首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many ecological studies have pointed out maternal effects in plants and shown that plant maternal environment influences germination of their seed and subsequent seedling growth. However, few have tested for maternal effects induced by soil macroorganisms. We tested whether two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) trigger such maternal effects on seed germination and seedling growth of three plant species (Veronica persica, Poa annua and Cerastium glomeratum). Our results show that, through maternal effects, A. caliginosa enhanced seed germination (V. persica and P. annua) and seedling growth (C. glomeratum and P. annua) while L. terrestris reduced seed germination only in V. persica. In some cases, the increase in germination rates of seeds produced in the presence of earthworms was associated with a reduction of nitrogen content in seeds. These results show that earthworms induce maternal effects in plants and that the size and direction of these effects depend on the combination of plant and earthworm species.  相似文献   

2.
Earthworms were shown to significantly affect seeds and seedlings survival via their ingestion and digestion for nutritive purposes. Such selective feeding of earthworms on plant seeds is likely to favour certain plant species and to affect seed bank composition, plant recruitment and plant community structure. Relationships between earthworms and seeds, particularly seed traits that determine attractiveness of seeds for earthworms, are yet to be determined. In this study, the influence of six seed traits was tested on the ingestion, digestion and germination of seeds by two earthworm species (Lumbricus terrestris, anecic and Satchellius mammalis, epigeic). The seed traits tested were their length, width, weight, shape, oil content and the presence of trichomes on their surface. Each earthworm species was introduced into a microcosm with eleven seed species from a chalk grassland that represented those different traits. Ingested, digested and germinated seeds were counted after voiding the guts of the earthworms. Univariate and multivariate analyses showed that seed length, width, weight and seed oil content could significantly affect the ingestion of seeds for both earthworm species. Seed width and seed oil content were the two traits that influenced the digestion of seeds the most, but only for L. terrestris. We also found that seed ingestion was earthworm species-specific but we found no correlation between earthworm traits and number of ingested or digested seeds. Few seeds germinated from L. terrestris casts and no seeds germinated from S. mammalis casts. Implications in terms of plant evolution strategies are further discussed.  相似文献   

3.
Short rotation forestry (SRF) which consists of planting rapidly growing native and non-native tree species has been introduced to the UK to increase woody biomass production. A largely unknown aspect of SRF species is their interaction with soil fauna, of which the earthworm community is a major component. Earthworms have a pronounced impact on litter decomposition, nutrient cycling and tree growth. Conversely, tree litter and root chemistry can impact on the associated earthworm community development. The aim of this study was to determine direct interactions between SRF species and earthworms. A field-based mesocosm experiment was conducted using Betula pendula (birch) and Eucalyptus nitens (eucalyptus) with two earthworm species Lumbricus terrestris and Allolobophora chlorotica. The one year experiment revealed that native birch and non-native eucalyptus had a similar influence on L. terrestris population development. However, birch had a positive impact on A. chlorotica population establishment compared with eucalyptus. In the presence of earthworms, total tree biomass and leaf nitrogen concentration of eucalyptus were increased respectively by 25% and 27% compared with an earthworm-free control. In the presence of earthworms, surface litter incorporation was greater for both tree species (almost 5 times for birch and 3 times for eucalyptus) compared with controls. This work showed direct SRF-earthworm interactions which differed for tree species.  相似文献   

4.
Anecic earthworms have been shown to collect, concentrate and bury seeds in their burrows. Moreover, recent studies suggest that earthworms function as granivores and seedling herbivores thereby directly impacting plant community assembly. However, this has not been proven unequivocally. Further, it remains unclear if earthworms benefit from seed ingestion, i.e., if they assimilate seed carbon. We set up a series of three laboratory experiments in order to test the following hypotheses: (1) anecic earthworms (Lumbricus terrestris L.) not only ingest seeds but also seedlings, (2) ingestion of seedlings is lower than that of seeds due to a ‘size refuge’ of seedlings (i.e., they are too big to be swallowed), and (3) seeds and seedlings contribute to earthworm nutrition. L. terrestris readily consumed legume seedlings in the radicle stage, whereas legume seeds and seedlings in the cotyledon stage, and grass seeds and seedlings in the radicle and cotyledon stage were ingested in similar but lower amounts. Importantly, ingestion of seedlings, in contrast to seeds, was lethal for all plant species. Moreover, earthworm weight change varied with the functional identity and vitality of seeds and natural 15N signatures in earthworm body tissue underlined the importance of seedlings for earthworm nutrition. The results indicate that the anecic earthworm L. terrestris indeed functions as a granivore and seedling herbivore. The selectivity in seedling ingestion points at the potential of direct earthworm effects on plant community assembly. Further, seeds and seedlings most likely contribute significantly to earthworm nutrition potentially explaining the collection and concentration of seeds by L. terrestris in its middens and burrows; however, the present results call for experiments under more natural conditions.  相似文献   

