首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using a representative sample of stands from a cross section through the Bavarian portion of the northern Calcareous Alps, this study evaluates the plausibility and significance of causal hypotheses for an explanation of the poor crown condition of Norway spruce in mountain forests: (1) ozone exposure in conjunction with (a) drought and (b) ample water supply; (2) soil-borne nutrient deficiency; (3) drought; and (4) tree age. Site index and, in a subset of stands, foliar nutrient concentrations are considered as additional indicators of tree vigour. According to principal component analysis and multiple regression, crown condition was controlled by soil chemistry (transparency increased towards shallow calcareous soils), stand age and, to a smaller degree, by an interaction between ozone exposure and drought. Site index was best explained by a model including elevation, soil chemistry and drought. Tree nutrition clearly reflected the main soil chemical gradient, and P, N and Fe deficiencies were found in transparent stands, which had markedly smaller needles. The similar distributions of crown transparency, site index and nutrition present a strong argument for the hypothesis that soil chemistry has constrained the vigour of spruce trees in the Calcareous Alps for a long time. By leaving unproductive stands to age naturally, forest management has accentuated the pattern of crown condition. In the heterogeneous alpine landscape, possible effects of recent increases in ozone exposure have to be viewed extremely carefully against the background of these natural and anthropogenic covariables.  相似文献   

2.
ADAMS  S. N.; JACK  W. H.; DICKSON  D. A. 《Forestry》1970,43(2):125-133
A soil survey of Lisnaskea Forest, Co. Fermanagh, showed thatgrowth of Sitka spruce was far from uniform on areas of apparentlyuniform soil. The relation between soil factors, tree growth,and foliar nutrient status on two blocks of trees growing ongleyed soils was therefore studied. Simple regression showed that tree growth was poor when thelevels of foliar nutrients were low and when there was a matof undecomposed needles on the forest floor. It is thereforeconsidered that lack of organic matter breakdown in the soilis causing poor tree nutrition and growth. Multivariate statistical analysis also showed highly significantregressions between tree growth, level of foliar nutrients,and depth of litter layer. The correlations between soil factorsalone and tree growth were barely significant and the multivariatetechnique did not give an acceptable method of predicting treegrowth from soil measurements. Methods of improving soil conditions are discussed.  相似文献   

3.
This study aimed to improve knowledge about the nutritional status, site requirements and site classification for European ash (Fraxinus excelsior L.) and sycamore maple (Acer pseudoplatanus L.) by reinvestigating young plantations from 1991/1992 on windfall-affected areas in Bavaria/Germany after another decade. Compared to the first survey in 1995, most stands improved their nutritional status until 2006. With the data set of element concentrations in leaves of ash and sycamore available, the range of adequate nutrition could be determined for these species in the pole stage phase. Both species show considerable height growth on a wide range of sites. Mean annual height growth of dominant sycamore trees increased with rising foliar N or P concentrations but not for Ca, Mg, K, Mn, Fe and Al. For ash, there was no relationship between the foliar nutrient level of any element and mean annual height growth. However, total height around age 20 was favourably influenced by high base saturation and a good water supply at well-drained sites. On acid soils, where nutrients are delivered by subsurface water flow, well-growing stands are found as well. Soil water status according to the state forest soil classification had no significant impact on mean annual height growth. Ash and sycamore show reduced productivity on some (moderately) dry soils and fail on poorly drained moist sites. Based on these results, the classification of forest sites suitable for ash and sycamore within the Bavarian study sites was revised. Dedicated to Professor Dr. Karl-Eugen Rehfuess on his 75th birthday.  相似文献   

4.
In many countries ground vegetation and humus type are used as indicators of forest soil quality, especially nutrient regime. This paper reports the development of such methods for use in British forests, within a new Ecological Site Classification combining climate, soil moisture regime and soil nutrient regime.

