dissolved organic carbon (DOC) were monitored during an 87-d incubation of a mixed soil–litter substrate using the 13C tracer technique. Litter C was mostly converted to CO2 (47.4% of original mass), followed by MBC (3.6%), and DOC (1.0%), with 48% remaining unaltered in the soil. The litter decomposition rate significantly increased with the addition of inorganic N, although the effect depended on whether N was added as NH4+ or NO3. Soil-derived CO2, MBC, and DOC also increased following the combined addition of litter and N. The results showed that only a small percentage of litter C was retained as MBC or DOC and that the conversion rate depended, in part, on the form of inorganic N added to the Chinese-fir plantation soil.  相似文献   

13.
Atmospheric emissions of fly ash and SO2 from lignite-fired power plants strongly affect large forest areas in Germany. The impact of different deposition loads on the microbial biomass and enzyme activities was studied at three forest sites (Picea abies (L.) Karst.) along an emission gradient of 3, 6, and 15 km downwind of a coal-fired power plant (sites Ia, II, and III, respectively), representing high, moderate and low emission rates. An additional site (site Ib) at a distance of 3 km from the power plant was chosen to study the influence of forest type on microbial parameters in coniferous forest soils under fly ash and SO2 emissions. Soil microbial biomass C and N, CO2 evolved and activities of l-asparaginase, l-glutaminase, β -glucosidase, acid phosphatase and arylsulfatase (expressed on dry soil and organic C basis) were determined in the forest floor (L, Of and Oh horizon) and mineral top soil (0-10 cm). The emission-induced increases in ferromagnetic susceptibility, soil pH, concentrations of mobile (NH4NO3 extractable) Cd, Cr, and Ni, effective cation exchange capacity and base saturation in the humus layer along the 15 km long transect significantly (P<0.05) reflected the effect of past depositions of alkaline fly ash. Soil microbial and biochemical parameters were significantly (P<0.05) affected by chronic fly ash depositions. The effect of forest type (i.e. comparison of sites Ia and Ib) on the studied parameters was generally dominated by the deposition effect. Alkaline depositions significantly (P<0.05) decreased the microbial biomass C and N, microbial biomass C-to-N ratios and microbial biomass C-to-organic C ratios. Microbial respiration, metabolic quotient (qCO2) and the activities of l-asparaginase, l-glutaminase, β-glucosidase, acid phosphatase and arylsulfatase were increased by long-term depositions from the power plants. Acid phosphatase had the highest specific (enzyme activities expressed per unit organic C) activity values among the enzymes studied and arylsulfatase the lowest. The responses of the microbial biomass and soil respiration data to different atmospheric deposition loads were mainly controlled by the content of organic C and cation exchange capacity, while those of enzyme activities were governed by the soil pH and concentrations of mobile heavy metals. We concluded that chronic fly ash depositions decrease litter decomposition by influencing specific microbial and enzymatic processes in forest soils.  相似文献   

14.
Understanding the interactions between the initial biochemical composition and subsequent decomposition of plant litter will improve our understanding of its influence on microbial substrate use to explain the flow of organic matter between soil carbon pools. We determined the effects of land use (cultivation/native woodland/native pasture), litter type (above and below ground) and their interaction on the initial biochemical composition (carbon, nitrogen, water soluble carbon, lignin, tannin and cellulose) and decomposition of litter. Litter decomposition was studied as the mineralization of C from litter by microbial respiration and was measured as CO2–C production during 105 d of laboratory incubation with soil. A two-pool model was used to quantify C mineralization kinetics. For all litter types, the active C pool decay rate constants ranged from 0.072 d−1 to 0.805 d−1 which represented relatively short half-lives of between 1 and 10 days, implying that this pool contained compounds that were rapidly mineralized by microbes during the initial stages of incubation. Conversely, the decay rate constants for the slow C pool varied widely between litter types within and among land uses ranging from 0.002 d−1 and 0.019 d−1 representing half-lives of between 37 and 446 days. In all litter types, the initial lignin:N ratio strongly and negatively influenced the decay rate of the slow C pool which implied that the interaction between these two litter quality variables had important controls over the decomposition of the litter slow C pool. We interpret our results to suggest that where the flow of C from the active pool to the slow pool is largely driven by microbial activity in soil, the rate of transfer of C will be largely controlled by the quality of litter under different land-use systems and particularly the initial lignin:N ratio of the litter. Compared with native pastures and cultivation, above and below ground litter from native woodland was characterized by higher lignin:N ratio and more slowly decomposing slow C pools which implies that litter is likely to persist in soils, however based on the sandy nature of the soils in this study, it is likely to lack protection from microbial degradation in the long term.  相似文献   

