首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
液体培养研究不同土壤中硝化活性   总被引:2,自引:0,他引:2  
YUAN Fei  RAN Wei  SHEN Qi-Rong 《土壤圈》2005,15(3):379-385
A red soil, a fluvo-aquic soil and a permeable paddy soil were used in a long-term investigation to study changes in nitrification with treatments: 1) soil incubation, 2) liquid incubation inoculated with soil samples, and 3) liquid incubation inoculated with ammonia-oxidizing bacteria (AOB) from the soils. There were significant differences (P < 0.001) in nitrification rates among the three soils when measured for 28 days by adding (NH4)2SO4 at the rate of 154 mg N kg-1 dry soil to fresh soil. However, the amounts of nitrifying bacteria in the three soils were not related to soil nitrification capacity. When the soil samples or the isolates of AOB enriched from the corresponding soil were incubated in liquid with pH 5.8, 7.0 and 8.0 buffers and 10 mmol L-1 ammonium nitrogen, there were no significant nitrification differences in the same soil type at each pH. The ability to oxidize ammonia through AOB from different types of soils in a homogeneous culture medium was similar, and the soil nitrification capacity could reflect the inherent properties of a soil. Altering the culture medium pH of individual soil type also showed that acidification of an alkaline fluvo-aquic soil decreased nitrification capacity, whereas alkalinization of the acidic red soil and permeable paddy soil increased their nitrification. For a better insight into factors influencing soil nitrification processes, soil properties including texture and clay composition should be considered.  相似文献   

3.
Soil amendment with manures from intensive animal industries is nowadays a common practice that may favorably or adversely affect several soil properties, including soil microbial activity. In this work, the effect of consecutive annual additions of pig slurry (PS) at rates of 30, 60, 90, 120 and 150 m3 ha−1 y−1 over a 4-year period on soil chemical properties and microbial activity was investigated and compared to that of an inorganic fertilization and a control (without amendment). Field plot experiment conducted under a continuous barley monoculture and semiarid conditions were used. Eight months after the fourth yearly PS and mineral fertilizer application (i.e. soon after the fourth barley harvest), surface soil samples (Ap horizon, 0-15 cm depth) from control and amended soils were collected and analysed for pH, electrical conductivity (EC), contents of total organic C, total N, available P and K, microbial biomass C, basal respiration and different enzymatic activities. The control soil had a slightly acidic pH (6.0), a small EC (0.07 dS m−1), adequate levels of total N (1.2 g kg−1) and available K (483 mg kg−1) for barley growth, and small contents of total organic C (13.2 g kg−1) and available P (52 mg kg−1). With respect to the control and mineral fertilized soils, the PS-amended soils had greater pH values (around neutrality or slightly alkaline), electrical conductivities (still low) and contents of available P and K, and slightly larger total N contents. A significant decrease of total organic C was observed in soils amended at high slurry rate (12.3 g kg−1). Compared with the control and mineral treatments, which produced almost similar results, the PS-amended soils were characterized by a higher microbial biomass C content (from 311 to 442 g kg−1), microbial biomass C/total organic C ratio (from 2.3 to 3.6%) and dehydrogenase (from 35 to 173 μg INTF g−1), catalase (from 5 to 24 μmol O2 g−1 min−1), BAA-protease (from 0.7 to 1.9 μmol  g−1 h−1) and β-glucosidase (from 117 to 269 μmol PNP g−1 h−1) activities, similar basal respirations (from 48 to 77 μg C-CO2 g−1 d−1) and urease activities (from 1.5 to 2.2 μmol  g−1 h−1), and smaller metabolic quotients (from 6.4 to 7.7 ng C-CO2 μg−1 biomass C h−1) and phosphatese activities (from 374 to 159 μmol PNP g−1 h−1). For example, statistical analysis of experimental data showed that, with the exception of metabolic quotient and total organic C content, these effects generally increased with increasing cumulative amount of PS. In conclusion, cumulative PS application to soil over time under semiarid conditions may produce not only beneficial effects but also adverse effects on soil properties, such us the partial mineralization of soil organic C through extended microbial oxidation. Thus, PS should not be considered as a mature organic amendment and should be treated appropriately before it is applied to soil, so as to enhance its potential as a soil organic fertilizer.  相似文献   