To develop a field assessment method for soil nutrient regime, a study was made of soil chemistry, humus type and ground vegetation in British forests. Sites were selected in both mature plantations and semi-natural woodlands. Soil and humus profiles were described and the soil was sampled volumetrically for later chemical analysis. Vascular ground vegetation was recorded in quadrats by species cover fraction, and classified according to the existing British National Vegetation Classification. Soils were analyzed for a number of chemical variables. Vegetation data were treated by application of the species indicator values for soil reaction (R) and soil nitrogen (N), as proposed by Ellenberg [Vegetation Ecology of Central Europe, 4th Edition. Cambridge University Press, Cambridge]. Site mean indicator values mR and mN (weighted by species cover fraction) were then calculated. Multivariate statistical analysis techniques were applied to both the soil chemical and the vegetation sample data.

Soil nutrient regime was shown to be a composite gradient of several soil chemical variables, of which the pH value and the availability of mineral (especially nitrate) nitrogen, and of calcium, were of particular importance. The species composition of the ground vegetation was related to position on this soil nutrient gradient. The vegetation: soil nutrient correlation using the site mean Ellenberg values was satisfactory (r=0.89), but was improved by using indicator values generated from within the present data. The occurrence of the major humus types (mor, moder and mull) is broadly related to soil nutrient regime defined in this way. Both ground vegetation and humus type can therefore be used as soil nutrient indicators in British forests.

A division of the soil nutrient gradient into five classes (Very Poor, Poor, Medium, Rich and Very Rich) is proposed. Future sampling work may lead to the definition of an additional class of soils with carbonate nutrient regimes. The Ecological Site Classification will provide forest managers in Great Britain with an improved basis for the selection of tree species for planting, and the adoption of silvicultural methods best suited to the site.  相似文献   


5.
The chemical fertility of the forest soils in the Belgian Ardenne is threatened by acidifying and eutrophying deposition and by the nutrient removal due to timber harvesting. Experiments were launched to evaluate the ability of liming and fertilization to improve foliar nutrition, maintain or restore crown condition and promote tree growth. In 1995, 10 liming and fertilization trials were installed in even-aged stands of European beech (5) and Norway spruce (5) distributed throughout the Ardenne. In each stand, two treatments were tested: liming with 3,000 kg ha−1 of dolomitic limestone and liming plus fertilization with 0 to 800 kg ha−1 of rock phosphate and 0 to 350 kg ha−1 of K2SO4. Between 1995 and 2006, the foliar Ca and Mg status of spruce and beech trees improved in the limed stands, which limited significantly but did not prevent the decline in crown condition triggered by the summer drought in 2003. For spruce, liming also increased the increment in basal area. The additional fertilization increased the foliar nutrition in P but had no significant effects on soil chemistry and tree vitality.  相似文献   

6.
Seasonal retranslocation in white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss) was examined in response to silvicultural treatments (scarification, annual fertilization application, and annual control of competing vegetation with herbicide) that changed both environmental conditions and the growth rate of the trees. Four years after plantation establishment and initial treatment, nutrient accumulation in current-year needles of white pine and retranslocation from 1-year-old needles were increased following the vegetation control treatment, which increased resource availability (nutrients, water and light) and, hence, growth rate. Nutrient accumulation also increased in current-year white spruce needles following the same treatment, whereas retranslocation decreased in 1-year-old white spruce needles. Correlations of retranslocation (N, P and K) with growth rate (shoot biomass increment) showed a strong positive relationship for white pine and a negative relationship for white spruce. Retranslocation of K was correlated with foliar and soil K concentrations; the availability of this nutrient was also significantly reduced by vegetation control. A general theory for the control of nutrient retranslocation in conifers, which is not based exclusively on either sink strength or soil nutrient availability, is proposed. We conclude that retranslocation response is species specific and related to the potential phenotypic growth response to changing environmental conditions and to short-term imbalance in the supply versus the demand for nutrients.  相似文献   