5.
Tropical forest fragmentation affects animal and plant populations in different ways. For plants, early stages (seed to seedling) are more sensitive to habitat alteration than adults, and can shape their future spatial patterns. Therefore, studying how seed germination and seedling growth and survival vary at different spatiotemporal scales enhances our understanding about plant recruitment in fragmented ecosystems. In this study we examine if, and to what extent, recruitment at early life-stages of Xymalos monospora (Monomiaceae), a bird-dispersed Afrotropical tree, differs between and within forest fragments that vary in size, surrounding matrix and microhabitats. Three years of field experiments (2004-2006) in south-east Kenya, revealed that patterns of seed germination and seedling survival and growth were largely inconsistent, both in space and time. Recruitment was not consistently higher in larger or less disturbed fragments. At smaller spatial scales within forest fragments, recruitment was subject to high between-year variation too, with decreased germination in gaps only in the dry year of 2004. However, performance of seeds and seedlings was consistently better away from than under conspecific fruiting trees. Our results imply that fragmented tree populations of X. monospora may become age-structured, or ultimately go extinct, if recruitment fails in subsequent years. This may especially affect populations in small, disturbed forest fragments, where seed dispersal and buffering against stochastic processes are generally reduced. Exotic plantations bordering indigenous forest fragments may provide suitable conditions for native tree recruitment; hence, forest expansion through enrichment planting should be considered in future conservation plans.  相似文献   

6.
Earthworms have been shown to influence plant growth, survival and fecundity. They can therefore affect plant demography in plant communities changing their composition. A long term mesocosm experiment was set-up to test the effects of an endogeic (Aporrectodea caliginosa) and an anecic (Lumbricus terrestris) earthworm species on assemblages of four species of annuals: one grass (Poa annua), two forbs (Veronica persica and Cerastium glomeratum) and one legume (Trifolium dubium). The number of individuals and the biomass of each species were investigated. A. caliginosa and L. terrestris affected the density of T. dubium at each of the three monitored census dates. The other plant species responded to A. caliginosa and L. terrestris at the second and third generations. The presences of A. caliginosa and L. terrestris reduced the total number of plant individuals from the second to the third generation. At harvest (3rd generation), T. dubium and V. persica had more and larger individuals in the presence of A. caliginosa. When both earthworm species were present, T. dubium had few but larger individuals. Our study confirms that earthworms affect plant demography and plant community structure. Our results also show that accurate prediction of long-term effects of earthworms on plant communities cannot be achieved using results on their short-term effects on plant growth. This is due to the poor understanding of the effects of earthworms on plant resource allocation and demography, and also the possibility that earthworms may exert the opposite effect on the short and long-term availability of nutrients.  相似文献   

7.
Competition between plants for essential resources determines the distribution of biomasses between species as well as the composition of plant communities through effects on species reproductive potentials. Soil organisms influence plant competitive ability and access to resources; thus they should modify plant community composition. The effects of an endogeic (Aporrectodea caliginosa) and an anecic (Lumbricus terrestris) earthworm species on the competition between grass (Poa annua), two forbs (Veronica persica and Cerastium glomeratum) and legume (Trifolium dubium) were investigated in a greenhouse experiment. We established two types of plant communities: monocultures and polycultures of the four species. L. terrestris increased the biomass of P. annua and V. persica (in monocultures as well as in polycultures). However, the presence of L. terrestris allowed the grass to produce the highest biomass in polycultures suggesting that this earthworm species promoted the growth of P. annua against the other plant species. In monocultures as well as in polycultures, the presence of L. terrestris to increased the number of seeds of T. dubium and the total seed mass of V. persica. These results suggest that L. terrestris enhanced the short term competitive ability of P. annua by promoting its growth. The increased number of seeds of T. dubium in the presence of L. terrestris suggests that this earthworm species could enhance the long-term competitive ability of this legume and may increase its number of individuals after several generations.  相似文献   

