首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
The objective of this research was to determine the relationships between different ecological features of shade and the incidence of coffee berry borer, coffee leaf rust and spontaneous herbs in rustic coffee plantations in Chiapas, Mexico. Thirty-six 10 m by 10 m plots were established within coffee plantations. The following variables were measured or estimated: number of vegetation strata, percent canopy cover, direct, diffuse and total sunlight below the canopy, plant species richness and diversity, shade tree/shrub density, altitude, aspect, basal area, yields, percentage of coffee berry borer (Hypothenemus hampei Ferr), percentage of coffee leaf rust (Hemileia vastatrix Berk & Br.),percentage of spontaneous herb cover and the presence of paths and runoffs.Results showed a complex agroforestry system, composed of five strata. Coffee berry borer and coffee leaf rust incidence averages were 1.5% and 10.1%,respectively. Average spontaneous herb cover was 34.1%. Coffee leaf rust percentage correlated positively with the coffee berry borer. Number of strata of shade vegetation correlated negatively with leaf rust, while the presence of paths correlated positively with the leaf rust. Species richness and diversity correlated negatively to broad-leaf-herb cover and the presence of runoffs correlated positively to this last variable. Shade tree density (> 10cm d.b.h.) correlated negatively to linear-leaf-herb cover. Percentage of shade cover, light, coffee density, aspect, stand age, basal area and yields were not correlated to pest, disease and weeds. Results support the ecological theory that postulates that diversity and structural complexity in mixed plant systems maintain a healthy system.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
Abstract

The effects of topographic features and the soil parent rock on the site index of Norway spruce [Picea abies (L.) Karst.] were examined. Field data were collected on 347 plots located in the Polish West Carpathian. On these plots, the diameter at breast height and the height of trees were measured and the age of trees was determined. On 64 plots one dominant or codominant tree was felled for stem analysis. In addition, topographic features of each site were measured, including elevation above sea level, aspect and slope. Stem analysis data were used in the development of a local site index system, which was used for calculating the site index for particular plots. In order to interpret site index as functions of elevation, aspect, slope, size of a mountain massif and soil parent rock, the multiple regression model was used, which explained 79.0% of the variation in Norway spruce site index. Elevation above sea level was the major factor responsible for variation in site index, and was negatively correlated (R 2 adj=0.610) with site index. Site index also depended on the soil parent rock. The stands growing on the tertiary Magura sandstones had considerably higher site indices than those located on the geological substratum composed of Istebna and Godula sandstones formed during the Cretaceous period. The site index of Norway spruce is also determined by the aspect, slope and height of mountain massif.  相似文献   

3.
In some areas of the Mediterranean basin where the understory stratum represents a critical fire hazard, managing the canopy cover to control the understory shrubby vegetation is an ecological alternative to the current mechanical management techniques. In this study, we determine the relationship between the overstory basal area and the cover of the understory shrubby vegetation for different dominant canopy species (Pinaceae and Fagaceae species) along a wide altitudinal gradient in the province of Catalonia (Spain). Analyses were conducted using data from the Spanish National Forest Inventory. At the regional scale, when all stands are analysed together, a strong negative relationship between mean shrub cover and site elevation was found. Among the Pinaceae species, we found fairly good relationships between stand basal area and the maximum development of the shrub stratum for species located at intermediate elevations (Pinus nigra, Pinus sylvestris). However, at the extremes of the elevation-climatic gradient (Pinus halepensis and Pinus uncinata stands), stand basal area explained very little of the shrub cover variation probably because microsite and topographic factors override its effect. Among the Fagaceae species, a negative relationship between basal area and the maximum development of the shrub stratum was found in Quercus humilis and Fagus sylvatica dominated stands but not in Quercus ilex. This can be due to the particular canopy structure and management history of Q. ilex stands. In conclusion, our study revealed a marked effect of the tree layer composition and the environment on the relationship between the development of the understory and overstory tree structure. More fine-grained studies are needed to provide forest managers with more detailed information about the relationship between these two forest strata.  相似文献   