7.
In this paper, we suggest new nutrient threshold values and ratios for the major nutrients (N, P, K, Ca, Mg) for four main trees species Pinus sylvestris, Picea abies, Fagus sylvatica and Quercus (Q. robur and Q. petraea) statistically derived from the data collection of van den Burg’s literature compilation (1985, 1990), and compare them with widely used central European literature. The comparison is focused on the normal range of nutrition of major elements. We could show that the new critical foliar nutrient concentrations and ratios do not have the imponderabilities of the established reference systems, like restricted calibration range or data gaps for species in general or some major nutrients in particular. Ranges from the new critical foliar nutrient concentrations are generally smaller, except for broadleaves foliar Ca and Mg values, where another reference provides the narrowest ranges. The practicability of the different systems has been exemplary tested on a foliage data set of Norway spruce from the Bavarian soil survey. This application illustrates that an evaluation based on the new nutrient thresholds is in the majority of cases more cautious than the other reference systems. Moreover, evaluations based on the new concentrations and ratios are quite consistent. Comparisons with nutrient ratios related to the susceptibility to parasite attacks show that the thresholds are close to a general optimum range, indicating health and intact resistance mechanisms of these tree species. Uncertainties of the new threshold values as well as the need to further evaluate and develop reference systems for nutrient status of forest trees are discussed.  相似文献   

8.
The effects of competition from red raspberry (Rubus idaeus L.) and northern hardwood tree species on white spruce (Picea glauca (Moench) Voss) seedlings were examined on a clearcut site of the boreal mixedwood forest of the Bas-Saint-Laurent region of Quebec, Canada. A controlled experiment involving a gradient of five vegetation densities on the basis of the leaf area index (LAI) was established in a completely randomized plot design with six replications. Each of the five levels of vegetation cover (including vegetation-free plots) were examined to evaluate how they affected environmental factors (quantity and quality of light reaching the spruce seedlings, and soil temperature), spruce growth (height, basal diameter, volume index, and above-ground biomass), spruce mortality, browsing damage, spruce foliar mineral nutrition, as well as the stand structural development, during the first 5 years after seedling planting.

Each spruce growth variable analyzed in this study, according to a RMANOVA procedure, followed a negative hyperbolic form of density dependence of competitive effects. Loss of growth in young white spruce plantations in competition with northern hardwoods is likely to occur with the first few competitors. In cases where higher levels of competing vegetation were maintained over time, loss of spruce growth was extremely severe, to an extent where the exponential growth character of the young trees has been lost. At the end of the fifth year, spruce growing with no interference were larger in mean total above-ground biomass by a factor of 9.7 than those growing with the highest level of vegetation cover. Spruce did not develop a strategy of shade avoidance by increasing tree height, on the contrary. Spruce mortality differed among treatments only in the fifth year, indicating that early evaluation of spruce survival is not a strong indicator of competitive effects, when compared to diameter growth. Spruce foliar N and Ca contents were significantly reduced by the first level of competing vegetation cover, while K increased with the density of the vegetation cover, and P and Mg were not affected. Nitrogen nutrition of young white spruce planted on recently disturbed sites is discussed in relation to the potential root discrimination of this species against soil nitrate, a reaction observed by Kronzucker et al. [Kronzucker, H.J., Siddiqi, M.Y., Glass, A.D.M., 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature London 385, 59–61]. The effects of hardwood competition indicate a prevalence of competition for light over a competition for nutrients, as revealed by the substantial increase in the h/d ratio of white spruce. Two indicators, h/d ratio and the quantity of light received at the tree seedling level, are suggested as a basis for the management of hardwood competition in a white spruce plantation.

Analysis of the stand structural development indicates that spruce height distribution was affected only by moderate or dense cover of vegetation, while diameter distribution, when compared to competing vegetation-free plots, was affected by the lowest level of vegetation cover. This study shows that competition influenced the stand structural development in the same way as genetic and micro-site factors by aggravating the amplitude of size inequality. The impact of hardwood competition is discussed in view of reaching an equilibrium between optimal spruce plantation growth and benefits from further silvicultural treatments, and maintaining hardwood species known to improve long term site quality, within a white spruce plantation.  相似文献   