4.
The most favorable moisture conditions for the microbial destruction of chitin in soils are close to the total water capacity. The water content has the most pronounced effect on chitin destruction in soils in comparison with other studied substrates. It was found using gas-chromatographic and luminescent-microscopic methods that the maximum specific activity of the respiration of the chitinolytic community was at a rather low redox potential with the soil moisture close to the total water capacity. The range of moisture values under which the most intense microbial transformation of chitin occurred was wider in clayey and clay loamy soils as compared with sandy ones. The increase was observed due to the contribution of mycelial bacteria and actinomycetes in the chitinolytic complex as the soil moisture increased.  相似文献   

5.
The persistence and degradation of rotenone and its primary degradation product 12a beta-hydroxyrotenone in soils were determined under standardized laboratory conditions in the dark at 20 or 10 degrees C and at 40% of water holding capacity. Degradation experiments were carried out on two types of soil collected in southern Italy, a silt clay loam (SCL) and a loamy soil (L). A kinetic model was developed to describe degradation rates of rotenone, taking into account the production, retention, and degradation of the main metabolites. The DT50 values of rotenone and 12a beta-hydroxyrotenone, were 8 and 52 days in SCL soil, and 5 and 23 days in L soil at 20 degrees C, respectively. However, at 10 degrees C a tendency for slower degradation of rotenone and 12a beta-hydroxyrotenone was observed (25 and 118 days in SCL and 21 and 35 days in L soils, respectively). The differences were significant for most data sets. Temperature had a strong effect on degradation; a 10 degrees C increase in temperature resulted in a decrease in the DT50 value by a factor of 3.1 and 2.2 in SCL and of 4.2 and 1.4 in L soils for both rotenone and 12a beta-hydroxyrotenone, respectively. Results show that the degradation rates of both rotenone and 12a beta-hydroxyrotenone were greatly affected by temperature changes and soil physicochemical properties. The degradation reaction fits the two compartment or the multiple compartment model pathways better, which clearly indicates a rather complex rotenone degradation process in soils. Results provide further insights on the rates and the mechanisms of rotenone degradation in soils, aiming to more clearly describe the degradation pathway of chemical residues in the environment.  相似文献   

6.
Surface wetness is an important variable for forecasting plant disease. It is commonly measured with sensors, but these provide an indirect measurement and there is variability between different makes of sensors. Consequently, there is no standard for surface wetness measurement. The objective of this study was to derive and validate a physically based theoretical definition of surface wetness for both drops and films drying under controlled conditions. The validation compared observations of surface wetness with theoretical simulations for a range of factors: atmospheric variables including temperature, humidity, net radiation and wind speed; plant physical properties including surface wettability, leaf width and thickness; and initial water distribution including drop volume and film thickness. The drying of drops and films was studied in a wind tunnel and a laboratory setting. Surface wetness duration was most sensitive to initial drop volume or film depth, relative humidity and surface wettability in the case of water distributed as drops. Surface wetness duration was relatively insensitive to other atmospheric variables. Water distribution whether drop or film, made a four-fold difference in evaporation rate compared to leaf width, which was unimportant for leaves larger than 3 cm. The observations were compared to the theoretical estimations using a surface energy balance model. The surface energy balance model is based on a combination equation and a generic transfer coefficient. The transfer coefficient is dependent upon whether the water is present as drop or film and is assumed to be independent of leaf width or drop dimension. Considerations of drop geometry are ignored, although the initial wet area must be known. The theoretical understanding of drop and film drying under controlled conditions could potentially be useful in a field scale model of surface wetness. Since all the factors that influence surface wetness can be explicitly defined, such a field scale model has potential to be used as a theoretical standard for surface wetness estimation. Additional research is required to test this model under controlled conditions of condensation.  相似文献   