8.
A field experiment was conducted to elucidate ecosystem services provided by earthworms on the repression of phytopathogenic and toxinogenic fungi. The study focussed on decomposing Fusarium culmorum-infected and deoxynivalenol (DON)-contaminated wheat straw remaining on the soil surface as part in conservation tillage. Mesocosms were established in the topsoil of a winter wheat field located in Northern Germany, where conservation tillage has been practised for 20 years. Besides a non-earthworm treatment, two earthworm species were inoculated in the mesocosms either separately or combined: Lumbricus terrestris (anecic, detritivorous) and Aporrectodea caliginosa (endogeic, geophagous). The earthworms were exposed either to artificially Fusarium-infected wheat straw highly contaminated with DON or to non-infected straw serving as a control. The experiment was conducted during an eight week period after harvest from mid August to mid October. For both species, the artificially Fusarium-infected and DON-contaminated wheat straw was a more attractive food source than the non-infected control. In contrast to A. caliginosa, L. terrestris incorporated infected straw faster into the soil compared to control straw. Furthermore, the reduction of Fusarium biomass and DON concentration in wheat straw was significantly higher in the presence of L. terrestris than in treatments with A. caliginosa and without earthworms. Here, no significant differences could be measured between the Fusarium biomass and DON concentration in wheat straw. A. caliginosa seems not to be relevant for the reduction of Fusarium biomass and DON concentration. We concluded that amongst earthworms, anecic detritivorous species are the drivers to compensate possible negative consequences (like crop infection) of conservation tillage. They take an important role in the control of phytopathogenic and toxinogenic fungi surviving on plant residues and in the degradation of their mycotoxins.  相似文献   

9.
The introduction of an alien top predator, the brown treesnake (Boiga irregularis), has resulted in severe losses of native vertebrate populations in Guam. Among these are important pollinators and seed dispersers. This study is a first attempt to document cascading effects on vertebrate-pollinated native plant species in Guam. We investigated flower visitation, seed set and germination in two native plants, the mangrove tree Bruguiera gymnorrhiza and the forest tree Erythrina variegata var. orientalis. Both species are bird-pollinated. Studies were conducted on two Mariana islands, Guam (with high density of snakes) and Saipan (with nearly no snakes). Visitation rates by birds were high on Saipan, but zero on Guam. Insects and lizards visited flowers to a low extent on both islands. Only lizards were potential effective pollinators. Seed set of both species were significantly higher on Saipan compared to Guam, and for B. gymnorrhiza, seedling recruitment was significantly higher on Saipan. Hence, these bird-pollinated species appear highly dependent on bird visitors for reproduction. The eradication of flower-visiting birds by the invasive treesnake thus secondarily results in broken mutualistic interactions, which may, in turn, result in a lower recruitment of native plants. Thus, the treesnake affects not only potential prey species, but its effects cascade through the entire ecosystem on Guam. Conservation actions should be directed towards an improved recruitment (artificial pollination, planting) of the affected plant species.  相似文献   

10.
 A soil microcosm experiment was performed to assess the uptake of Hg from various Hg-spiked food sources (soil, leaf litter and root litter of Trifolium alexandrinum) by two earthworm species, Lumbricus terrestris (anecic) and Octolaseon cyaneum (endogeic). Treatments were applied in which one of the three food sources was Hg spiked and the other two were not. Additional treatments in which all or none of the food sources were Hg spiked were used as controls. Uptake of Hg from soil into tissues of both earthworm species was significantly higher than uptake of Hg from leaf litter or root litter, indicating that soil may be the most important pool for the uptake of Hg into earthworms. In addition, the anecic L. terrestris significantly accumulated Hg from all Hg-spiked food sources (leaf litter, root litter and soil), whereas the endogeic O. cyaneum took up Hg mainly from soil particles. Interestingly, there was no further increase in Hg in L. terrestris when all food sources were Hg spiked compared to the single Hg-spiked sources. This may be attributed to the relatively high Hg content in the soil, which may have influenced the feeding behavior of the earthworms, although their biomass did not significantly decline. We suggest that, in addition to the physiological differences, feeding behavior may also play a role in the contrasting uptake of Hg by the two earthworm species.  相似文献   