9.
Foliar nutrient imbalances, including the hyperaccumulation of manganese (Mn), are correlated with symptoms of declining health in sensitive tree species growing on acidic forest soils. The objectives of this study were to: (1) compare foliar nutrient accumulation patterns of six deciduous (sugar maple (Acer saccharum Marsh.), red maple (Acer rubrum L.), red oak (Quercus rubra L.), white oak (Quercus alba L.), black cherry (Prunus serotina Ehrh.) and white ash (Fraxinus americana L.)) and three evergreen (eastern hemlock (Tsuga canadensis L.), white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss.)) tree species growing on acidic forest soils; and (2) examine how leaf phenology and other traits that distinguish evergreen and deciduous tree species influence foliar Mn accumulation rates and sensitivity to excess Mn. For the first objective, leaf samples of seedlings from five acidic, non-glaciated field sites on Pennsylvania's Allegheny Plateau were collected and analyzed for leaf element concentrations. In a second study, we examined growth and photosynthetic responses of seedlings exposed to excess Mn in sand culture. In field samples, Mn in deciduous foliage hyperaccumulated to concentrations more than twice as high as those found in evergreen needles. Among species, sugar maple was the most sensitive to excess Mn based on growth and photosynthetic measurements. Photosynthesis in red maple and red oak was also sensitive to excess Mn, whereas white oak, black cherry, white ash and the three evergreen species were tolerant of excess Mn. Among the nine species, relative rates of photosynthesis were negatively correlated with foliar Mn concentrations, suggesting that photosynthetic sensitivity to Mn is a function of its rate of accumulation in seedling foliage.  相似文献   

10.
The impacts of different methods of mechanical site preparation (MSP) on performance and foliar nutrition of planted white spruce (Picea glauca (Moench) Voss) seedlings were examined at two mixed-wood boreal forest sites (Judy Creek, Fox Creek) in Alberta, Canada. The treatments included three types of MSP: disc trench, ripper plough, and bladed, the latter including thin and thick microsites (based on depth of remaining organic matter); as well as a harvested-control (no MSP). Seedlings were planted in June 1991, four months after MSP, and foliar N, P, K, Ca, Mg, S, Mn, Fe, and Al were assessed in the second and third growing seasons (13, 25, and 28 months later). Nutrient concentration and relative (among treatments) foliar nutrient content scaled up to the level of the whole seedling were examined. Following analysis of variance, significant responses were interpreted using vector analysis. MSP did not significantly affect seedling survival, height or unit needle weight. There was a non-significant trend of higher foliar biomass for seedlings in MSP areas than for control seedlings. Overall, the impact of MSP on foliar nutrient status on these sites was minimal. The only consistent positive effect of MSP on seedling nutrition was increased foliar Mg concentrations in blade-thin sites at Fox Creek. Indications of possible negative impacts of MSP include: increased Fe and Al concentrations in MSP areas at both sites; reduced P and K concentrations at both sites; and reduced Mn concentration and content at one site. The ripper treatment had the greatest positive effect on foliar nutrient status (P, K, Mn concentration). Blading (particularly blade-thin) resulted in the lowest concentrations of foliar P, K and Mn and the greatest increases in foliar Fe and Al.  相似文献   

11.
DICKSON  D.A. 《Forestry》1971,44(1):17-26
The effects of superphosphate, ground rock phosphate, and basicslag, each applied in three positions, on the growth of Sitkaspruce (Picea sitchensis Carr.) were compared up to the eighthyear after planting on deep oligotrophic blanket peat in NorthernIreland. Broadcast application was initially the most effective,but after eight years there was no significant difference inmean tree height between this method and placement on top ofthe planting ribbon. Application of fertilizer below the ribbongave consistently poorer results but with the previously usedmethod of placement in the planting hole growth was almost 40per cent less even than this. At equivalent rates, superphosphateand ground rock phosphate were equally effective and both weresignificantly better than basic slag. Fertilizer position had little effect on foliar nutrient concentrationin either the fifth or eighth growing seasons. In both seasons,foliar N concentration increased with amount of slag appliedbut N levels were higher with superphosphate and G.R.P. in boththe fifth and eighth seasons. At the lower rates of appliedslag, foliar N concentrations were below the accepted optimumin the eighth season. Foliar P concentration also decreasedsignificantly with time and, except where 100 Kg P per ha hadbeen applied as slag, the P nutrition of the trees after 8 yearswas becoming critical. Fertilizer treatment had no significanteffect on foliar K concentration in the fifth season but bythe eighth season foliar K levels were inversely related togrowth rate. This suggests an imminent K deficiency. It is concluded that the broadcast application of ground rockphosphate at not less than 50 Kg P per ha is an effective fertilizerregime for the establishment of Sitka spruce on deep blanketpeat, but that supplementary fertilizing with K, and possiblyP, may be necessary about 8 years after planting.  相似文献   