4.
Interior Douglas-fir trees in plantations were assessed for size differences related to the level of diseased neighbours infected with Armillaria ostoyae. The four Douglas-fir stands studied ranged from 25- to 34-year-old, and represented the oldest accessible planted stands in the Interior Cedar Hemlock (ICH) ecosystem in British Columbia. Twenty-three to 25, 10-m radius plots were established in each stand. The spatial coordinates, total height, and diameter at breast height of all live and dead trees in the plots were recorded. Subject trees whose competitors were contained in the 10-m radius plots were also identified. Trees were pulled out of the soil using a mechanical excavator and the root systems were surveyed for evidence of infection by A. ostoyae. Stem disks were taken from each tree at 1.3 m above the ground for a determination of basal area. Increasing proportion of diseased trees in the plots resulted in less total plot basal area, but did not affect the mean basal area or height. Individual subject tree basal area was negatively related to the level of disease in surrounding competitors, opposite to expectations; however, diseased subject trees had reduced height and basal area compared to disease-free subject trees. Increasing competition reduced both the height and basal area of the trees, while regular distribution of all trees increased both total and mean plot basal area but not height. Disease incidence at the plot level and in individual subject trees was mainly affected by the neighbourhood conditions in which it grew, and was also related to disease intensity in the tree root systems. Although disease may alter resource partitioning among trees, the utilization of these resources is mostly limited by the increasing disease incidence as the stands age, the higher probability of larger trees being diseased with time, the occurrence of dead trees in clumps, and the high probability that dead trees will eventually infect live neighbours. The widespread belowground incidence of A. ostoyae in the ICH, its rapid colonization of stumps, and its wide host range can reduce site potential in managed stands.  相似文献   

5.
Riparian trees and shrubs are important providers of shade, bank stability, and woody debris needed for optimal stream quality and fish habitat in the coastal mountains of Oregon, but more data are needed to relate this woody vegetation to environmental variables. Trees, shrubs, and forest regeneration were studied in 22 riparian environments to provide those data. Conifer basal area increased with elevation, stream gradient, time since disturbance, and distance from the stream; it decreased with stream width. Salmonberry (Rubus spectabilis Pursh) cover and stink currant (Ribes bracteosum Dougl. ex Hook.) cover were highest near the streams. Dwarf Oregon grape (Berberis nervosa Pursh) cover and salal (Gaultheria shallon Pursh) cover were lowest near the streams. Although forest regeneration was poor everywhere, it decreased with total shrub cover and increased with stream gradient. Existing riparian conifer stands should be maintained wherever a continuing supply of coarse woody debris is required.  相似文献   

6.
Layering, long-term development of foliation, beech nut fertility and plant species composition have never before been studied in Fagus sylvatica stands above the alpine timberline in Central Europe. F. sylvatica forms and is present above the timberline (1,260 m a. s. l.) on only one south-facing slope along a 1-km-long stretch of the Giant Mts., which represents the northernmost timberline featuring F. sylvatica worldwide. We investigated the long-term development of this unique stand in which layering of F. sylvatica was discovered (LP—1,310 m a. s. l.), comparing it with a control plot (CP—1,190 m a. s. l.). Research plots were established in 1980, with monitoring of foliation, masting, beech nut fertility and plant species composition performed over the following 30 years. In the LP plot, F. sylvatica was able to reproduce only clonally by layering. Development of adventitious roots on branches reaching the ground took many years. In the LP plot, F. sylvatica was able to survive heavy air pollution during the 1980s and since that time substantial improvement of its health status has been recorded. Generative reproduction of F. sylvatica in the LP plot was extremely rare, as production of fertile nuts was recorded only once in 2007 and seedlings have never been recorded at all. An improvement in F. sylvatica foliation in the LP plot was probably the reason for a decrease in species richness and cover of bryophytes. The herb layer, dominated by Calamagrostis villosa, was highly stable in the LP plot over the 30-year period, contrasting significantly with the marked changes in species composition observed in the understory of the CP plot where massive regeneration of F. sylvatica occurred. Layering, stability of herb layer and rare masting can be expected in F. sylvatica stands above the alpine timberline.  相似文献   

