首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Timing of supply of irrigation water is an important measure of water management performance. Yet despite this widely accepted importance of timeliness, few studies have attempted to quantify this performance indicator. This paper suggests a methodology for quantifying timeliness. The indices thus generated are used to compare the performance of some types of smallholder irrigation schemes in Zimbabwe. Results indicate that applying measures of timeliness helps to assess water management practices across scheme types.The methodology given in this paper differentiates between timely irrigation deliveries which meet Crop Water Requirements (CWR) and surplus water supplies due to poor timeliness which cannot be used by the crop, hence denoting wastage. The timeliness indices provide more information regarding management practices than simple measures of total water applications over a given season.  相似文献   

2.
The actual water management practices, in terms of the volumes and intervals of delivery, are examined in a rice-based irrigation subsystem where crop diversification is practised. A simulation model (WACCROD) is used to generate the hypothetical water requirements of the changing crop mixture at quartenary and tertiary levels.Crops other than rice were planted in the dry season to reduce the need for water. Then, as the available water supplies diminished, the volume and timing of water deliveries changed based on the time, hydraulic location and relative importance of the crop.  相似文献   

3.
There is a wide gap between an ideal situation and actual conditions existing in the field of irrigation management in any tank irrigation system in India. To bridge this gap, a near real time analysis through LP modeling of the existing situation and the best allocation policy is attempted for the Aralikottai tank system. The actual conditions are simulated at each sluice command level whereas the best operational policy is attempted for the entire system as a whole. The analysis is conducted separately for a drought year (1988) and a surplus year (1990) with the available five year data from 1988 to 1992. The major conclusions indicate that the late transplantations of the rice crop and the excess water application during the periods of water availability (leading to water stress during the last stages of crop maturity) are the causes of the meagre benefits in a drought year. Also, in a surplus year the excess water application over the entire cropping season resulted in under utilization of land resources and moderate benefits. The existing status of irrigation can be improved to obtain the maximum benefits from the tank command area based on the quantification done.  相似文献   

4.
作物水分生产函数Jensen模型中有关参数在年际间确定方法   总被引:6,自引:0,他引:6  
将作物全生育期水分生产函数模型和分阶段水分生产函数模型结合起来应用,提出了作物水分生产函数Jensen模型中有关参数在年际间确定方法,并采用豫东开封惠北灌溉试验站资料进行了实例计算,结果表明,该计算方法误差小,可在非充分灌溉研究中运用。  相似文献   

5.
Various indicators are used for evaluating the performance of different aspects of an irrigation system, and assessments also differ in terms of the types of performance indicators used. This paper describes a GIS-based assessment system which utilizes a new concept and evaluated the inadequacy of a widely used Relative Water Supply (RWS) concept to characterize the irrigation delivery performance for a rice irrigation system as the season advances. Development of this GIS-based assessment system resulted in the creation of new indicators, viz., the Rice Relative Water Supply (RRWS), Cumulative Rice Relative Water Supply (CRRWS) and Ponding Water Index (PWI). These indicators were determined from field tests and evaluated in a Malaysian Tanjung Karang Rice Irrigation Scheme (TAKRIS). The RWS concept was found to be inaccurate for characterizing the oversupply condition on irrigation deliveries for rice irrigation; and difficult to correctly quantify the oversupply condition for irrigation supplies. Besides, it was found that the RRWS indicator can distinctly characterize the oversupply condition for RRWS > 1.0 and undersupply condition for RRWS < 1.0 on irrigation delivery for any given period. A value of 1.0 for RRWS indicates an irrigation delivery that matches perfectly the actual field water demand. This study presents a cumulative RRWS plot that provides important information on irrigation supplies for any given time interval for management decisions. An increasing slope in the actual CRRWS curve with CRRWS = 1.0, means that irrigation supply can be slightly curtailed in the next period. On the other hand, if the slope is negative, supply has to be increased. If a computed CRRWS line follows the CRRWS = 1.0 line, it means that irrigation deliveries are perfectly matched with the field water demand. A graphical user-interface was developed for structuring the assessment tool within an ArcGIS platform. The system can instantly provide information on the uniformity of water distribution and the shortfall or excess, and provides vital information in terms of decisions that need to be made for the next period. The system helps to maintain continuous updating of input and output databases on real field conditions. Results are displayed on the computer screen together with color-coded maps, graphs and tables in a comprehensible form. The system is likely to be adopted for evaluating various water allocation scenarios and water management options. It can also be used as an analytical and operational tool for irrigation managers.  相似文献   