12.
Reclamation of post-mining sites is challenged by limiting factors including adverse soil chemical and physical properties, along with weed competition. Fertilization may alleviate nutrient deficiencies, but broadcast fertilization with immediately available fertilizers (IAF) results in generally low rates of nutrient recovery for planted trees. Directed application of controlled-release fertilizer (CRF) to the rhizosphere offers an alternative to extend nutrient longevity while reducing nutrient leaching or uptake by competing vegetation. We evaluated white spruce (Picea glauca (Moench) Voss) and aspen (Populus tremuloides Michx.) development on a mine reclamation site in the Oil Sands Region of northern Alberta in response to IAF and polymer-coated CRF (3–4 and 8–9 month release). IAF and CRF (each NPK plus other macro- and micro-nutrients) were applied at 20 and 40 g N seedling?1 and 2 and 4 g N seedling?1, respectively. No effect on seedling survival occurred. White spruce year-1 height and diameter growth responded positively to both IAF and CRF relative to non-fertilized controls, but in year-2 seedlings treated with CRF (i.e., 8–9 month) outperformed those fertilized with IAF, which were similar to controls. Aspen height growth did not respond strongly to fertilization in either year, but diameter growth showed positive responses to all fertilizer treatments in year-1 and to all CRF treatments and the high IAF rate in year-2. Responses were attributed to a pronounced increase in vegetative competition observed for IAF relative to CRF or controls following the first growing season, and generally higher levels of foliar N in year-1 for CRF compared to IAF or unfertilized trees. Thus, directed root zone application of CRF promoted seedling growth responses similar to or better than those induced by broadcast IAF applications, but at 90–95 % lower N application rates.  相似文献   

13.
Techniques to determine the respective effects of resource limitation or over supply on tree productivity are important for developing effective forestry and agroforestry management strategies. There is a need for a simple integrative measure of the understorey effect on soil nutrient and moisture competition on tree productivity in agroforestry systems during the time period before trees dominate understorey vegetation. For the first time, the little used, but potentially valuable tool of vector analysis was evaluated over 5 years by investigating nutrient and water competition in a Pinus radiata silvopastoral experiment which had 5 pastures and a nil-understorey control. The study, from ages 2 to 6 years, was on fertile arable soils in a temperate, sub-humid climate. Establishing permanent crops on this arable site increased soil pH, C, N, organic-P and C:N ratio. Vector analysis, an analysis based on fascicle nutrient concentrations, dry weights and nutrient contents, predicted nutrient and moisture competition until the trees dominated the site after year 5. Foliar critical nutrient levels were helpful where one of the vectors was unable to distinguish between nutrient and moisture stresses. While moisture and N were found to be the main competitive factors, vector analysis also detected foliar nutrient accumulation, particularly for P and Mg. Lucerne and phalaris understoreys were the most competitive pastures, followed by cocksfoot and the two ryegrass treatments. Foliage vector analysis enabled the relative competitive effects of soil nutrients and moisture on tree productivity to be determined. Soil nutrient concentrations and soil moisture measurements and the effects of competition on tree growth were consistent with predictions from vector analysis.  相似文献   