7.
Summary The hydrolysis of fertilizer-grade solid and liquid ammonium polyphosphate (APP) was studied on an aluvial (Entisol, Typic Ustifluvent), a sodic (Entisol Aquic Ustifluvent), and a laterite (Oxisol, Aquox) soil under aerobic and anaerobic conditions. The hydrolysis rate was the fastest on laterite, intermediate on sodic, and slowest in the alluvial soil. Ammonium polyphosphate hydrolyzed more rapidly under anaerobic than under aerobic conditions. The hydrolysis of liquid ammonium polyphospahte was faster than that of solid ammonium polyphosphate in all soils. The half-life values for the polyforms of P in liquid ammonium polyphosphate ranged from 1.6 to 2.0 days under anaerobic and from 5.2 to 8.7 days under aerobic conditions. The corresponding values for solid ammonium polyphosphate were 3.9 to 9.2 days under anaerobic and 12.5 to 27.0 days under aerobic conditions.  相似文献   

8.
9.
The effects of salinity and Mg2+ alkalinity on the size and activity of the soil microbial communities were investigated. The study was conducted along the border area of the alluvial fan of the Taolai River. Thirty soil samples were taken which had an electrical conductivity (EC) gradient of 0.93-29.60 mS cm−1. Soil pH ranged from 8.60 to 9.33 and correlated positively with Mg2+/Ca2+ ratio, exchangeable Mg2+ percentage and HCO3+CO32−. Mg2+/Ca2+ varied considerably from 3.04 to 61.31, with an average of 23.03. Exchangeable Mg2+ percentage generally exceeded 60% and had a positive correlation with Mg2+/Ca2+. HCO3+CO32− averaged 1.63 cmol kg−1 and usually did not exceed 2.0 cmol kg−1.Microbial biomass, indices of microbial activity and the activities of the hydrolases negatively correlated with Mg2+/Ca2+ or exchangeable Mg2+ percentage. Biomass C, biomass N, microbial quotient (the percentage of soil organic C present as biomass C), biomass N as a percentage of total N, potentially mineralizable N, FDA hydrolysis rate and arginine ammonification rate decreased exponentially with increasing EC. The biomass C/N tended to be lower in soils with higher salinity and Mg2+ alkalinity, probably reflecting the bacterial dominance in microbial biomass in alkalized magnesic soils. The metabolic quotient (qCO2) positively correlated with salinity and Mg2+ alkalinity, and showed a quadratic relationship with EC, indicating that increasing salinity and Mg2+ alkalinity resulted in a progressively smaller, more stressed microbial communities which was less metabolically efficient. Consequently, our data suggest that salinity and Mg2+ alkalinity are stressful environments for soil microorganisms.  相似文献   

10.
《Applied soil ecology》2007,35(2):319-328
The effects of salinity on the size, activity and community structure of soil microorganisms in salt affected arid soils were investigated in Shuangta region of west central Anxi County, Gansu Province, China. Eleven soils were selected which had an electrical conductivity (EC) gradient of 0.32–23.05 mS cm−1. There was a significant negative exponential relationship between EC and microbial biomass C, the percentage of soil organic C present as microbial biomass C, microbial biomass N, microbial biomass N to total N ratio, basal soil respiration, fluorescein diacetate (FDA) hydrolysis rate, arginine ammonification rate and potentially mineralizable N. The exponential relationships with EC demonstrate the highly detrimental effect that soil salinity had on the microbial community. In contrast, the metabolic quotient (qCO2) was positively correlated with EC, and a quadratic relationship between qCO2 and EC was observed. There was an inverse relationship between qCO2 and microbial biomass C. These results indicate that higher salinity resulted in a smaller, more stressed microbial community which was less metabolically efficient. The biomass C to biomass N ratio tended to be lower in soils with higher salinity, reflecting the bacterial dominance in microbial biomass in saline soils. Consequently, our data suggest that salinity is a stressful environment for soil microorganisms.  相似文献   