7.
Little information is available comparing historic and modern sand savannas, and how remnants respond to restored fire. We compared short- and long-term effects of restored fire on the Tefft Savanna, a 197 ha eastern sand savanna in northwest Indiana that had undergone three decades of fire protection. U.S. Public Land Survey data from Tefft in 1833 indicate black and white oak barrens, and pin oak savanna, with trees averaging 50 stems/ha and 4 m2/ha basal area. We used ordination and a digital elevation model to assess topographic distribution of tree species in 1986. In 1986, we also compared initial effects of high- and low-intensity dormant season fire on woody vegetation among nine blocks containing black oak, white oak, and pin oak stands. Twenty years later, we compared the same blocks, all of which had been burned three times per decade with low-intensity fires. In 1986, black oak, white oak and pin oak occurred across a gradient of decreasing elevation and slope. At that time, unburned black oak and white oak stands averaged >400 stems/ha and about 10 m2/ha basal area, and their smaller size classes contained non-oak woody vegetation that apparently had invaded with fire exclusion. After initial burns, black oak and white oak stands receiving high-intensity fire averaged <200 stems/ha and had significantly lower oak canopy cover and basal area than unburned stands. Stands receiving low-intensity fire had intermediate oak canopy cover, with basal area similar to unburned stands. Pin oak stands were more fire-resistant, apparently because spring flooding often reduced fire effects. Density, cover and basal area of non-oak tree species were much lower than oaks, and were not reduced by initial burning. Repeated low-intensity burning over 20 years tended to maintain structure caused by initial fires. However, it reduced lower size class stem densities, promoted post-fire sprouting into the shrub layer, and allowed oak basal area to increase in larger size classes. Time since fire regulated shrub layer structure on a 4-year cycle. Density and cover of trees and shrubs returned to pre-burn conditions by the second and fourth growing seasons after fire, respectively, with non-oak tree species exceeding pre-burn cover and density by the fourth season. These results suggest that high-intensity fire is more important than repeated low-intensity burning in structuring and restoring eastern sand savanna, and that non-oak tree species, once established, may be resistant to low-intensity fire.  相似文献   

8.
The objective of our study was to examine whether distribution of regeneration in uneven-aged fir (Abies alba Mill.) forests is related to the spatial pattern of trees. In 12 sample plots of size 0.45–1.00 ha (in total 8.65 ha, with stand basal areas ranging from 27.6 m2 ha–1 to 39.5 m2 ha–1), all live and dead trees above 5 cm in d1.3 were mapped and their diameters measured. In eight plots, all live and dead fir saplings were mapped. In three plots, the number of live fir saplings and seedlings was registered on small systematically distributed circular plots. The values of an analytically developed index of stand influence were compared in patches occupied and unoccupied by live or dead fir regeneration. Contrary to preliminary assumptions, only in a few cases did saplings and trees 5–15 cm in d1.3 appear more often in gaps and looser stand patches. Rather, in many plots, the opposite tendency was observed. The seedling density showed a weak but positive correlation with the index of influence. If the spatial pattern of regeneration reflects the spatially varying mortality of juvenile trees, then no evidence was found that stand competition was the most important factor inducing this mortality. On the contrary, on the basis of the results obtained, we can presume that the survival rate of juvenile firs was higher in patches with a relatively higher local basal area. Thus, it was hypothesised that, first, dispersion of regeneration in uneven-aged fir forests is controlled by easy-to-change edaphic factors such as humus form and acidity of the upper soil horizons, and second, that these soil features are linked with the spatial pattern of trees.  相似文献   

9.
Recent reports of rapid die-off of aspen (Populus tremuloides), coupled with vigorous debate over long-term reduction of aspen cover in western North America, has prompted considerable research given the importance of this forest type for economic and non-economic interests. Despite this interest, indicators of aspen conditions are poorly understood, and there is a lack of systematic monitoring of stable aspen landscapes. Stable aspen are defined here as being predominantly aspen overstorey (>80% basal area) with little or no conifer regeneration. We examined a putative stable aspen landscape in southern Utah and addressed (1) stand structure and (2) indicators of decline. We sampled 83 aspen-dominated stands within a 275 km2 landscape using established forest health monitoring protocols. Eighty-four percent of sample stands on Cedar Mountain exhibited stable aspen characteristics. Principal findings include: (1) a relatively uniform age of adults within the study area; (2) approximately 10% crown dieback on half of the plots sampled; (3) roughly 50% of the study plots had greater than 50% of the trees with damage to the bole; (4) about 25% of the adult basal area was dead; and (5) over half the plots had few sub-canopy individuals and/or limited regeneration. Physiographic variables including elevation, slope, and aspect were generally not strong indicators of aspen condition, typically explaining less than 15% of the variation in basal area, mortality, dieback, or damage. Healthy stands were rarely observed in the most drought prone locations, though the inverse was not necessarily true; healthy and unhealthy stands were found in more mesic settings. Principal components analysis identified two clusters of plots that differed considerably in regeneration; however, no other variables differed between these groupings. We suggest exogenous factors such as land-use history or altered disturbance regimes and endogenous factors such as soils and geology influence aspen condition on this landscape. Further research is necessary to test these hypotheses.  相似文献   