14.
Calcium (Ca) is an essential macronutrient in plants and is an important component of many cellular structures and physiological processes as well as overall forest function. Aluminum (Al) in soil solution can inhibit Ca uptake by plants and disrupt many Ca-dependent metabolic and physiological processes of plants. The ratio of Ca to Al in soil solution can be an important indicator of forest health, especially on acid soils. We used sequential chemical extractions (water, acetic acid and hydrochloric acid) to assess the chemical availability of Ca and Al in foliage from mature red spruce (Picea rubens Sarg.) trees growing under ambient environmental conditions. In plants deficient in Ca and with intermediate total foliar Ca concentration ([Ca]), Ca preferentially accrued in labile and physiologically available forms (water- and acetic acid-extractable). In plants with total foliar [Ca] above a "sufficiency" threshold, Ca also accrued in a chemically sequestered form with low solubility (HCl-extractable), suggesting that Ca sequestration is an inducible process in response to excess foliar Ca. Because it has low solubility, it is likely that sequestered Ca is unavailable for Ca-dependent physiological processes. Immobilization of Al in foliage was related to Ca sequestration, suggesting that Ca sequestration may provide a passive mechanism for Al tolerance in the foliage of these trees. Aluminum immobilization was evident based on the ratio of HCl-extractable Al to the more labile (water- and acetic acid-extractable) forms of Al. Sufficient labile Ca combined with Al sequestration was associated with plant health, including enhanced foliar accretion of Mg and Mn, greater tree growth, enhanced foliar cold hardiness and reduced winter injury. These findings demonstrate that not all chemical forms of foliar Ca and Al are of equal physiological significance and underscore the importance of assessing the biologically significant element forms in biogeochemical research.  相似文献   

15.
Phosphorus is an essential nutrient for forest growth. In this study, we assessed the impact of soil extractable phosphorus using two simple extraction methods on nutrition and productivity of Norway spruce in sixteen mature forest stands on different bedrocks and soils in Bavaria, Southern Germany. Representative trees were sampled for needles, twigs, branches, stem bark, and stem wood. Total phosphorus content in the tree parts and soil phosphorus stock extractable with citric acid and sodium bicarbonate up to a soil depth of 80 cm were determined. We found that easily soil extractable phosphorus is a suitable indicator for estimating phosphorus uptake and stand productivity in Norway spruce. In contrast, organic layer phosphorus showed no significant correlation with aboveground biomass phosphorus contents. In the biomass, the highest phosphorus contents were measured in young needles and twigs, but the highest correlation with soil phosphorus was detected for phosphorus contents in needles and bark. The stock of phosphorus extracted by citric acid down to 40 cm soil depth revealed the best correlation with phosphorus in needles and bark. Therefore, as a supplemental or alternative method to needle analysis, our study suggests the use of phosphorus contents in stem bark to evaluate tree phosphorus nutrition. These results highlight the suitability of the citric acid soil extraction method to characterize plant available phosphorus in Norway spruce ecosystems.  相似文献   

16.
Since the year 2000 mature beech and spruce trees were treated in a field experiment with double ambient ozone concentrations. Elevated ozone had no influence on average single leaf biomass and there were also no ozone effects on leaf nutrient concentrations in climatic normal years. However, the extraordinary dry summer 2003 triggered significant differences between the fumigated and control trees. For beech in the year after the drought event the control trees surprisingly had significantly lower foliar levels of K and P than in former years, whereas the ozone exposed trees showed no significant nutritional effects. There are indications, that the trees exposed to double ambient ozone were already adapted to higher ozone values, whereas the control trees experienced extraordinary high ambient ozone concentrations in the dry and sunny summer 2003. For spruce in autumn 2003 and 2004 ozone treated trees had significantly higher foliar levels of K in current year needles than control trees, an effect which cannot be thoroughly interpreted yet on the basis of the dataset available. This article belongs to the special issue „Growth and defence of Norway spruce and European beech in pure and mixed stands“.  相似文献   