6.
In this paper the results of an assessment of the hydrological and economic implications of reallocating water in the Musi sub-basin, a catchment within the Krishna Basin in India, are reported. Policy makers identified a number of different but plausible scenarios that could apply in the sub-basin, involving; supplying additional urban demand from agricultural allocations of water, implementing a number of demand management strategies, changing the timing of releases for hydropower generation, changing the crops grown under irrigation, reducing existing stream flows and allowing for more environmental flows. The framework chosen to undertake this assessment was a simulation model that measures and compares the economic values of water allocation scenarios determined from a water allocation model that accounts for supplies of groundwater and surface water across a number of regions and over a variety of uses. Policy makers are provided with the range of measures on the security of the supply of water and the social costs and benefits of reallocating water between sectors and across regions within the sub-basin. Taking water from agriculture to supply urban users has a greater impact on irrigation supplies during dry years. It was also found that changing the allocation of water between sectors, by taking it away from agriculture had a large positive economic impact on the urban sector. Yet the costs involved in undertaking such a strategy results in a significant loss in the net present value of the scheme. Stream flow reductions, if significantly large (at around 20%), were found to have a large physical and economic impact on the agricultural sector. Implementing water saving strategies in Hyderabad was found to be more cost effective than taking water from agriculture, if rainwater tanks are used to achieve this. Changing the timing of hydropower flows resulted in best meeting of irrigation demand in NSLC and NSRC. Under this scenario, the crops grown under irrigation were found to have a significant economic impact on the sub-basin, but not as large as farmers undertaking crop diversification strategies, ones which result in farmers growing less rice. The security of supplying water to different agricultural zones has significantly improved under this scenario. Finally, releasing water for environmental purposes was found to have only a minor impact on the agricultural sector.  相似文献   

7.
不同灌溉条件下水稻光合规律试验研究   总被引:1,自引:0,他引:1  
根据双季晚稻灌溉试验资料,分析了控制灌溉和浅水灌溉条件下水稻叶片净光合速率的日变化、日光合产物积累量以及全生育期净光合速率变化规律。结果表明:控制灌溉条件并未影响水稻叶片的光合性能,净光合速率峰值没有下降,主要生育期内日光合物质积累与浅水灌溉基本持平。控制灌溉土壤水分指标满足水稻的生理需水,从作物光合角度说明了水稻控制灌溉技术的节水高产的科学性。  相似文献   

8.
结合国际合作项目对漳河灌区的主要农业作物-水稻在费改税制度实行前后灌溉成本和产量的变化情况进行调查,并对调查结果进行分析。结果表明:实施费改税制度的实行可以减轻农民的负担,但是增加了灌区水库供水和水管理的难度,增加了水稻生产灌溉成本。由于没有采取相应的措施,造成了水稻减产。因此,有必要对费改税前后水稻生产的变化情况做进一步的研究,减少不利影响,使得农民既能减少税费开支,又能增加水稻产量。  相似文献   

9.
Given current demographic trends and future growth projections, as much as 60% of the global population may suffer water scarcity by the year 2025. The water-use efficiency techniques used with conventional resources have been improved. However, water-scarce countries will have to rely more on the use of non-conventional water resources to partly alleviate water scarcity. Non-conventional water resources are either generated as a product of specialized processes such as desalination or need suitable pre-use treatment and/or appropriate soil–water–crop management strategies when used for irrigation. In water-scarce environments, such water resources are accessed through the desalination of seawater and highly brackish groundwater, the harvesting of rainwater, and the use of marginal-quality water resources for irrigation. The marginal-quality waters used for irrigation consist of wastewater, agricultural drainage water, and groundwater containing different types of salts. In many developing countries, a major part of the wastewater generated by domestic, commercial, and industrial sectors is used for crop production in an untreated or partly treated form. The protection of public health and the environment are the main concerns associated with uncontrolled wastewater irrigation. The use of saline and/or sodic drainage water and groundwater for agriculture is expected to increase. This warrants modifications in the existing soil, irrigation, and crop management practices used, in order to cope with the increases in salinity and sodicity that will occur.  相似文献   