10.
依据2020年在澜沧江流域分层抽样调查的120个云南松样地数据,提取云南松群落数据和地形因子数据,采用典型对应分析法研究澜沧江流域云南松群落的分布与海拔、坡向和坡度的相关关系。结果表明,地形因子中对澜沧江流域云南松群落分布影响较大的因子为海拔,其次为坡度,坡向对云南松林分布的影响较小。  相似文献   

11.
In western North America, quaking aspen (Populus tremuloides) is the most common hardwood in montane landscapes. Fire suppression, grazing and wildlife management practices, and climate patterns of the past century are all potential threats to aspen coverage in this region. If aspen-dependent species are losing habitat, this raises concerns about their long-term viability. Though lichens have a rich history as air pollution indicators, we believe that they may also be useful as a metric of community diversity associated with habitat change. We established 47 plots in the Bear River Range of northern Utah and southern Idaho to evaluate the effects of forest succession on epiphytic macrolichen communities. Plots were located in a narrow elevational belt (2134–2438 m) to minimize the known covariant effects of elevation and moisture on lichen communities. Results show increasing total lichen diversity and a decrease in aspen-dependent species as aspen forests succeed to conifer cover types. The interactive roles of stand aspect, basal area and cover of dominant trees, stand age, aspen bark scars, and recent tree damage were examined as related to these trends. We developed an aspen index score based on lichens showing an affinity for aspen habitat (Phaeophyscia nigricans, Physcia tenella, Xanthomendoza fulva, Xanthomendoza galericulata) and found a significant negative relationship between the index and successional progression. Indicator species analysis showed the importance of all stages of aspen-conifer succession for lichen community diversity and highlighted the decline of aspen-dependent species with advancing succession. We present a landscape-level community analysis of lichens in the context of a conceptual model for aspen succession for the southern Rocky Mountains. We conclude that while total number of lichen species increases with succession, aspen-dependent species cover and richness will decline. In this way, epiphytic lichens communities may constitute an effective indicator of community-level diversity in for aspen-dependent species at-large.  相似文献   

12.
Understory plants are important components of forest ecosystems and play a crucial role in regulating community structures, function realization, and community succession. However, little is known about how abiotic and biotic drivers affect the diversity of understory species in cold temperate coniferous forests in the semiarid climate region of North China. We hypothesized that(1) topographic factors are important environmental factors affecting the distribution and variation of understory strata,and(2) different understory strata respond differently to environmental factors; shrubs may be significantly affected by the overstory stratum, and herbs may be more affected by surface soil conditions. To test these hypotheses, we used the boosted regression tree method to analyze abiotic and biotic environmental factors that influence understory species diversity, using data from 280 subplots across 56 sites in cold temperate coniferous forests of North China.Elevation and slope aspect were the dominant and indirect abiotic drivers affecting understory species diversity, and individual tree size inequality(DBH variation) was the dominant biotic driver of understory species diversity; soil water content was the main edaphic factors affecting herb layers. Elevation, slope aspect, and DBH variation accounted for 36.4, 14.5, and 12.1%, respectively, of shrub stratum diversity. Shrub diversity decreased with elevation within the range of altitude of this study, but increased with DBH variation; shrub diversity was highest on north-oriented slopes. The strongest factor affecting herb stratum species diversity was slope aspect, accounting for 25.9% of the diversity, followed by elevation(15.7%), slope(12.2%), and soil water content(10.3%). The highest herb diversity was found on southeast-oriented slopes and the lowest on northeast-oriented slopes; herb diversity decreased with elevation and soil water content, but increased with slope. The results of the study provide a reference for scientific management and biodiversity protection in cold temperate coniferous forests of North China.  相似文献   