17.
A survey was made of soil factors likely to be responsible forchecked growth of Sitka spruce on soils derived from basaltin western coastal areas of Scotland. Despite the high organicP contents of these soils, availability of P appears to be themain factor limiting growth; growth indices were significantlycorrelated with foliar P concentrations and inorganic P levelsof the soil. The low availability of soil P appears to be associatedwith high levels of oxalate-extractable Al (amorphous) in thesoils, a strong correlation existing between the latter andthe P sorption index of Bache and Williams. CaCl2-extractableAl (‘available’) values were also high and althoughthey exhibited no significant correlation with growth therewas a negative correlation between growth and foliar Al concentrations. High mycorrhizal counts were associated with tree roots on siteswith better growth while beaded roots were mainly associatedwith poor growth. There is a suggestion that high CaCl2-extractableAl in these soils may affect mycorrhizal development, as a strongcorrelation was found between the occurrence of beaded rootsand foliar Al concentration. Factor analysis confirmed that low availability of P in thesesoils may be ameliorated by mycorrhizal development and thata negative association exists between growth, the occurrenceof beaded roots and foliar Al concentration.  相似文献   

18.
Longevity of trees is known to be associated with growth rates, but also with tree morphology and spatial influences. However, very little quantitative information is available on the effects of these biotic and abiotic influences on maximum ages of trees. The objectives of this study were to investigate the trade-off between longevity and growth rates of Norway spruce (Picea abies) and to quantify the effects of tree morphology and abiotic site conditions on longevity of this species. Data were collected along different topographical and climatic gradients in a 20?×?25?km study area in the northern part of the Swiss Alps (Glarus). The ages of the more than 100 sampled dead Norway spruces ranged between 50 and 367?years. Longevity of these trees was negatively related to tree growth, i.e. slow-growing trees tended to grow older than fast-growing trees. Tree height was positively associated with longevity for both upper and lower storey trees. Longevity of lower storey trees was increased with large crown diameter, but decreased with long crown length. Upper storey trees growing at higher altitude tended to get older than at lower altitude. We conclude that the combined effects of growth rates, variability in site conditions and different traits of tree morphology determine tree longevity of Norway spruce in the Swiss Alps. Because longevity is tightly linked to mortality rates of tree populations, our study may improve our understanding of long-term processes of forest dynamics under current and future climate.  相似文献   

19.
Red spruce (Picea rubens Sarg.) suffers frequent and extensive injury to current-year foliage during the winter. Experimental freezing of red spruce foliage at cooling rates > 10 degrees C min(-1) induced visible symptomatology similar to natural winter injury at the branch, needle and cellular levels. Such damage was associated with a low-temperature exotherm near -10 to -12 degrees C, a loss in needle fluorescence, massive cellular disruption, foliar discoloration, and low needle survival. Susceptibility of individual trees to rapid freezing injury was associated with historical winter injury patterns and alterations in foliar nutrition. We conclude that anthropogenic deposition may alter the sensitivity of trees to winter injury caused by rapid temperature changes.  相似文献   

20.
The area covered by plantations of hybrid poplar in Europe is increasing greatly because of the high profitability of these trees. However, the productivity varies widely depending on nutritional status, and it is therefore essential to identify the limiting nutrients. The aims of this study were (a) to identify the main nutrients limiting the growth and vitality of monoclonal poplar (Populus × euramericana) plantations and (b) to develop a means of early detection of nutrition-related problems in growth, based on visual crown conditions (crown transparency, VCT, and visual crown discoloration, VCD). The study was carried out in one of the most suitable areas for this species in Southern Europe. Thirty-two Populus × euramericana (clone I-214) stands displaying different levels of decline were selected for study, and tree growth, nutritional status (soil properties and foliar nutrient concentrations) and crown conditions were assessed. The stands, which were growing in soils with high contents of coarse fragments, displayed low growth rates, poor crown conditions and deficiencies in Fe, B, N, P, K, and to a lesser extent, Zn and Cu. The deficiencies increased with the age of the stand, presumably because of the higher nutrient demand in older trees. Visual crown conditions were related to growth rates and nutritional status. Predictive models were developed to relate crown conditions to the nutritional status identified by analysis of soil properties and foliar concentrations of nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号