11.
A soil microcosm experiment was performed to assess (1) the C- and N- turnover of residues from biogas plants in soils in the presence of three earthworm species (Lumbricus terrestris, Aporrectodea longa and Aporrectodea caliginosa) and (2) the resulting changes in soil chemical and microbiological properties when using these residues as fertilizer in comparison to conventional slurry. Earthworms were exposed in soils, fertilized with an equivalent amount of 120 kg of NH4-N ha?1 from: (1) conventional cattle slurry and (2) a fermented residue derived from cattle slurry, grass (silage) and maize. Additional treatments without slurry and earthworms were used as controls.There was considerable evidence that soils fertilized by fermented slurry comprised fewer amounts of readily available nutrients for microbial C and N turnover. We observed significant stimulation of microbial biomass, basal respiration and nitrification in treatments with conventional slurry, especially in the presence of earthworms. However, the stimulation of microbial activity by manure and earthworms were significantly lower in treatments with fermented slurry. Moreover, the results showed clear interactions between different earthworm species and manures. While the biomass of the anecic species (L. terrestris and A. longa) increased in both slurry treatments, the biomass of A. caliginosa (endogeic) decreased, with a significantly stronger biomass decline in treatments with fermented slurry. The metabolic quotients revealed microbial stress metabolism in fermented slurry treatments, predominantly in treatments with A. caliginosa. We conclude that particularly A. caliginosa and soil microorganisms competed for labile C sources in treatments with fermented slurry. An application of these residues as fertilizer might result in a reduction of microbial activity in agricultural soils and in a decline of endogeic earthworms.  相似文献   

12.
13.
Earthworms and arbuscular mycorrhizal fungi (AMF) might interactively impact plant productivity; however, previous studies reported inconsistent results. We set up a three-factorial greenhouse experiment to study the effects of earthworms (Aporrectodea caliginosa Savigny and Lumbricus terrestris L.) and AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) on the performance (productivity and shoot nutrient content) of plant species (Lolium perenne L., Trifolium pratense L. and Plantago lanceolata L.) belonging to the three functional groups grasses, legumes and herbs, respectively. Further, we investigated earthworm performance and plant root mycorrhization as affected by the treatments. Our results accentuate the importance of root derived resources for earthworm performance since earthworm weight (A. caliginosa and L. terrestris) and survival (L. terrestris) were significantly lower in microcosms containing P. lanceolata than in those containing T. pratense. However, earthworm performance was not affected by AMF, and plant root mycorrhization was not modified by earthworms. Although AMF effectively competed with T. pratense for soil N (as indicated by δ15N analysis), AMF enhanced the productivity of T. pratense considerably by improving P availability. Remarkably, we found no evidence for interactive effects of earthworms and AMF on the performance of the plant species studied. This suggests that interactions between earthworms and AMF likely are of minor importance.  相似文献   

14.
We examined germination and seedling survival of Petrocoptis grandiflora and Petrocoptis viscosa (Caryophyllaceae), two narrow endemic species from the northwest Iberian Peninsula. The experiments were carried out with seeds of three of eight populations of P. grandiflora and one of the three sole populations of P. viscosa. Under natural conditions, both P. grandiflora and P. viscosa produce very large numbers of seeds. However, the specific microhabitat of these species (cracks and crevices of limestone rockfaces) has very marked effects on seed germination, and subsequent seedling survival. In the present study, we examined the effects of light, cold treatment and seed weight on germination capacity. In the case of P. grandiflora, we also compared the germination of seeds of the different populations. In addition, we assessed seedling survival over a 1-year period. Seeds maintained in darkness showed higher germination percentages than seeds maintained with a 12:12 h photoperiod. The application of a short period of cold prior to germination had no significant effect in either species. In the case of P. grandiflora, population of origin had a significant effect on germination percentage. Of all the factors considered, seed weight was the most important source of variability, both in seed germination and subsequent seedling survival. In both species in the natural habitat, less than 10% of germinated seeds survived by the end of the year. Seedling survival was affected by microhabitat. Seedlings in non-rockface soil microhabitats were more likely to suffer herbivory or interspecific competition than seedlings in crevices in the rockface.  相似文献   