13.
Biodiversity in managed plantations has become an important issue for long-term sustainability of ecosystems. The environmental effects of plantations comprised of fast-growing introduced trees have been vigorously debated. On one hand, monocultures have been said to exhaust resources, resulting in decreased biodiversity. Conversely, it has been stated that monocultures may favor regeneration of undergrowth plants from surrounding forests, increasing biodiversity. In order to clarify the effects of planting Eucalyptus trees on species composition, diversity, and functional type of understory vegetation in Yunnan province, a field trial was implemented to compare Eucalyptus plantations (EPs) with two other local current vegetation types (secondary evergreen forests (SEs), and abandoned farmlands (AFs)). Each vegetation type was sampled in each of three elevational ranges (low = 1,000–1,400 meters above sea level (masl), medium = 1,400–1,800 masl, and high = 1,800–2,200 masl). Sample sites within each elevational range had similar environmental characteristics (slope, aspect, etc.). Thus, we sampled three vegetation types at each of three sites at each of three elevations for a total of 27 plots. We calculated relative abundance and importance value of species and diversity indexes to evaluate differences among local current vegetation types and elevational ranges, employing multivariate ordination analyses and other methods such as Analyses of Variance (ANOVA) and Indicator Species Analysis. We found that fast growing introduced Eucalyptus plantations led to reduced plant diversity in the study area, and that rare or threatened species were recorded almost exclusively in the SE plots, being essentially absent from the EP and AF plots. The understory plant diversity did not correlate with the altitude gradient significantly. Eucalyptus plantations (EPs) have a simpler community structure than that of either secondary evergreen forests (SEs; similar to natural state) or abandoned farmlands (AFs). No variable significantly explained variation of the understory shrub layer, but soil moisture-holding capacity and overstory coverage were significant in explaining variation of the understory herb layer, suggesting that the study of soil physical properties is necessary for better understanding of their importance in Eucalyptus plantations and other local current vegetation types.  相似文献   

14.
Growth of regenerating trees in different light environments was studied for the mountainous, mixed-species forests in the Carpathian Mountains of Romania. The primary species in these mixtures were silver fir (Abies alba Mill.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Seedlings/saplings of these species were selected and measured in different stands from two different geographical locations. Regenerating trees were measured for height and diameter growth during the summer of 2002. For each seedling/sapling, percentage of above canopy light (PACL) and stand basal area (BA) were used to assess available and occupied growing space respectively. Regeneration growth was compared against these two variables and regression relationships were developed. Using these models, we predicted the dynamics of regeneration as both growth and species composition. Our results showed that in low-light environments (PACL<20–35%; BA>30 m2/ha), shade tolerant fir and beech clearly outcompeted the spruce. Therefore, in dense stands, spruce could be eliminated by the shade tolerant species. For intermediate levels of cover (PACL=35–70%; BA=15–35 m2/ha) the spruce grew at comparable rates as the beech and fir. All three species showed similar growth rates in open conditions (PACL>80–90%; BA<15–20 m2/ha) with the spruce having a tendency to outgrow the others. However, in terms of establishment, such conditions favor spruce and inhibit fir and beech.  相似文献   

15.
The emergence of Norway spruce seedlings on different types of germination sites in uneven-aged Norway spruce dominated stands four years after selection harvesting was studied. The data were collected from 20 stands in southern Finland. In each stand, ground cover was measured from a set of 64 one square metre subplots on a permanent experimental plot of 1600?m2. Correlation analysis, direct comparison of subplots with and without seedlings and mixed-effects models were used to estimate the influence of ground and tree cover on seedling occurrence. Grass cover, dwarf shrub cover, cover of certain moss species and close vicinity of trees decreased the occurrence probability and number of seedlings, while greater stand and local basal area around the subplots increased the seedling number. The cover of vegetation free surfaces, usually considered as good germination sites, was rather low. Variation in seedling emergence between plots was high. We concluded that spruce regeneration was slightly more abundant in stands with greater overall stand density and local density within a stand in postharvest conditions.  相似文献   