10.
Irrigation projects are usually planned and designed at national levels. Farmers are considered as one of the inputs for irrigation development. Governmental authorities generally assume that the goal of increasing agricultural production will be achieved when the problem of inadequate water during the cultivation season can be solved by providing irrigation water to the farmers. But it is not uncommon to learn of low production rates and various indicators which exhibit below success rates after the irrigation water is provided to the farmers.This paper addresses a first-time experience with irrigation in a village-tract that lies at the tail of a sublateral of an irrigation project in Burma. It shows that the potential of an agricultural economic boon can easily be frustrated due to a single factor: lack of irrigation know-how at the farmers' level. A discussion of agricultural problems under a military socialistic political economic setting follows.  相似文献   

11.
With the present regime of irrigation supplies to the Fayoum province of Egypt, there is no real problem regarding the increase in water levels of Lake Qaroun which is the major recipient of drainage water. Future developments should therefore concentrate on solving the problem of peak supplies for agricultural use. It has been proposed to remedy the shortage caused by further agricultural developments by increasing the system capacity by 20%. There is, however, an alternative approach which requires no engineering work; this is to change the cropping pattern by introducing rotations which reduce peak water requirements.A simplified water balance based on available data is prepared in order to acquire a better understanding of the whole situation and to set up a strategy for future agricultural development.The developed strategy takes into account the limitations imposed by the closed system of the Fayoum basin such as the irrigation efficiency, the Lake Qaroun optimum water level, land reclamation possibilities, Wadi Rayan drainage surplus, and salt concentrations in Lake Qaroun.  相似文献   

12.
In Mexico most of the agricultural production originates from large irrigation districts in the northern part of the country. This region is characterized by its semiarid desert climate with a winter rainy season dominated by frontal storms, and a summer monsoon season dominated by highly localized convective storms, yielding most of the annual precipitation. Essentially all irrigation needs must be met by surface water stored in various reservoirs. Precipitation is, therefore, the most important limiting factor in Mexico's agricultural production. Traditionally, long-time averages of statistical climate data from few and widely-spaced weather stations were used to determine frequency and amount of water applied, and the algorithms employed usually did not consider the effects of great spatial climate variability and plant physiology. In the past five years, great parts of Mexico, especially in the North, have been affected by severe water shortages resulting from insufficient precipitation (perhaps related to the ‘El Niño' phenomenon), combined with inefficient water resources management. Irrigation districts increasingly have to deal with the considerable uncertainty in water resources availability as a limiting factor in the decision making process. In order to address these irrigation water shortages, the Mexican National Water Commission and the Mexican Water Resources Institute are introducing new technologies using agrometeorological networks for more efficient, real-time irrigation scheduling in the main irrigation districts of Mexico. Validation plots established in one particular irrigation district (Carrizo Valley, Sinaloa), demonstrate water savings in the order of at least 20% without any appreciable decrease in crop yields.  相似文献   

13.
郑辉 《农机化研究》2021,43(3):81-86
随着自动化技术在农业生产应用中的不断深入,自动灌溉施肥技术在农业灌溉中的应用越来越广泛,但在实际使用过程中,由于无法准确获取农田含水量和肥料含量,容易造成水资源的浪费及农田肥料匮乏或过饱和,影响农业生产。为此,设计了基于PLC的自动灌溉施肥监控系统,对自动灌溉施肥系统的工作原理进行简要分析,完成了自动灌溉施肥监控系统总体结构的设计,并通过硬件设计,确定了合理可靠的功能模块,最后完成了自动灌溉施肥监控系统的软件流程设计。实际应用表明:监控系统能够实时检测农田的含水量和含肥量,并根据需求供给水分和肥料,确保农田作物能够时刻保持充足的水分和足够的营养,且可在农田缺水状态或农作物缺肥状态下进行报警。该监控系统功能齐全、控制精度高,在较大程度上节约了水资源和农业生产成本,提高了自动灌溉施肥效率,具有一定的推广价值。  相似文献   