11.
The development of an organic matter (OM) based on mixed sheep manure and peat, when it was incorporated into soils as fertilizer, was studied. The experiment was carried out in soils under almond tree culture, with drip irrigation and non irrigation regimes. Two doses, 10 and 4.5 kg tree–1, were assayed. Changes in the humic acid fraction one year after incorporation into soils showed oxidation and enrichment in condensed structures, as observed by an increase of the O*:H* ratio and a decrease of the H*:C* ratio, and also by FTIR spectra. The oxidative process was more significant in the coarser textured and also in the non‐irrigated soil. The evolution of the ratios Cext:Cox and CHA:CFA throughout the culture cycle was followed by sampling and chemical analysis of different forms of organic carbon. Evolution of Cext:Cox showed a uniform humification state in the irrigated soil, and a significant decrease in the non‐irrigated soil, at the beginning of the experiment. Curves of CHA:CFA evolution showed changes attributed to mineralization or drainage of the fulvic acids fraction, giving a maximum in spring in both soils and a final increase at the end of the cycle by drainage only in the irrigated soil.  相似文献   

12.
Shai Zwikel  Hanoh Lavee  Pariente Sarah   《CATENA》2007,70(3):282-295
The research was conducted in Israel at three sites along a south–north axis, characterized by increasing annual rainfall, from 310 mm at site LAV in the south through 600 mm at site MAT (600), to 800 mm at site EIN in the north. At each site soil samples were taken during several seasons (September 2001 through April 2003), in three dominant microenvironments at 0–2 cm and 5–10 cm. The following microenvironments were selected at LAV and MAT: “Under Shrub” (US), “Between Shrubs” (BS), and “Under Rock fragments” (UR). At EIN the selected microenvironments were US, BS, and “Under Tree” (UT). In each soil sample electrical conductivity (EC), pH, and concentrations of several ions were determined. The objective was to analyze the effects of soil microenvironments and climatic conditions on the temporal dynamics of salt concentrations. In all microenvironments at all sites the minimal values of EC were found in the rainy season (January or April), and the maximal values in the dry season (September). In the rainy season the temporal variability of EC in the topsoil was regulated by: (1) clay, which restricted the leaching of salts from the topsoil when EC was low; and (2) surface features (microenvironment), when EC was high. In the UT, US, and UR microenvironments the rainy season could be divided into two periods with respect to their effect on salt movement in the topsoil: at the beginning of the rainy season (September–January) the reduction in EC was relatively moderate, especially with regard to ions involved in biotic activity (Mg++ and K+), whereas, late in the rainy season (January–April) there was enhanced reduction in EC. In contrast, in BS the regulation of salt movement was weak at all sites. Hence, in this microenvironment the salts concentration (mainly Na+ and Cl) responded rapidly to changes in rain amount and soil moisture and temperature. In the dry season (April–September) the temporal variation in EC varied not only between microenvironments but also between sites. In US, where local surface features were similar at all sites (the same shrub), the rise in EC was maximal at LAV (mainly Ca++ and Na+), and gradually diminished toward EIN. Thus, the contribution of regional sources to the salts added to the soil diminished toward the humid site, EIN, where the EC hardly changed in any microenvironment. In BS and UR microenvironments the rise in EC (mainly in Ca++, Na+, and K+) was greatest at site MAT, and decreased toward LAV and EIN. It seems that this pattern was affected also by changes in local biotic activity.  相似文献   