15.
永嘉县四海山林场森林枯落物及土壤持水能力研究   总被引:2,自引:0,他引:2  
为掌握永嘉县四海山林场不同森林枯落物和土壤的持水能力,采用野外调查和室内浸泡法,对该林场4种主要森林类型的枯落物及林下土壤持水性进行了研究,并对林地水源涵养功能进行了估算,结果表明:森林枯落物总储量大小为马尾松林>柳杉林>针叶混交林>针阔混交林,枯落物有效拦蓄量大小表现为柳杉林>马尾松林>针叶混交林>针阔混交林;柳杉林和针阔混交林0~10 cm土层土壤非毛管孔隙度、非毛管持水量显著高于马尾松林和针叶混交林;森林水源涵养能力大小表现为针阔混交林>柳杉林>针叶混交林>马尾松林;四海山林场林地水源涵养总量为7 530 343.4 t,经济价值量为6 174.8万元。  相似文献   

16.
Tree species have an impact on decomposition processes of woody litter, but the effects of different tree species on microbial heterotrophic respiration derived from decomposing litter are still unclear. Here we used leaf and fine root litter of six tree species differing in chemical and morphological traits in a temperate forest and elucidated the effects of tree species on the relationships between litter-derived microbial respiration rates and decomposition rates and morphological traits, including specific leaf area (cm2 g−1) and specific root length (m g−1) of litter at the same site. Litterbags set in forest soil were sequentially collected five times over the course of 18 months. During litter decomposition, microbial respiration from leaf and fine root litter differed among the six tree species. Temporal changes in the remaining mass and morphology (specific leaf area and specific root length) were observed, and the magnitude of these changes differed among species. Positive correlations were observed between respiration and mass loss or morphology across species. These results revealed that litter mass loss and morphological dynamics during decomposition jointly enhanced microbial respiration, and these carbon-based litter traits explained species differences in decomposition of leaves and fine roots. In conclusion, tree species influenced the magnitude and direction of microbial respiration during leaf/fine root litter decomposition. Tree species also affected the relationship between microbial respiration and litter decomposition through direct effects of litter traits and indirect effects mediated by regulation of heterotroph requirements.  相似文献   

17.
川西亚高山原始针叶林遭受大规模采伐后自然恢复形成的次生林已成为该区域的主要森林类型之一,也是我国西南林区水源涵养林的重要组成部分。现有亚高山森林水源涵养功能研究主要集中在暗针叶林,对天然次生林关注较少。选择川西米亚罗林区亚高山次生林自然恢复演替序列上高山柳灌丛、次生桦木阔叶林、岷江冷杉桦木针阔混交林,以相邻岷江冷杉成熟林为对照,采用空间代替时间的方法,基于土壤容重、孔隙度、持水性能等测定,分析了次生林恢复过程中土壤物理性质变化及土壤水源涵养效应动态,结果表明:(1)次生林恢复过程中,土壤容重总体呈下降趋势,除灌丛与阔叶林、针阔混交林、暗针叶林间具有显著差异外,其余植被类型间无显著差异,随着土层的加深,土壤容重呈增加趋势;(2)不同恢复阶段土壤孔隙度具有显著差异,以针阔混交林0—30 cm土层总孔隙度(64.39%)和毛管孔隙度(50.49%)为最高,灌丛总孔隙度(41.25%)和毛管孔隙度(33.70%)为最低;而土壤非毛管孔隙度以暗针叶林(14.27%)为最高;随着土层的加深,土壤孔隙度大致呈现出递减的趋势;(3)随着林龄增加,次生林土壤0—30 cm土层最大持水量呈波动性增加趋势,在针阔叶混交林阶段达到最大(1 815.02 t/hm~2),到暗针叶林阶段有所下降(1 659.88 t/hm~2);土壤毛管持水量以针阔混交林(1 369.72 t/hm~2)为最高,而非毛管持水量以暗针叶林(534.95 t/hm~2)为最高,暗示针阔混交林树木生长所需有效水贮存量较大,亚高山暗针叶林具有较强的土壤水分调节能力和土壤渗透能力。从水源涵养功能角度,川西亚高山森林植被恢复应注重构建针阔叶混交林结构。  相似文献   

18.

Purpose

The objective of the present study was to investigate the interactive effects of nitrogen (N) addition, temperature, and moisture on soil microbial respiration, microbial biomass, and metabolic quotient (qCO2) at different decomposition stages of different tree leaf litters.