14.
Evaluating irrigation performance in a Mediterranean environment   总被引:3,自引:0,他引:3  
Assessment of irrigation performance is a prerequisite for improving water use in the agricultural sector to respond to perceived water scarcity. Between 1996 and 2000, we conducted a comprehensive assessment of the performance of the Genil–Cabra irrigation scheme (GCIS) located in Andalusia, southern Spain. The area has about 7,000 ha of irrigated lands distributed in 843 parcels and devoted to a diverse crop mix, with cereals, sunflower, cotton, garlic and olive trees as principal crops. Irrigation is on demand from a pressurized system and hand-moved sprinkler irrigation is the most popular application method. Six performance indicators were used to assess the physical and economic performance of irrigation water use and management in the GCIS, using parcel water-use records and a simulation model. The model simulates the water-balance processes on every field and computes an optimal irrigation schedule, which is then checked against actual schedules. Among the performance indicators, the average irrigation water supply:demand ratio (the ratio of measured irrigation supply to the simulated optimum demand) varied among years from 0.45 to 0.64, indicating that the area is under deficit irrigation. When rainfall was included, the supply:demand ratio increased up to 0.87 in one year, although it was only 0.72 in the driest year, showing that farmers did not fully compensate for the low rainfall with sufficient irrigation water. Nevertheless, farmers in the area made an efficient use of rainfall, as indicated by the relatively high values (0.72–0.83) for the ratio of actual:attainable crop yields. Water productivity (WP) in the GCIS oscillated between 0.72 €/m3 and 1.99 €/m3 during the 4 years and averaged 1.42 €/m3 of water supplied for irrigation, while the irrigation water productivity (IWP) averaged 0.63 €/m3 for the period studied. WP is higher than IWP because WP includes production generated by rainfall, while IWP includes only the production generated by irrigation.Communicated by A. Kassam  相似文献   

15.
Efficient water use in rice cultivation is a prerequisite for sustaining food security for the rice consuming population of India. Novel rice production practices, including water-saving techniques, modifications in transplanting, spacing, weeding and nutrient management, have been developed and shown to be effective on farm, but adoption of these techniques by farmers has remained restricted. Potential constraints include technical difficulties with new practices, and labour and gender issues which differ between farms. On the basis of a rapid survey of 100 rice-based farms, four farm types were identified based on their socio-economic and biophysical characteristics. Detailed farm surveys were conducted on three representative farms of each farm type to evaluate land use patterns, use of inputs such as water, labour, nutrient, capital and machinery, income from crop and animal production and off-farm activities. Opportunities exist for one or more new rice cultivation techniques to be adopted in all the four farm types. For all farm types, however, the opportunities for use of water-saving irrigation were the least promising. In general, adoption of water-saving irrigation will not improve farmers’ livelihoods despite its importance in reducing water scarcity problems at regional scale. At farm scale, the potential for adoption of water-saving irrigation depends on the season, location of fields and the irrigation source. Changes in government policies such as rules and regulations, pricing, institution building and infrastructure development, as well as training and education of farmers are needed to improve the adoption of modified methods for rice cultivation.  相似文献   

16.
SIMIS (the FAO Scheme Irrigation Management Information System) is a decision support system that integrates tools and performance indicators to facilitate the planning and management of irrigation schemes. The authors used SIMIS to compute performance indicators in an irrigation scheme in Southern Spain that were used to identify distribution system constraints affecting the flexibility of water deliveries and to identify scheme sectors where deliveries could not meet the predicted crop water demands. Applying SIMIS, the authors and the irrigation scheme manager evaluated measures to overcome the constraints for future irrigation campaigns, and to refine the water orders made every 2 weeks to the basin authority. On the other hand, SIMIS presented limitations to the evaluation of on-demand delivery schedules. To overcome these limitations, an external model, developed outside SIMIS, showed that the current distribution network of the scheme has the capacity to deliver water on-demand only if a slight water deficit is accepted during the peak demand period. The analysis showed that by relaxing the stringency of the quality of operation of on-demand systems, rotation systems may be transformed into on-demand systems without changing their structures. This analysis could also be done using Clément's hypothesis, but doing so resulted in overestimates of the quality of operation and of the relative irrigation supply.  相似文献   