13.
Summary The course of recovery in biological activity was assessed in the top 5 cm of undisturbed soil cores (29.7 cm diameter, 30 cm deep) that had been fumigated in the laboratory with methyl bromide. The cores were returned to their original pasture and forest sites, two with a moderate and two with a high rainfall, and untreated soils at all sites served as baselines. Sampling took place over 166 days (midsummer to midwinter). Microbial biomass (as measured by fumigation-extraction and substrate-induced respiration procedures) and dehydrogenase activity both recovered rapidly, but remained consistently lower in the fumigated than in untreated samples at both forest sites and at the moister of the two pasture sites. Bacterial numbers also recovered rapidly. Fungal hyphal lengths were, on average over 166 days, 25% lower in the fumigated soils. Levels of mineral N were initially highest in the fumigated soils, but declined with time. Fumigation generally had no detectable effects on the subsequent rates of net N mineralization and little effect on nitrification rates. Fumigation almost totally eliminated protozoa, with one to three species being recovered on day 0; the numbers recovered most rapidly in the moist forest soil and slowly in the dry pasture soil. The recoionization rate of protozoan species was similar in all soils, with species numbers on day 110 being 33 and 34 in the fumigated and untreated soils, respectively. Nematodes were eliminated by fumigation; recolonization was first detected on day 26 but by day 166, nematode numbers were still lower in fumigated than in untreated soils, the abundance being 10 and 62 g-1 soil and diversity 10 and 31 species, respectively. Overall, the results suggest that protozoan and nematode populations and diversities could provide a useful medium-term ecological index of the recovery in comprehensive soil biological activity following major soil pollution or disturbance.  相似文献   

14.
Numerical values in the RGB, HSB, and L*a*b systems for the colors of structurally differentiated soils (Luvisols) in the Volga–Kama forest-steppe have been obtained using a digital camera. A high correlation has been revealed between the soil color and the content of humus in the range 0.39–6%. When the content of humus exceeds 6%, the color of humus horizon varies only slightly. A regression equation within the RRGB range from 85 to 173 has been calculated for the rapid determination of humus content in low- and medium-humus texturally differentiated soils of the Volga–Kama forest-steppe.  相似文献   

15.
The effect of different land-use practices on the carbon budget in old arable gray forest soils of Russia was studied in field experiments. A short-term (for 6–7 years) cessation of mineral fertilization had no negative effects on the carbon budget in the agrocenoses studied. Only the combination of zero fertilization with the return to monoculture and the introduction of black fallows created a negative budget of humus in the soil. The regrassing of the eroded arable soil for 24 years increased the humus reserve in the 0- to 60-cm layer by a factor of 1.6–1.7. The average annual accumulation of carbon and nitrogen after the restoration of the perennial vegetation was 106–128 g C/m2 and 11–16 g N/m2, respectively.  相似文献   

16.
Site specific variables and anthropogenic factors influence composition of soil organic matter (SOM). We evaluated quantity and quality of SOM under different fertilization regimes and site conditions. The study combines data based on repeated measurements obtained from six long-term field experiments, which have been established between 1955 and 1983 at ten locations, resulting in thirteen site and experiment combinations. The experimental sites cover a wide spectrum of pedological and climatic conditions of the Czech Republic. Four basic fertilization regimes were selected: unfertilized plots, mineral-only fertilized plots, plots with application of farmyard manure, and both organic and mineral fertilized plots. The study employs compositional data analysis, principal component analysis, and mixed effect linear models for statistical inference. Under combined organic and mineral fertilization, total soil organic C (SOC) increased by 1?3 g kg?1. Evidence of possible priming effect was obtained for mineral-only fertilization. Local site conditions were the dominant factor shaping SOM properties. The positive relationship between proportion of clay in soil and decomposition index (DI) was confirmed. In the absence of fertilization, DI was eleven times higher in clay-rich than in clay-poor soil. This effect was moderated by fertilization, decreasing to a seven-fold difference under the full fertilization regime.  相似文献   

17.
Abstract

Soil carbon evolution under the lowest moisture conditions varies considerably among experimental systems/techniques, leading to discrepancies in the estimations from carbon dynamics models under low moisture conditions. We focused our study on clarifying the regulating factors of soil carbon evolution under the lowest moisture conditions by conducting laboratory experiments under precisely controlled conditions. Nanoscale porosity and surface properties of these soils were determined to analyze the role of residual water in the carbon evolution processes in dry soils. Laboratory incubation showed that the carbon evolution from a microporous (D < 2 n m) volcanic soil proceeded even at -100 U kg-1 water potential (INT) in contrast to the carbon evolution from a phyllosilicate alluvial soil. Pore-size estimation and 1H-NMR spectroscopy showed that the carbon evolution at -100 U kg-1 WP proceeded through the utilization of nanopore-water in soils. Batch sorption experiment suggested that the surface affinity of the soils to dissolved organic matter (DOM) had enhanced carbon evolution by attracting DOM into hydrophilic spheres of the soil at -100 U kg-1 MT. Solid-state IIGNMR of organic matter samples (incubated in the absence of soils) suggested that the chemical alteration of the samples was significant for aliphatic components, while the alteration was not observed in the samples incubated at -100 U kg-1 WP. This fact also indicated the contribution of nanoscale pores in the volcanic components to carbon evolution. Application of the experimental results to several biogeochemical models revealed that both volumetric water content and MT are required to estimate carbon evolution under low moisture conditions. A micro habitat model showed that the carbon evolution at -100 U kg-1 WP could be attributed to extracellular enzymatic processes or other abiotic processes rather than to the activities of living microorganisms.  相似文献   