Materials and methods

A laboratory incubation experiment with and without litter addition was conducted for 80 days at two temperatures (15 and 25 °C), two wetting intensities (35 and 50 % water-filled porosity space (WFPS)) and two doses of N addition (0 and 4.5 g N m?2, as NH4NO3). The tree leaf litters included three types of broadleaf litters, a needle litter, and a mixed litter of them. Soil microbial respiration, microbial biomass, and qCO2 along with other soil properties were measured at two decomposition stages of tree leaf litters.

Results and discussion

The increase in soil cumulative carbon dioxide (CO2) flux and microbial biomass during the incubation depended on types of tree leaf litters, N addition, and hydrothermal conditions. Soil microbial biomass carbon (C) and N and qCO2 were significantly greater in all litter-amended than in non-amended soils. However, the difference in the qCO2 became smaller during the late period of incubation, especially at 25 °C. The interactive effect of temperature with soil moisture and N addition was significant for affecting the cumulative litter-derived CO2-C flux at the early and late stages of litter decomposition. Furthermore, the interactive effect of soil moisture and N addition was significant for affecting the cumulative CO2 flux at the late stage of litter decomposition but not early in the experiment.

Conclusions

This present study indicated that the effects of addition of N and hydrothermal conditions on soil microbial respiration, qCO2, and concentrations of labile C and N depended on types of tree leaf litters and the development of litter decomposition. The results highlight the importance of N availability and hydrothermal conditions in interactively regulating soil microbial respiration and microbial C utilization during litter decomposition under forest ecosystems.
  相似文献   

19.
The aim of this study was to determine the influence of leaf‐litter type (i.e., European beech—Fagus sylvatica L. and European ash—Fraxinus excelsior L.) and leaf‐litter mixture on the partitioning of leaf‐litter C and N between the O horizon, the topsoil, the soil microbial biomass, and the CO2 emission during decomposition. In a mature beech stand of Hainich National Park, Thuringia, Germany, undisturbed soil cores (?? 24 cm) were transferred to plastic cylinders and the original leaf litter was either replaced by 13C15N‐labeled beech or ash leaf litter, or leaf‐litter‐mixture treatments in which only one of the two leaf‐litter types was labeled. Leaf‐litter‐derived CO2‐C flux was measured every second week over a period of one year. Partitioning of leaf‐litter C and N to the soil and microbial biomass was measured 5 and 10 months after the start of the experiment. Ash leaf litter decomposed faster than beech leaf litter. The decomposition rate was negatively related to initial leaf‐litter lignin and positively to initial Ca concentrations. The mixture of both leaf‐litter types led to enhanced decomposition of ash leaf litter. However, it did not affect beech leaf‐litter decomposition. After 5 and 10 months of in situ incubation, recoveries of leaf‐litter‐derived C and N in the O horizon (7%–20% and 9%–35%, respectively) were higher than in the mineral soil (1%–5% and 3%–8%, respectively) showing no leaf‐litter‐type or leaf‐litter‐mixture effect. Partitioning of leaf‐litter‐derived C and N to microbial biomass in the upper mineral soil (< 1% of total leaf‐litter C and 2%–3% of total leaf‐litter N) did not differ between beech and ash. The results show that short‐term partitioning of leaf‐litter C and N to the soil after 10 months was similar for ash and beech leaf litter under standardized field conditions, even though mineralization was faster for ash leaf litter than for beech leaf litter.  相似文献   

20.
Soil moisture changes, arising from seasonal variation or from global climate changes, could influence soil nitrogen (N) transformation rates and N availability in unfertilized subtropical forests. A 15?N dilution study was carried out to investigate the effects of soil moisture change (30–90 % water-holding capacity (WHC)) on potential gross N transformation rates and N2O and NO emissions in two contrasting (broad-leaved vs. coniferous) subtropical forest soils. Gross N mineralization rates were more sensitive to soil moisture change than gross NH4 + immobilization rates for both forest soils. Gross nitrification rates gradually increased with increasing soil moisture in both forest soils. Thus, enhanced N availability at higher soil moisture values was attributed to increasing gross N mineralization and nitrification rates over the immobilization rate. The natural N enrichment in humid subtropical forest soils may partially be due to fast N mineralization and nitrification under relatively higher soil moisture. In broad-leaved forest soil, the high N2O and NO emissions occurred at 30 % WHC, while the reverse was true in coniferous forest soil. Therefore, we propose that there are different mechanisms regulating N2O and NO emissions between broad-leaved and coniferous forest soils. In coniferous forest soil, nitrification may be the primary process responsible for N2O and NO emissions, while in broad-leaved forest soil, N2O and NO emissions may originate from the denitrification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号