15.
In North America, many species of European earthworms have been introduced to northern forests. Facilitative or competitive interactions between these earthworm species may result in non-additive effects on native plant and animal species. We investigated the combined versus individual effects of the litter-dwelling earthworm Dendrobaena octaedra Savigny, 1826 and the deep-burrowing species Lumbricus terrestris L., 1758 on microarthropod assemblages from boreal forest soil by conducting a mesocosm experiment. Soil cores from earthworm-free areas of northern Alberta, Canada, were inoculated with D. octaedra alone, L. terrestris alone, both worm species together, or no earthworms. After 4.5 months, microarthropods were extracted from the soil, counted, and identified to higher taxa. Oribatid mites were further identified to family and genus. Abundance of microarthropods was significantly lower in the treatment containing both species than in the no earthworm treatment and the L. terrestris treatment. Oribatida and Prostigmata/Astigmata differed significantly among treatments and were lowest in the treatment containing both earthworm species, followed by the D. octaedra treatment, although post-hoc pairwise comparisons were not significant. Within the Oribatida, composition differed between the control and L. terrestris treatments as compared to the D. octaedra and both-species treatments, with Suctobelbella and Tectocepheus in particular having higher abundances in the control treatment. Effects of the two earthworm species on microarthropods were neither synergistic nor antagonistic. Our results indicate that earthworms can have strong effects on microarthropod assemblages in boreal forest soils. Future research should examine whether these changes have cascading effects on nutrient cycling, microbial communities, or plant growth.  相似文献   

16.
Many tropical island forest ecosystems are dominated by non-native plant species and lack native species regeneration in the understorey. Comparison of replicated control and removal plots offers an opportunity to examine not only invasive species impacts but also the restoration potential of native species. In lowland Hawaiian wet forests little is known about native species seed dynamics, recruitment requirements, or the effects of management. In a heavily invaded lowland wet forest, we examined the relationship between seed presence and seedling establishment in control and removal plots. Non-native species were competitively superior because they had higher germination percentages and dominated the seed bank; only seven out of 33,375 seedlings were native. In contrast, the seed rain contained native seed, but native seedling recruitment was almost exclusively limited to removal plots, suggesting that optimum establishment conditions are not met in the presence of a dense mid-storey of non-native species. Non-native species dominance was altered and biomass significantly decreased over time resulting in a reduced weeding effort (12.38-0.77 g day−1). We suggest that with opening of the canopy through non-native species removal and subsequent weeding, it may be possible to reduce the seed bank enough to skew the regeneration potential towards native species. Our results suggest that germination success and lack of a seed bank are the main bottlenecks for native species. We conclude that without invasive species control, future regeneration of Hawaiian lowland wet forests is likely to be almost entirely non-native.  相似文献   

17.
Influence of orchard soil management on lumbricids, especially Lumbricus terrestris L. In a long-term soil management experiment (apple orchard treated with cultivation methods such as grass mulch, grass harvest, straw mulch, clean cultivation) 6 plots were selected in order to study the abundance and biomass of earthworm populations. The following results were obtained: In all treatments with the exception of straw mulch L. terrestris represented the majority (60.5% on average) of the lumbricid population. Their share in the biomass amounted to 93.3%. The earthworm biomass was the highest in grass mulch; a close correlation was observed between the litter production (grass and leaves) and the biomass of L. terrestris. Added farm yard-manure on plots with grass mulch had no additional positive effect on earthworms. Although a higher earthworm biomass was found under grass mulch in comparison with straw mulch, the species diversity was higher in the latter. Clean cultivation had a highly detrimental effect on all earthworms, especially on the horizontally burrowing species. The annual nitrogen turnover by L. terrestris in mulched orchards was estimated to approx. 50 kg N/ha.  相似文献   