16.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

17.
A disease of Populus nigra‘Italica’ associated with foliar yellowing, sparse foliage, stunting, dieback, and decline was observed in south-western Germany; a witches’ broom disease of Populus alba that is known in other countries was also detected in Hungary and Germany. The aetiology of the diseases was studied by fluorescence microscopy and polymerase chain reaction (PCR) amplification. Using fluorescence microscopy, phytoplasmas could be detected only in P. alba. However, most diseased trees of P. nigra‘Italica’ tested phytoplasma-positive by PCR. In some of the trees the phytoplasma numbers were so low that nested PCR was required to detect the infection. Very low phytoplasma numbers were also observed in diseased Populus tremula. The identity of phytoplasmas from P. nigra‘Italica’ sampled in Germany and France, P. alba and also P. tremula was examined by restriction fragment length polymorphism (RFLP) analysis of PCR-amplified ribosomal DNA. In all poplars, phytoplasmas of the aster yellows group were detected. However, three different RFLP groups were identified that consisted of (1) French strains from P. nigra‘Italica’, (2) German strains from P. nigra‘Italica’ and (3) strains from P. alba and P. tremula. The profile observed in the last group was probably the result of sequence heterogeneity in the two 16S RNA genes.  相似文献   

18.
根据松华坝水库天然林群落的不同海拔梯度以及不同坡向设置36个典型样方进行调查。对松华坝水库物种组成、种子植物区系、群落各层次物种的重要值以及植物多样性进行分析。结果表明:调查到维管植物300种;乔木层云南松种群占绝对优势;水库天然林从乔木到灌木再到草本,植物多样性水平递增;随着海拔的上升,植物多样性水平先升高再降低;从阳坡到半阴坡再到阴坡,植被多样性水平先升高再降低。  相似文献   

19.
北京八达岭植物群落多样性特征分析   总被引:5,自引:0,他引:5  
根据34个样地的调查资料,分析了该地区森林植物群落物种多样性的特征:群落内各层物种丰富度指数的大小为草本层>灌木层>乔木层;多样性指数的大小为乔木层<灌木层和草本层。灌木层与草本层的多样性指数随林分郁闭度变化而变化,在林分郁闭度为25%的侧柏黄栌混交林中,灌木层的多样性指数和丰富度指数小于草本层;在郁闭度53%的杂木林中,灌木层和草本层的多样性指数接近;在郁闭度53%以上的各个群落内,草本层的多样性指数和丰富度指数基本上都大于灌木层。人工林中的物种多样性变化多样,明显低于天然林,林分层次单一,更新不良,缺乏灌木层和地被植物,生态系统很不稳定。  相似文献   

20.
The long-term development of stand characteristics and tree spatial patterns (TSP), their mutual relation, and linkage to site and tree species were studied in the Boubín primeval forest (protected since 1858). Surveys were carried out in 1851, 1961/1964, 1972, 1984/1989, 1996 and 2010 on one to six research plots sized 0.58-1.00 ha. To see how results from these surveys could be generalized, results were also compared with whole-area data sets (46 ha) from 1972 to 2010.The proportion of Abies alba continually decreased, from 20% in 1851 to 2-3% in 2010. This decrease started no later than at the beginning of the 20th century. In contrast, the proportion of Fagus sylvatica slightly increased. The sum of dead and living wood volume was stable during the 159 year period, with deviations of only up to 5%. From 1961/64 to 2010, the number of living trees continually decreased, but the mean-tree volume and volume of dead wood increased. The distribution of dead wood always differed from the distribution of living trees.A random TSP was always most common, which seems to be typical for this type of forest. This was true even when A. alba was gradually forced out from the stand structure. Nevertheless, the pronounced decrease of A. alba found during the 1961/64 survey compared with 1851 was reflected in a tendency towards clustering, as gaps from A. alba dieback gradually closed. In these gaps, competitive pressure was lower, resulting in more clustered distributions. Regular distribution was recorded only rarely. F. sylvatica maintained a random or clustered TSP over long periods, depending on site conditions. On water-affected plots, it had a consistently higher tendency towards clustering. The only step change in TSP occurred due to Hurricane Emma in 2008. Otherwise, the most marked TSP changes over time were found for Picea abies, in which there was a gradual trend from clustered to random, connected with a decreasing number of individuals.The main reason for the decline of A. alba and the decreased number of living trees from 1961/64-2010 was the on-going effect of a high stock of red deer at the turn of the 19th and 20th centuries. The decreasing trend in the number of living trees showed no marked change, even 60 years after the game pressure was strongly reduced. However, the vertical structure became increasingly homogenized due to the long-term absence of severe abiotic and/or biotic disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号