18.
The kinetics of nitric oxide consumption in four tropical soils were studied under oxic and anoxic conditions in a flow-through system in the laboratory. Under anoxic conditions the soils had a very high affinity for NO, resulting in K M values of 0.02–0.27 ppmv NO (equivalent to 0.04–0.50 nM NO in the aqueous phase). These K M values were lower than literature values for NO consumption by denitrifying bacteria. Under oxic conditions the kinetics of NO consumption in the tropical soils were completely different, exhibiting K M values higher than 1.7 ppmv. These higher K M values were similar to literature values for NO consumption by aerobic heterotrophic bacteria. Thus, the tropical soils studied seem to contain two different NO consumption activities which can be distinguished by their kinetics and which predominate under aerobic and anaerobic conditions, respectively. However, it was not possible to quantify the contribution of each process to total NO consumption under natural conditions. Under aerobic conditions NO turnover kinetics were positively correlated with soil respiration, N mineralisation and soil organic carbon, whereas under anaerobic conditions they were positively correlated with potential and actual denitrification rates and pH. Received: 26 September 1996  相似文献   

19.
Summary Several workers have reported that O2 has little, if any, effect on hydrolysis of urea by soil urease, but others have reported that it has a marked effect, hydrolysis being significantly faster in soils under aerobic conditions than in O2-depleted soils. In studies to account for these divergent results, we found that whereas plant residues and other readily decomposable organic materials markedly stimulated microbial production of urease in soils under aerobic conditions, they did not greatly stimulate production of urease in soils under anaerobic conditions. We also found that although anaerobic conditions retarded production of urease by soil microorganisms, they did not inhibit hydrolysis of urea by soil urease. These observations suggest that the divergent findings concerning the effect of O2 on hydrolysis of urea by soil urease may have resulted from differences in the amounts of readily decomposable organic materials in the soils studied.  相似文献   

20.
Previous field studies in N Europe have shown that the impact of soil tillage on soil respiration is mostly indirect, caused by altered distribution of plant residues in soil affecting decomposition of residues. Tillage operations alter soil moisture and temperature conditions in soil, which control decomposition dynamics. Experiments under laboratory conditions allow indirect effects of altered residue decomposition to be distinguished from direct effects of mechanical disruption, i.e., the increased exposure of substrates within aggregates and micropores upon tillage. This study examined the effects of physical disruption of soils with different soil texture, land‐use history, and soil organic C content on soil respiration under controlled abiotic conditions. Undisturbed soil samples from 7 sites (arable land and grassland) were incubated at 20°C and three different water potentials (–1, –10, and –30 kPa). Soil respiration was measured before and after physical disruption with laboratory homogenizer, using an automated respiration apparatus. Soil organic C, water content, and bulk density explained 67% of the variation in base respiration. In half of the disrupted samples, bulk density was re‐adjusted by re‐compaction to conditions prevailing before disruption. Disruption and re‐compaction generally resulted in higher respiration flushes than disruption alone. Respiration peaks increased with water content. However, total C losses were small and corresponded to < 0.1 Mg C ha?1. Overall, physical soil disruption increased decomposition of soil organic matter only marginally and temporarily. It would be difficult to detect an effect of tillage on soil organic matter decomposition under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号