18.
It is difficult to obtain non-destructive information on the seasonal dynamics of earthworms in northern forest soils. To overcome this, we used a Rhizotron facility to compile 7 years of data on the activity of anecic (Lumbricus terrestris) and endogeic (Aporrectodea caliginosa complex) earthworms in two contrasting soil/plant community types. We hypothesized that L. terrestris burrows would be used for longer than a typical L. terrestris lifetime, and that the distribution and activity pattern of the two earthworm species would respond differently to changes in soil moisture and temperature. For 7 years we recorded earthworm distribution and activity state bi-weekly to a depth of 1.5 m, tracked L. terrestris burrows using images captured annually, and measured soil temperature and moisture. Activity and vertical distribution of earthworms was closely linked to earthworm species and soil temperature in the fall, winter and spring. Lumbricus terrestris typically remained active through the winter, whereas the A. caliginosa complex was more likely to enter an aestivation period. Activity of all earthworms decreased substantially in July and August when soil temperature was at its highest and soil moisture at its lowest for the year. Most L. terrestris burrows were used continuously and moved very little during the 7-year study, likely creating spatiotemporally stable hotspots of soil resources. The different patterns of response of these species to soil temperature and moisture suggests that endogeic earthworms are more likely than anecic earthworms to adjust activity states in response to climate change mediated shifts in soil moisture and temperature.  相似文献   

19.
Negative interactions between earthworms may arise from high earthworm population densities. Under high populations in the field, niche separation or migration away from competitive pressure may help to regulate a multi-species population to a given level. This may not be possible in laboratory experiments, leading to an increase in competitive interactions which may alter earthworm growth rates and affect decomposition and nutrient mineralization processes. The objective of this experiment was to determine how growth rates of the endogeic earthworm Aporrectodea caliginosa Sav. and the anecic earthworm Lumbricus terrestris L. are affected by increasing population density and container size in both single- and multi-species cultures. Earthworm growth responses were compared in 1-L cylindrical pots containing disturbed soil and in 2.3-L PVC cores containing undisturbed soil. The relationship describing intra- and inter-specific competition was not affected by container type for both species. Nonetheless, decreasing the container size restricted the growth of L. terrestris in both single- and multi-species cultures, but only restricted the growth of A. caliginosa in multi-species cultures. For both species, a population density greater than one individual per litre reduced earthworm growth rates significantly, while weight loss in monocultures occurred when there were more than 10 A. caliginosa, and more than three L. terrestris per litre. Growth rates of both species were restricted in all population density treatments including the lowest of 0.9 individuals per litre. Further work is needed to find the population density at which growth rates are not affected and which may be used as an appropriate population in laboratory pot experiments to measure the effects of earthworms on soil processes and plant growth.  相似文献   

20.
以采集于河西走廊中部荒漠边缘的苦豆子(Sophora alopecuroides L.)和披针叶黄华(Thermopsis lanceolate L.)种子为试验材料, 以不同渗透势PEG-6000 溶液模拟干旱条件, 研究了2 种植物种子萌发和幼苗生长对干旱胁迫的响应特征。研究结果显示, 随着干旱胁迫程度的加剧, 2 种植物种子吸胀速率、萌发率、萌发指数、活力指数、苗高、根长和组织饱和含水量等指标均表现出明显降低趋势, 而幼苗干重、根干重和根冠比均呈先升后降趋势。2 种植物种子萌发对干旱胁迫均较为敏感, 苦豆子和披针叶黄华种子能够萌发的最低渗透势阈值分别为-0.65 MPa 和-0.42 MPa。2 种植物因干旱胁迫未能萌发的种子复水后萌发率均较高。分析认为, 2 种植物种子萌发和幼苗生长对干旱胁迫的响应特征对幼苗的成功定植和种群的自然更新具有重要生态学意义, 但在人工栽培时保证土壤墒情应是保障建植成功的关键措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号