17.
无人机遥感技术在精量灌溉中应用的研究进展   总被引:4,自引:0,他引:4  
以提高农业用水效率为目标的精量灌溉是未来农业灌溉的主要模式,精量灌溉的前提条件是对作物缺水的精准诊断和科学的灌溉决策。用于作物缺水诊断和灌溉决策定量指标的信息获取技术主要基于田间定点监测、地面车载移动监测及卫星遥感。无人机从根本上解决了卫星遥感由于时空分辨率低而导致的瞬时拓延、空间尺度转换、遥感参数与模型参数定量对应等技术难题,也克服了地面监测效率低、成本高、影响田间作业等问题。近几年的研究结果表明,无人机遥感系统可以高通量地获取多个地块的高时空分辨率图像,使精准分析农业气象条件、土壤条件、作物表型等参数的空间变异性及其相互关系成为可能,为大面积农田范围内快速感知作物缺水空间变异性提供了新手段,在精量灌溉技术应用中具有明显的优势和广阔的前景。无人机遥感系统已经应用在作物覆盖度、株高、倒伏面积、生物量、叶面积指数、冠层温度等农情信息的监测方面,但在作物缺水诊断和灌溉决策定量指标监测方面的研究才刚刚起步,目前主要集中在作物水分胁迫指数(CWSI)、作物系数、冠层结构相关指数、土壤含水率、叶黄素相关指数(PRI)等参数估算的研究,有些指标已经成功应用于监测多种作物的水分胁迫状况,但对于大多数作物和指标,模型的普适性还有待进一步研究。给出了无人机遥感在精准灌溉技术中应用的技术体系,并指出,为满足不同尺度的高效率监测和实现农业用水精准动态管理的需求,今后无人机遥感需要结合卫星遥感和地面监测系统,其中天空地一体化农业水信息监测网络优化布局方法与智能组网技术、多源信息时空融合与同化技术、作物缺水多指标综合诊断模型、农业灌溉大数据等将是未来重点研究内容。  相似文献   

18.
A detailed district and agro-ecoregional level study comprising the 604 districts of India was undertaken to (i) identify dominant rainfed districts for major rainfed crops, (ii) make a crop-specific assessment of the surplus runoff water available for water harvesting and the irrigable area, (iii) estimate the efficiency of regional rain water use and incremental production due to supplementary irrigation for different crops, and (iv) conduct a preliminary economic analysis of water harvesting/supplemental irrigation to realize the potential of rainfed agriculture. A climatic water balance analysis of 225 dominant rainfed districts provided information on the possible surplus runoff during the year and the cropping season. On a potential (excluding very arid and wet areas) rainfed cropped area of 28.5 million ha, a surplus rainfall of 114 billion m3 (Bm3) was available for harvesting. A part of this amount of water is adequate to provide one turn of supplementary irrigation of 100 mm depth to 20.65 Mha during drought years and 25.08 Mha during normal years. Water used in supplemental irrigation had the highest marginal productivity and increase in rainfed production above 12% was achievable even under traditional practices. Under improved management, an average increase of 50% in total production can be achieved with a single supplemental irrigation. Water harvesting and supplemental irrigation are economically viable at the national level. Net benefits improved by about threefold for rice, fourfold for pulses and sixfold for oilseeds. Droughts have very mild impacts on productivity when farmers are equipped with supplemental irrigation.  相似文献   

19.
A modelling system that combines the hydraulic simulations of the canal and hydrological simulations of the irrigated command is introduced. It uses MIKE 11 and MIKE SHE, two well-established modelling systems, for the hydraulic and hydrological simulations respectively. In addition, it also has an irrigation scheduling module and a crop growth module. The modelling system is applied to the Mahanadi Reservoir Irrigation Scheme, a large irrigation project in Central India. The results show that presently a significant amount of water is wasted in the command during the monsoon season. It is demonstrated that the minimization of this wastage could lead to a substantial crop production in the subsequent dry season. Furthermore, the simulations illustrate the versatility of the modelling system for planning and analysing the various aspects of an irrigation project.  相似文献   

20.
Water scarcity in the Bojili irrigation District, which is located in the Shandong province in China, affects the management of the irrigation system and has led to the development of water storage functions inside the system. In particular, the irrigation and drainage scheme is used for short-term water storage whereas groundwater is used for long-term storage which is replenished during the monsoon season and drawn from when crop water requirements are not satisfied by surface irrigation.In this paper the storage functions are quantified. The role of groundwater, in relation to rainfall and irrigation depths, is analysed in detail. This analysis, which was carried out at the district and at sub-system scales, is based on data collected from fifty five observation wells between 1991 and 1996 at a 10-day time intervals. The sub-systems, called “divisions”, represent the areas for which irrigation-related information is available.Rainfall, groundwater levels and irrigation data are consistent. They demonstrate the inequity of water allocation between upstream and downstream water users. Accordingly strategies for water management differ between these users. These strategies only partially compensate the effects of scarcity demonstrated by decreasing cropping intensities from upstream to downstream parts of the District.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号